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ABSTRACT
In this paper we focus on estimating the post-click engage-
ment on native ads by predicting the dwell time on the
corresponding ad landing pages. To infer relationships be-
tween features of the ads and dwell time we resort to the
application of survival analysis techniques, which allow us to
estimate the distribution of the length of time that the user
will spend on the ad. This information is then integrated
into the ad ranking function with the goal of promoting the
rank of ads that are likely to be clicked and consumed by
users (dwell time greater than a given threshold). The online
evaluation over live tra�c shows that considering post-click
engagement has a consistent positive e↵ect on both CTR,
decreases the number of bounces and increases the average
dwell time, hence leading to a better user post-click experi-
ence.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Survival Analysis; H.3.5
[Information Storage and Retrieval]: Online Informa-
tion Services

General Terms
Design, Performance, Experimentation

Keywords
ad quality, dwell time, post-click experience, mobile advertis-
ing, survival analysis framework

1. INTRODUCTION
Many of today’s free web services, such as social networks,

search engines, and online news portals, are based on pre-
senting users with advertisements (ads for short). These
web services decide which ads to show to users according to
the following protocol. First, a matching system retrieves
all ads that are deemed “close enough” to the content of
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the considered context. Examples of context include a “user
query” in sponsored search, a “user profile” in the case of per-
sonalized display advertising, and/or other generic features
(e.g., geolocalization, device). Then eligible ads are ordered
according to a function that combines the bid, which is the
amount of money the advertiser is willing to pay for its ad
to be shown, and the quality of the match. We denote the
later as (context, ad). Finally, ads with the highest scores
are selected, sometimes on the condition that the score is
higher than a specified minimum threshold.
This protocol departs from the classical auction-based

matching, as top advertisement positions are not automat-



landing pages and integrate this information within the ad
quality score.
Engagement can be measured in several ways. One can

explicitly request users to provide feedback on ads. This
way engagement can be measured as the number of positive
votes over the total feedback received. This approach has
the drawback of requiring active collaboration from the user
base. We opt for a di↵erent, but equally e↵ective, solution by
analyzing what happens after the user clicks on an ad. There
are two scenarios. The first one is when user immediately
leaves the ad landing page and comes back to the service
platform, i.e., the user bounces. The second one is when
the user stays longer on the ad landing page and eventually
enough to convert (e.g., purchasing an item, registering to a
mailing list, or simply spending time on the site building an
a�nity with the brand). Simply put, we measure the level of
user engagement with ads as the length of time user spend
on the corresponding landing page, which is known as dwell
time. A high dwell time suggests that the user found the
content engaging enough to stay and “consume” it.

To compute the estimated dwell times on ad landing pages
we leverage the enormous amount of data available in the
interaction logs of mobile users on native ads. Our aim is
to derive a way of computing Pr' = Pr (DT > '), which
is the probability of dwell time of a given ad to be larger
than a threshold '. The computed probability is then used
to weight the computation of the function used to rank the
ads, score(context, ad) from Equation 1. This means that
ad-quality(context, ad) is not defined simply on Pr (Click),
which is the probability that the ad will receive a click, but
in terms of a function

ad-quality(context, ad) = f(Pr (Click) ,Pr (DT > ')) (2)

that combines the probability that the ad is going to be
clicked and the user is going to stay for more than the
threshold '. It is worth to point out that native ads are
fundamentally di↵erent from search ads as in the former case
there is no user query that can be used to identify the user
need and match it to the ad. Therefore estimating for how
long a user will stay on the ad landing page can only be done
by means of landing page features themselves.

To infer relationships between the ad landing page and the
corresponding dwell time, we resort to a survival analysis
approach. Its main advantage over traditional regression
and classification-based techniques relies on the fact that
it provides simple tools for predicting the distribution over
time-to-event rather than single point estimates. This makes
survival techniques suitable for modeling our definition of
post-click ad quality.
In this paper, we develop a tool for predicting the distri-

bution over dwell time given a set of features extracted from
the ad landing page. We build upon the research work done
in [21], which was based on simple regression approaches,
and propose the adoption of a novel survival analysis based
model to overcome some of the limitations of the previous
approach.

