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ABSTRACT
Cascades of information-sharing are a primary mechanism by which
content reaches its audience on social media, and an active line of
research has studied how such cascades, which form as content is
reshared from person to person, develop and subside. In this paper,
we perform a large-scale analysis of cascades on Facebook over
significantly longer time scales, and find that a more complex pic-
ture emerges, in which many large cascades recur, exhibiting mul-
tiple bursts of popularity with periods of quiescence in between.
We characterize recurrence by measuring the time elapsed between
bursts, their overlap and proximity in the social network, and the
diversity in the demographics of individuals participating in each
peak. We discover that content virality, as revealed by its initial
popularity, is a main driver of recurrence, with the availability of
multiple copies of that content helping to spark new bursts. Still,
beyond a certain popularity of content, the rate of recurrence drops
as cascades start exhausting the population of interested individu-
als. We reproduce these observed patterns in a simple model of
content recurrence simulated on a real social network. Using only
characteristics of a cascade’s initial burst, we demonstrate strong
performance in predicting whether it will recur in the future.
Keywords: Cascade prediction; content recurrence; information
diffusion; memes; virality.

1. INTRODUCTION
In many online social networks, people share content in the form

of photos, videos, and links with one another. As others reshare
this content with their friends or followers in turn, cascades of re-
sharing can develop [14]. Substantial previous work has studied
the formation of such information cascades with the aim of charac-
terizing and predicting their growth [7, 23, 47]. Cascades tend to
be bursty, with a spike of activity occurring within a few days of
the content’s introduction into the network [34, 37]. This property
forms the backdrop to a line of temporal analyses that focus on the
basic rising-and-falling pattern that characterizes the initial onset
of a cascade [2, 10, 36, 48].

However, the temporal patterns exhibited by cascades over sig-
nificantly longer time scales is largely unexplored. Do successful
cascades display a long monotonic decline after their initial peak,
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Figure 1: An example of a image meme that has recurred, or resur-
faced in popularity multiple times, sometimes as a continuation of
the same copy, and sometimes as a new copy of the same meme (ex-
ample copies are shown as thumbnails). This recurrence appears as
multiple peaks in the plot of reshares as a function of time.

or do they exhibit more complex behavior in which they can re-
cur, experiencing renewed bursts of popularity long after their ini-
tial introduction? Anecdotally, many of us have experienced déjà
vu when a friend shared content we had seen weeks or months ago,
but it is not clear whether these are isolated occurrences or glimpses
into a robust phenomenon. Resolving these basic distinctions in the
long-time-scale behavior of cascades is crucial to understanding the
longevity of content beyond its initial popularity, and points toward
a more holistic view of how content spreads in a network.
The present work: Cascade recurrence. We perform a year-
long large-scale analysis of cascades of public content on Face-
book, measuring them over significantly longer time scales than
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Figure 2: (a) The diffusion cascade of the example meme from Figure 1 as it spreads over time, colored from red (early) to blue (late). Only
reshares that prompted subsequent reshares are shown. (b) The cascade is made up of separately introduced copies of the same content; in
this drawing of the cascade from (a), each copy is represented in a different color. (c) Sometimes, individual copies experience a resurgence
in popularity; again we draw the cascade from (a), but now highlight a single resurgent copy in red with the spread of all other copies depicted
in black. (d) A different network on the same set of users who took part in the cascade, showing friendship edges rather than reshare edges.
These edges span reshares across copies and time, showing that multiple copies of the meme are not well-separated in the friendship network.

it is a photo or a video? Finally, how well can one combine such
features to predict whether a piece of widely reshared content is
likely to experience additional bursts in popularity later on?

We motivate our discussion with an example of content recur-
rence. Figure 1 shows an image meme that first became popular
on Facebook at the end of February 2014, and it depicts how the
number of reshares of that meme changed over time. Here, while
an initial burst in resharing activity is followed by a gradual de-
crease, this meme recurred, experiencing multiple resurgences in
popularity — first in mid-March, then several times over the next
few months. Perhaps surprisingly, there is little to no resharing
between consecutive bursts. Additionally, multiple near-identical
copies of this image meme, represented in different colors, are
shared in the network. This distinction between different copies of
the same content will prove important in our later analyses: when
a user reshares content through the reshare mechanism provided by
the site, the content continues onward as the same copy; in contrast,
when a user reposts or re-uploads the same content and thus shares
it afresh, this is a new copy.