The prediction model used is a Random Survival Forest, an
ensemble of decision trees for lifetime data. We present and
discuss both o↵-line (accuracy in predicting dwell time) and
on-line (impact on advertising benchmarks) evaluation of our
tool, applied to native ads served on mobile news-reading
apps operated by a large Internet company.

The new model allows the setting of di↵erent thresholds
for di↵erent classes of users/ads. This is important because
not all the ads are comparable in terms of content nor all
the users take the same amount of time to understand if an
ad is interesting or not. With the previously proposed model
this would require di↵erent models and therefore additional
complexity at prediction time. We also show with our exper-
iments that a simple regression on dwell time values perform
poorly when compared to the survival analysis based solution.
Furthermore, we include a new set of features that, as the
feature importance analysis shows, are highly correlated with
the target distribution to predict.
The main contributions of this work can be summarized

as follows:

• We discuss the application of survival analysis tech-
niques to predict the distribution of dwell time on
native advertisements. As we shall describe further in
the paper, survival analysis based models are a natural
fit for dwell time prediction problems [12].

• We improve the feature set that we proposed in a
previous work [21] by including important features that
help improving the quality and generalizability of the
prediction model.

• We test and validate our solutions on two separate
benchmarks: an o✏ine one measuring the quality of
our produced models using AUC, and an online one
using A/B testing to show the increase of average dwell
time (as well as of average CTR) of a system using our
post-click ad quality score in production.

2. RELATED WORK
Online advertising has been extensively studied in the

context of display advertising [2, 30] and sponsored search [4,
31, 32]. Studies have mostly focused on predicting how an
ad will perform according to various e↵ectiveness measures,
mostly click-through rate (CTR) which is the number of
times the ad was clicked out of the number of times it has
been shown (number of ad impressions). The higher the
CTR the better the ad; it attracts the users to click on
it. Furthermore, only recently the focus has been shifted
towards mobile advertising [21] and originally studies were
conducted mostly considering desktop users.
To optimize for CTR, most e↵orts have been around im-

proving the matching between web queries (in sponsored
search) or web pages (in display advertising) and the ad
textual content (creative and/or bid phrases and title) [5, 4,
7, 22, 25]. The context of the ad landing pages have been
used to enhance matching algorithms [5, 4, 8, 16]. We also
exploit landing page features to predict the quality of ads,
but with respect to the post-click experience and focusing
on its quality.
These works have mostly focused on the short-term rev-

enue, i.e., optimizing for as many clicks as possible, with
little or no regards at all for long-term e↵ects. This comes
from using as the main success criteria relevance metrics such
as CTR. However, this approach does not account for the
quality of the advertising experience either on the creative
or its landing page. Our focus is on the latter, the quality of
the landing page and its e↵ect on the post-click experience.

Recent work has studied the long-term e↵ect of ad quality
on the revenue of a big search engine company [14]. Inspired
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by the work of [20], a novel methodology was proposed to
predict long-term e↵



new ads, in the form:

Pr(DT > '|~x(a),⇥dwell) (5)

If the threshold ' is known a-priori, this learning problem can
be approached by using standard binary classifiers: positive
examples are observations having dt > ', while negative
examples are the remaining ones. However, by performing
this initial discretization step we might lose information. All
examples are treated equally without considering the actual
gap (positive or negative) between their corresponding dwell
time and the threshold. Moreover, a new model must be
used each time we need to consider a di↵erent threshold.
Approaching this problem from a survival analysis per-

spective allows us more flexibility. Indeed, the model is not
bound to a fixed threshold value, which can in turn be speci-
fied at serving time. For instance, the survival probabilities
at di↵erent timestamps can be computed by using the same
model and then used as features for other prediction tasks
(rather than using a single point estimate).

4. DWELL TIME PREDICTION
We summarize the main concepts in survival analysis and

then describe a state-of-the art, based on an ensemble tree
method, for predicting the distribution of the dwell time.

4.1 Survival Analysis in a Nutshell
Survival analysis3 is a branch of statistics that deals with

time-to-event data (also known as lifetime data), i.e. data in
which the outcome variable is the time it takes for an event to
occur. In our setting, the event of interest corresponds to the
return of the user to the main page (e.g. search engine result
page, stream of news), after she visited the landing page
associated with an ad. Hence, the survival time corresponds
to the length of time that the user spent on the landing page
of the ad, which is the dwell time.

Let T be a non negative continuous random variable repre-
senting the survival times of individuals in some population
(dwell time observed for each event in the click-log), and
let f(t) be its probability density function. The cumulative
distribution function (CDF), defined as F (t) = Pr(T  t) =R t

0
f(t) dt, represents the probability that the event has oc-

curred by time t. The probability that the event of interest
has not happened by time t is given by the complement of
CDF

S(t) = Pr(T > t) = 1� F (t) (6)

and is usually referred to as survival function in the survival
analysis literature. An alternative characterization of the
distribution of T can be provided by introducing the hazard
function, which gives the instantaneous rate of occurrence of
the event at time t:

h(t) = lim
�t!0

Pr(t  T  t +�t|T > t)
�t

=
f(t)
S(t)

(7)

That is, the rate of occurrence of the event at time t is
expressed as the ratio between the density of events at t and
the probability of surviving t without experiencing the event.
The survival and hazard functions provide alternative but
equivalent characterizations of the distribution of T . In fact,

3The interested reader can refer to [24] for extensive discus-
sions on this topic.

S(t) and f(t) can be derived in terms of h(t) by exploiting
the following relationships:

h(t) =� d

dt
log (S(t)) (8)

S(t) =e�H(t) (9)

f(t) =h(t)e�H(t) (10)

where by definition

H(t) =

Z t

0

h(u)du (11)

is the cumulative hazard at time t. Depending on the consid-
ered case, it is easier to model (or to make assumptions on)
the hazard function rather than the survival, or vice-versa.
The above relationships allow us to focus on modeling one
component and deduce the other automatically.

Di↵erent types of survival models can be obtained by mak-
ing di↵erent assumptions on the form of the hazard or survival
function. For instance we can use Weibull distribution to
model the belief that the risk is a monotone function (either
increases/decreases or it remains constant over time). These
approaches are known as parametric models and they provide
smooth (and more robust to noisy data) estimates for S(t)
and h(t) by performing the maximum likelihood estimate
over the considered lifetime data. Conversely, non-parametric
models, such as the Kaplan-Meier [17] and Nelson-Aalen [26]
estimators, do not make any assumption on the distribution
of survival times and they are generally easier to estimate.
One of the most interesting setting in survival analysis is

to assess the e↵ect of particular circumstances or character-
istics on increasing, or decreasing, the probability of survival.
Several models have been proposed to predict the survival of
a new observation given its features (e.g. proportional hazard
models [19]). In the next section, we describe Survival Ran-
dom Forest, a non-parametric state-of-the art method that
is able to exploit non-linear interactions between features of
each observation and the corresponding survival time.

4.2 Survival random forest
Given an ad, characterized by a set of features, what is the

probability that a user will spend a given amount of time on
its corresponding landing page? What is the expected value
of such dwell time and the overall shape of its distribution?
What are the features that generally lead to high dwell time?
To address such questions we need a predictive model that is
able to infer the relationships between a given set of features
and a response variable that represents the time needed to
observe an event (e.g. the user leaving the ad landing page).
We use Survival Random Forest for this purpose.