Figure 2 sketches the diffusion cascade of this meme, or its prop-
agation over edges in the social network. As shown in (a), bursts
in activity are connected through the same large long-lived cascade
and can be traced through the network, from the initial bursts in
March (shown in red), to the smaller bursts nearer the end of 2014
(shown in blue). In (b), where the same network is now colored ac-
cording to the copy of the image being reshared, different copies of
the same content appear at different times, sometimes correspond-
ing to when bursts occur, suggesting that recurrence sometimes oc-
curs from the introduction of new copies. However, recurrence may
also occur as a continuation of a previous copy: the copy high-
lighted in red in (c) experiences an initial burst in March, but then
resurfaces in popularity later in the year. Further, we see in (d) that
friendship ties exist between even the earliest and latest reshares —
the meme appears to be diffusing rapidly, but also revisits parts of
the network through which it had earlier diffused.

While the meme in our example recurred several times, are such
memes the exception or the norm? And if such memes are in fact
typical, what are the bases for such robust patterns of recurrence?
To answer these questions, we use a dataset of reshare activity of
publicly viewable photos and videos on Facebook in 2014.
Characterizing recurrence. First, we develop a simple definition
of a burst, corresponding informally to a spike in the number of
reshares over time, that we can use to quantify when recurrence
occurs (via multiple observed bursts), and when it does not (a single

burst). We show that a significant volume of popularly reshared
content recurs (59% of image memes and 33% of videos), and that
recurring bursts tend to take place over a month apart from each
other. Recurrence is itself relatively bursty — rarely do we observe
long sustained periods of resharing.

Studying the temporal patterns of recurrence, user characteristics
of the resharing population, and the network structure of cascades,
we find that the recurrence of a piece of content is moderated to a
large extent by its virality, or broadness of appeal: cascades with
initial bursts of activity that are larger, last longer, and have a more
diverse population of resharers are more likely to recur. Nonethe-
less, it is not the cascades that start out the largest or most viral
that recur, but those that are moderately appealing. Specifically, a
moderate number of initial reshares, as well as a moderate amount
of homophily (or diversity) in the initial resharing population is
correlated with higher rates of recurrence. This lies in contrast to
more appealing (or popular) content, where one is likely to see a
single large outbreak which results in a large single burst, as well
as less appealing content, where one is likely to only see a sin-
gle small outbreak and thus a smaller single burst. In the former
case, we show evidence that a large initial burst inhibits subsequent
recurrence by effectively “immunizing” a large proportion of the
susceptible population.

While individual copies of content already recur in the network
(18% for image memes and 30% for videos), the presence of mul-
tiple copies catalyzes recurrence, allowing that content to spread
rapidly to different parts of the network, significantly boosting the
rate of recurrence. To a smaller extent, the principle of homophily,
suggesting that people are more likely to share content received
from users similar to themselves, also plays a role in recurrence,
with user similarity positively correlated with the rate of spreading.
Modeling recurrence. Motivated by the above picture of recur-
rence, and inspired by classic epidemiological models of diffusion
[39] and disease recurrence [3, 25, 40], we present a simple model
of cascading behavior that is primarily driven by content virality
and the availability of multiple copies, and is able to reproduce the
observed recurrence features. A simulation of this model, which
introduces multiple copies of the same content into the network,
can cause independent cascades that peak at different times and in
aggregate are observed as recurring. As the virality of the content
increases, the shape of a plot of overall reshares in the network over
time transforms from a shorter independent single burst, to multiple
bursts of differing sizes, to a single large burst of a longer duration.
Replicating our previous findings, increasing virality increases re-
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currence, up to a point: once a meme has exposed a large part of
the network, further recurrence is inhibited.
Predicting recurrence. Finally, we show how temporal, network,
demographic, and multiple-copy features may be used to predict
whether a cascade will recur, if the recurrence will be smaller or
larger than the original burst, and when the recurrence occurs. We
demonstrate strong performance in predicting whether the same
content will recur after observing its initial burst of popularity (ROC
AUC=0.89 for image memes), as well as in predicting the relative
size of the resulting burst (0.78). The time of recurrence, on the
other hand, appears to be more unpredictable (0.58). Features re-
lating to content virality and multiple copies perform best. Though
multiple-copy features account for significant performance in pre-
dicting the recurrence of content, we obtain similarly strong perfor-
mance (0.88) when predicting the recurrence of an individual copy
of a piece of content.

Together, these results not only provide the first large-scale study
of content recurrence in social media, but also begin to suggest
some of the factors that underpin the process of recurrence.

2. TECHNICAL PRELIMINARIES
Studying cascade recurrence requires both sufficiently rich data

that accurately measures activity throughout a network over long
periods of time, as well as a robust definition of what recurrence is.

2.1 Dataset Description
In this paper, we use over a year of sharing data from Facebook.

All data was de-identified and analyzed in aggregate. Facebook
presents a particularly rich ecosystem of users and pages (entities
that can represent organizations or brands) sharing a large amount
of content over long periods of time.