Survival Random Forest [15] is an ensemble tree method
for the analysis of right-censored4 lifetime data. It provides
an ensamble non-parametric estimate for the cumulative
hazard (Equation 11), which can in turn be used to estimate
the empirical survival function according to Equation 9.
The procedure for building a survival random forest is

summarized in Algorithm 1. Each of the M survival trees is
built independently. Survival trees are binary trees grown
by recursively splitting the tree nodes. Each tree starts at

4Right censoring is a form of missing data. It happens when
it is only known that the survival time for one individual is
above a certain value, e.g. a subject does not experience the
event before the study ends.
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the root node, containing a bootstrap of samples from the
original data (line 3). Each node is split by using a survival
criterion (line 13) on a randomly chosen set of features (line
12) and such split produces two children (line 14). Nodes are
recursively processed until the termination criterion is met
(line 8). Next, we analyze each phase in detail.

Bootstrapping. Each bootstrap is built on about 63% of
the available data, leaving the remaining approximately 37%
for validation. Validation samples are referred to as Out Of
Bag (OOB) samples. The size of each bootstrap is n, which
corresponds to the size of the original data, and samples
are drawn with replacement. This means that observations
from the original data set may occur multiple times (or,
equivalently, have a weight > 1).

Termination criterion and lifetime estimation. The
recursive splitting procedure stops when no new child can
be formed from the current node, because the number of
unique events is less than a specified threshold (3 is the
default value). The node becomes a terminal node and
it should provide an estimator of the cumulative hazard
(line 9), which is used in the prediction phase. Let D(h) =
{(·, t1(h), �1(h)), · · · , (·, tn(h)(h), �n(h)(h))} be the set of sam-
ples in the terminal node (h) (omitting the feature values for
notational convenience), ordered by increasing survival time.
In this case, ti(h) denotes the survival time for the i-th sam-
ple, �i(h) is a censoring binary indicator (1 if the sample is
right-censored, 0 otherwise), and n(h) is the number of sam-
ples in the node h. The cumulative hazard estimate for the
node h (Ĥh) is computed as the Nelson-Aalen estimator [26]:

Ĥh(t) =
X

ti2D(h)
tit

di(h)
ni(h)

(12)

where di(h) is the number of samples in D(h) with survival
time exactly equal to ti, ni(h) is the number of samples
in D(h) with survival time greater than ti�1 (this includes
observation right-censored at ti).

Node Splitting. The growth of the tree structure is reg-
ulated by a greedy splitting procedure. The data in each
non-terminal node must be split into two populations, such
that the di↵erence between their survival distributions is
maximal. Let Lf,c(D) be a function that measures the sur-
vival di↵erence between the populations obtained by splitting
data D on feature f and value c.
At each node h, the procedure randomly picks a set of

features F(h), (where |F(h)| = F ) as candidate for splitting.
For each candidate feature f , let Vf (h) be the set of possible
values on f of samples in D(h). The best split (f⇤, c⇤) is
found by applying a locally optimal feature/split decision, by
analyzing all selected features f 2 F(h) and split values c
and picking the one that maximizes:

(f⇤, c⇤) = arg max
f2F(h)
c2Vf (h)

Lf,c(D(h)) (13)

As measure of goodness of a split, random survival forest
adopts the log-rank splitting rule:

Lf,c(D(h)) =

P
ti

⇣
dL
i (h)� nL

i (h)
di(h)
ni(h)

⌘

r
P

ti

nL
i (h)

ni(h)

⇣
1� nL

i (h)

ni(h)

⌘⇣
ni(h)�di(h)

ni(h)�1

⌘
di(h)

(14)

Algorithm 1 Building a Random Survival Forest

Require: M (number of trees in the forest),
F (number of features to consider at each split),
lifetime data D = {(~x1, t1, �1) · · · (~xn, tn, �n)}

1: forest = Forest()
2: for all trees m = {1, · · · ,M} do

3: Dm  bootstrap(D);
4: rootm = SurvivalNode(Dm)
5: queue = {rootm}
6: while ¬queue.isEmpty do

7: curr node = queue.pop()
8: if checkTerminal(curr node) then

9: curr node.buildLifetimeEstimator()
10: else

11: curr data = curr node.getData()
12: f curr = selectFeatures(F )
13: hf id, splitV aluei = getBestSplit(curr data, f curr)
14: hDl, Dri = split(curr data, f id, splitV alue)
15: curr node.setSplit(f id, splitV alue)
16: left = Node(Dl)
17: curr node.setLeftChild(left)
18: right = Node(Dr)
19: curr node.setRightChild(right)
20: queue.enqueue(left), queue.enqueue(right)
21: end if

22: end while

23: forest.addTree(rootm)
24: end for

where dL
i (h) and nL

i (h) are computed on the left-child data
obtained by splitting D(h) on feature f and value c, and the
summatories go over distinct event-times in D(h). Once the
split (f⇤, c⇤) has been found, the observations in the current
node are split into two populations: the left child contains
observations such that xf⇤  c⇤, and the right child contains
the remaining ones.

Ensamble prediction. Given a sample with features ~x,
we drop it down each tree in the forest. On each tree the
sample eventually reaches a terminal node that provides a
cumulative hazard estimator according to Equation 12. Let
Ĥm(t|~x) be the cumulative hazard estimate at time t for
the sample with features ~x in the m-th tree. The ensemble
cumulative hazard estimator of a forest M is computed as

ĤM(t|~x) = 1
|M|

X

m2M

Ĥm(t|~x) (15)

Given an ad with features ~x(a), the survival random forest
M predicts the likelihood that its dwell time will be greater
than ' as:

Ŝ('|~x(a),M) = exp{�ĤM('|~x(a))} (16)

The above equation can hence be used to compute the post-
click ad quality score, which was defined in Equation 5.

5. EVALUATION
We analyze the performances of our approach in two ways:

• Predictive accuracy : Through an o↵-line evaluation, we
assess the accuracy of the survival random forest model
on the task of predicting the dwell time of ads.

• Online performances: Through an on-line evaluation,
we focus on standard benchmarks for evaluating the suc-
cess of online ad campaigns by analyzing the di↵erence
between a bucket and a control segment.
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Table 1: Features considered for the o↵-line evaluation task. This set extends features discussed in previous work [21].
Domain Name Description

Document Object

NumberOfExternalLinks No. of links pointing to external domains
NumberOfInternalLinks No. of links pointing to the same domain as the landing page
NumberOfLinks Sum of the previous two features
ExternalInternalLinksRatio Ratio of External vs. Internal links
ExternalTotalLinksRatio Percentage of external links
InternalTotalLinksRatio Percentage of internal link
TextSizeExternalLinksRatio Text per external links ratio
TextSizeInternalLinksRatio Text per internal links ratio
TextSizeLinksRatio Text per total number of links ratio
MainTextSizeExternalLinksRatio Main Text (without boilerplate text) per External links ratio
MainTextSizeInternalLinksRatio Main Text (without boilerplate text) per Internal links ratio

Readability

MainTotalTextSizeRatio Main Text (without boilerplate text) per total links ratio.
TotalTextSize Text size
MainTextSize Main Text size
FlashKincaidTitleReadability Readability of the title
FlashKincaidAbstractReadability Readability of the abstract
tokenCount Number of tokens
summarizabilityScore Summarizability of the text
FlashKincaidMainTextReadability Readability of the main text.

Mobile Optimized

clickToCall Is there a click to call button?
iPhoneButton Is there an iPhone button?
viewPort Is viewport available?
windowSize Size of the window

Media

imageHeight Height of the rendered landing page
imageWidth Widht of the rendered landing page
numberImages Number of images contained in the landing page
media Is there a media (e.g., video) on the landing page?