Reliably measuring the spread of content in a network over time
is challenging because multiple copies of the same content may
exist at any time. As we will later show, the presence of multi-
ple copies in a cascade is an important catalyst for recurrence. On
Facebook, users and pages may introduce a new copy of the same
content by re-posting or re-uploading it; resharing an existing copy
instead creates an attribution back to that same copy. Content may
be reintroduced, instead of reshared, for various reasons — multi-
ple users may have independently discovered the same content, or
downloaded and then re-uploaded an image.

To construct a dataset of popularly shared content, we initially
selected a seed set of reshared content uploaded to Facebook in
March 2014. We selected the top 200,000 most reshared images,
which were publicly viewable, counting only reshares within the
180 days since the image was uploaded, then used a neural net-
work classifier [28] to identify images with overlaid text (i.e., im-
age memes). One advantage of studying image memes in par-
ticular is that the information that these memes transmit is un-
likely to change, as opposed to unembellished images which may
be used differently (e.g., if the same photo is used to support sepa-
rate causes).

Next, we tried to identify other copies of content that exist in
this seed set. Beyond exact copies of the same image, many near-
identical images, which have slightly different dimensions or intro-
duce compression artifacts or borders, also exist (as seen in Figure
1). As such, a binary k-means algorithm [21] was used to iden-
tify clusters of near-identical images to which each of these can-
didates belonged, including images beyond the original set. For
each cluster, we then obtained all reshares of images in that clus-
ter that were made in 2014. To verify the quality of the clustering,
we manually examined the top 100 most-reshared copies in each of

t

# 
R

es
ha

re
s

h

w r

p0

p1

b0

b1

Figure 3: Recurrence occurs when we observe multiple peaks (p0,
p1, red crosses) in the number of reshares over time. Bursts (b0, b1)
capture the activity around each peak.

Recurring CascadesNon-Recurring

Figure 4: Examples of time series of recurring and non-recurring
cascades over a year, colored by copy. Identified peaks are marked
with red crosses; the number of reshares is normalized per cascade.

100 randomly sampled clusters. In 94 clusters, all 100 copies were
near-identical. The remaining clusters mainly comprised the same
image overlaid with different text.

This sample of resharing activity in 2014 that we use consists of
395,240,736 users and pages that made 5,167,835,292 reshares of
105,198,380 images. These images were aggregated into 76,301
clusters. Repeating the process above for videos shared on Face-
book, we obtain a sample comprising 323,361,625 users and pages
that made 2,187,047,135 reshares of 6,748,622 videos, aggregated
into 156,145 clusters. Images, videos, users, and pages that were
deleted were excluded from analysis. On average, each image clus-
ter is made up of 1379 copies of the same content. Video clusters
were smaller, with 43 copies in each cluster on average.

As we only measured reshares for a year, we may only be ob-
serving part of a cascade’s spread if it began prior to 2014. Thus,
we also considered subsets of each dataset containing only clus-
ters that began in 2014. We identified these subsets by additionally
measuring reshares of content in the three months prior to 2014
(October to December 2013) and excluding clusters where activity
was observed during this period.

Though we mainly analyze recurrence at the cluster level, we
also investigate the recurrence of individual copies by studying the
top 100,000 individually most reshared copies in each dataset.

2.2 Defining Recurrence
In this work, we define recurrence relative to peaks and bursts

in popularity over time. In practice, almost all popular content on
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# Clusters Copies/Cluster Prop. Recurrence # Peaks Days Observed Days betw. 1st/2nd Burst
Image Memes 51,415 (76,793) 523 (1378) 0.40 (0.59) 2.3 (4.6) 202 (280) 31 (32)

Videos 149,253 (156,145) 13 (43) 0.30 (0.33) 1.6 (2.0) 170 (182) 47 (44)

Table 1: Recurrence occurs in a large proportion of popular image memes and videos shared on Facebook. We note in parentheses statistics
computed on all cascades, as opposed to the cascades that began in 2014 whose initial spread we can observe.

Facebook experiences at least one peak in popularity. If content
peaks in popularity more than once, we say that it recurs.

To identify these peaks, and thus whether a cascade recurs, we
measure the number of reshares of content over time. Figure 4
shows several examples of recurring memes. Empirically, reshare
activity is varied across different content but is generally bursty,
with long periods of inactivity between peaks. As recurrence oc-
curs over a long amount of time, we discretize time into days.