Input

numberClickable Number of clickable objects int he landing page.
numberDropdown Number of dropdown elments.
numCheckbox Number of checkbox
numInputString Number of Input Strings
numRadio Number of radio buttons

Semantic Similarity
Landing-Page &
Creative

nouns Detected nouns in the landing page
numConceptAnnotation Number of concepts detected in the landing page
similarityNoun Jaccard between the set of nouns in the title/abstract and the main text
similarityWikiIds Jaccard between the set of wiki entities in the title/abstract and the main text

History

impressions Number of impressions
clicks Number of clicks
ctr Observed CTR
clicks dwell Number of clicks corresponding to dwell times greater than 10 seconds
histDwellTime Average dwell time from historical data
histBounceRate Bounce rate from historical data

5.1 Off-line evaluation
The predictive accuracy of our implementation of sur-

vival random forest is assessed with an o↵-line test. We
base such evaluation on a dataset with 50K observations
(ad, dwellT ime), which refer to 2.5K ads provided by over
850 advertisers. We perform a 80/20 training/test split. For
each ad we extracted 42 features, which are listed in Ta-
ble 1. Many of these features were experimented in previous
work [21]. We added to them two sets, namely “document
object” and “readability”. Each feature can be associated
with a feature domain, defined as follows:

• Document Object : is a set of features representing the
landing page content of “informative” text versus other
information (e.g., hyperlinks to pages that are hosted
on domains di↵erent from the landing page one).

• Readability : is a set of features representing the read-
ability of the various ad components: title, description,
and landing page content.

• Mobile Optimized : represents features that can identify if
a landing page is mobile-optimized or not (in a previous
project we have built a classifier using these features to
detect if a landing page is mobile-optimized or not).

• Media: represents information about the multimedia
content of the landing page.

• Input : is a set of features indicating what and how many
input elements exist in the landing page.

• Semantic Similarity Landing-Page & Creative: are fea-
tures evaluating the similarity between the ad creative
and its landing page.

• History : represents how the advertisement has per-
formed in the past in terms of engagement metrics.

The dwell time observed on these observations is summa-
rized by the survival function in Figure 1, where the dwell
time is measured in seconds. Roughly 80% of the observa-
tions have dwell time less than 100 seconds; the median is
45 seconds, while the average is approximately 65 seconds.

We measure the prediction e↵ectiveness as in a classical
binary classification task. We pick 6 thresholds on the dwell
time, ranging from the minimum value of 10 to 100 seconds,
and for each threshold we compute the survival of observa-
tions in the test set. E↵ectiveness is measured as the area
under the tpr-fpr curve (AUC). We compare survival random
forest with linear models (logistic and cox regression [9]) and
two random forest methods. Cox regression is a survival
analysis model that assumes that the e↵ect of features on
the hazard rate is multiplicative:

h(t|~x) = h0(t) exp{~x0~�},
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Figure 3: Variable importance on survival random forest.

Table 2: Building time and OOB error when varying the
number of trees.

#Trees OOB Time(min)
10 0.4439 2.14
50 0.4180 9.7
100 0.4094 20
150 0.4093 28
200 0.4094 47

learning time vary with the number of trees. The OOB error
is an internal estimate of the generalization error of a random
forest; on this dataset it converges to a steady state after 100
trees have been built. The learning time increases linearly.
The best fit between the number of trees and the learning
time is given by the function T ime = #T rees · 0.22� 1.65
with an adjusted R2 coe�cient of 0.96.

5.2 On-line evaluation
To measure the online performances of our proposed ap-

proach, we run an evaluation through A/B testing on mobile
web tra�c of Yahoo. This tra�c is randomly split into
two buckets: Adquality, which ranks ads according to Equa-
tion 4, and Control on which the ranking function does not
account for post-click engagement. Our analysis focuses on
a time window of eight weeks. The goal of this evaluation
is to assess the impact of our proposed approach on stan-
dard benchmarks for assessing the performances of online ad
campaigns, namely CTR and the impact on the degree of
engagement of users. The engagement in these experiments is
assessed by analyzing the dwell time and bounce rate values
as reported by the A/B testing system. In this context, we
define bounce rate as the percentage of users that left the
ad landing page within 5 seconds (we use the same criteria
and motivations as in [21]).
In Figure 4 we report a comparison between the average

benchmark values recorded, whereas in Table 3 we show the
correlation between those values. As expected, Adquality
shows a consistent uplift in dwell time over the control bucket.
Overall the dwell time on ads served by integrating the post-
click component is 13.3% higher than the dwell time recorded
on the control bucket. The increase of dwell time has a
positive e↵ect on both CTR (average uplift of 6.8%) and
bounce rate (average decrease of 10.3%). We also see that

Table 3: Correlation between % uplift/losses on bench-
marks.

" DT # BR
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" DT 0.808
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Figure 4: Online performances of AdQuality vs Control
bucket.

an increase of dwell time is correlated with increase of CTR,
and the reverse is observed with bounce rate. This again
suggests that serving ads of higher quality, in terms of the
post-click experience, has a positive e↵ect on users; more ads
are being clicked.
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Figure 5: Survival functions associated with two separate
ad categories: beauty and finance.

6. CONCLUSIONS AND FUTURE WORK
As users are spending increasingly more time on mobile,

providing them with the best possible experience is important
for both the owner of the platform and advertisers. In
this paper, we describe an approach to estimate the post-
click engagement on mobile native ads, where the latter is
measured as the dwell time. To infer relationships between
ads and dwell time, we resort to the application of survival
random forest, an ensemble of decision trees for lifetime data.

The survival random forest based model not only slightly
outperforms all the other competing model (including a suite
of classification random forest) but, more importantly, it
allows to compute the survival at di↵erent thresholds. Other
methods require, in fact, setting the dwell time threshold
before the model is actually built.

Our approach was deployed in a large-scale online setting,
with the goal of promoting ads that are likely to be clicked
and o↵er high level of engagement with users. The online
evaluation over live tra�c shows that considering post-click
engagement has a consistent positive e↵ect on CTR. In ad-
dition, it decreases the number of bounces and it increases
the average dwell time, hence leading to a better post-click
experience.

This work can be extended in several directions. The first
one is to consider more features of the landing pages and
study their correlation with dwell time. Features extracted
from the domain object and features related to the readability
of the content are among the most important predictors
for the distribution of dwell time. We also expect that
visual features, such as the quality of the images on the
landing pages, have a consistent impact on the degree of
user engagement on ads. Works on computational aesthetics,
for instance [10], may bring additional perspectives in what
makes a positive versus negative post-click experience.
The second direction of future work focuses on determin-

ing the threshold that separates low-quality ads from high

quality ones. Variations in dwell time might be explained
by considering the category of the ad (e.g. finance, health,
entertainment). To support this we have plotted in Figure 5
the dwell time distribution, as estimated using Kaplan-Meier
estimator, of two di↵erent ad categories: beauty and finance.
As it can be immediately observed the two dwell time cumu-
lative functions are di↵erent. Users, in fact, tend to spend
more time on finance ads rather than beauty ads. As the
confidence interval curves also hint this di↵erence is also
significant. Of course, one could compute di↵erent models
corresponding to multiple threshold but this solution would
not be flexible enough (the need to store multiple models)
nor elegant.

Ads with di↵erent content are likely to perform in a di↵er-
ent way: some contents are inherently more engaging than
others or require a di↵erent time to lead to a conversion.
To take into account this phenomenon, the low-quality ads
should be considered as the ones for which the mass of the
predicted distribution of dwell time is shifted towards low
values, if compared to the one of “similar” ads. Similarly,
di↵erent categories of users may have di↵erent levels of en-
gagement with advertising. These considerations suggest
that it is important to consider several thresholds rather
than a global one, where each threshold is personalized at
the user/ad level.

Finally, from a business oriented perspective, as the qual-
ity of an ad might not be necessarily correlated with the
bid, it is important to dynamically balance the quality of
the served ads with other benchmarks indicators related to
the maximization of revenue. The survival random forest
framework presented in this paper can be easily adapted and
integrated with other prediction modules to address all these
scenarios.
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