Intuitively, a recurrence occurs when a peak is observed in the
time series. Not only should these peaks be relative outliers on a
timeline, but they should also last for a significant amount of time.
Further, we should be able to tell these peaks apart from each other.
Motivated by this intuition, suppose we observe a meme for t days.
Let ri, i ∈ {1, 2, ..., t} be the number of reshares observed on day
i. We parameterize recurrence using four variables — h0, m, and
w place constraints on identified peaks, and v places a constraint on
the “valley” between peaks. Specifically, the height h of each peak
must be at least h0 and at least m times the mean reshares per day
�r (Figure 3). Additionally, a peak day must be a local maximum
within ±w days. Finally, between any two adjacent peaks pi and
pi+1, the number of reshares must drop below v ·min{rpi , rpi+1}.
We call the area around the peak a burst (b0, b1 respectively for p0,
p1 in Figure 3), whose duration or widthw, is defined as the sum of
the number of days the number of reshares is increasing before pi
and falling after pi, while remaining above �r. There is a one-to-one
correspondence between peaks and bursts.

In practice, we set h0=10, m=2, w=7, and v=0.5 so that each
burst is relatively well-defined. The red crosses in Figure 4 show
the identified peaks under this regime. While this definition does
not strictly minimize activity between bursts, empirically, activity
does drop significantly (and in many cases, falls to zero) in be-
tween bursts. Stricter definitions that reduce the number of iden-
tified peaks (e.g., requiring a well-defined “valley floor” between
two peaks, or increasing h0 or m) also resulted in qualitatively
similar findings. The approach we take is fairly rudimentary; fu-
ture work may involve developing more specific definitions of re-
currence which take into account the shape of resulting bursts.

3. CHARACTERIZING RECURRENCE
We first introduce recurrence at a high level, showing that it is

both common and bursty, with the same content sometimes resur-
facing multiple times. We then discuss four important classes of
observations that we later draw on to model and predict recurrence:

• Temporal patterns: cascades with longer initial bursts, but a
moderate number of reshares, are more likely to recur.
• Sharer characteristics: recurring and non-recurring cascades

differ in demographic makeup, and moderate diversity in the
initial sharing population encourages recurrence. Further,
changes in homophily in the network affect the speed at which
content spreads, and hence burstiness.
• Network structure: bursts in a cascade occur in different, but

nonetheless connected parts of the network. Also, large ini-
tial bursts tend to exhaust the supply of susceptible users, po-
tentially accounting for why moderate, but not high cascade
volume or diversity results in greater recurrence.

• Catalysts of recurrence: the availability of multiple copies
in the network may catalyze recurrence. Still, neither does
the presence of multiple copies suggest that recurrence is en-
tirely an externally-driven phenomenon, nor is it a necessary
condition for recurrence.

In the remainder of this paper, we report results primarily on
image memes, and note any salient differences with videos. All
differences reported are significant at p<10-10 using a t-test unless
otherwise noted.

3.1 Recurrence is common
Once introduced on Facebook, popular content continues spread-

ing for a long time. On average, the maximum time between re-
shares of the same content is 280 days. But rather than being shared
at a constant rate (among popularly reshared content, less than 1%
of memes have no discernible peak), resharing tends to be bursty,
with bursts typically separated by substantial periods of relative in-
activity. A mean of 32 days separates the initial and subsequent
bursts for image memes (Figure 5b).

Previously, we defined recurrence as observing multiple peaks
in the number of reshares observed over time, and non-recurrence
as observing only a single peak. Over these long periods of time,
59% of popular image memes recur. In fact, a significant propor-
tion of these cascades experience resurgences in popularity (Figure
5a), and may even have experienced bursts prior to our observation
window. If we limit the sample to the set of image memes which
began spreading in 2014, 40% of these memes recur (Table 1).

3.2 Temporal patterns
Cascades with larger initial bursts of activity that last longer are

more likely to recur, suggesting that more viral, or appealing cas-
cades are more likely to recur. However, it is not the most popular
cascades that recur the most, but those that are only moderately
popular — while recurrence initially increases with the size of the
initial peak, it subsequently decreases.
Recurring cascades have larger, longer-lived initial bursts. The
initial burst of a cascade is already indicative of recurrence. Recur-
ring cascades start out larger (15,547) and initially last longer (9.3
days) than non-recurring cascades (6128 reshares, 6.9 days), spend-
ing more time “building up” (Figure 5c) and “winding down”. The
greater initial popularity of recurring cascades suggests that more
viral cascades are more likely to recur, but is this the case?
Recurring content is moderately popular. Plotting the total num-
ber of reshares in the initial burst against the subsequent number
of bursts observed, rather than the number of reshares monotoni-
cally increasing or decreasing the rate of recurrence, we observe a
striking interior maximum at approximately 105 reshares for both
image memes and videos (Figure 7a). Neither the initially best-
performing (or most viral), nor poorest-performing (or least viral)
cascades tend to resurface. In the former case, a single large burst
tends to dominate with smaller bursts after; in the latter case, a
small number of small bursts is typically observed.
They keep coming back! While most of our analyses focus on the
initial burst and subsequent recurrence, several general trends arise
as more recurrence is observed:
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3.5 Catalyzing recurrence
As shown in Figures 1 and 2, cascades are made up of reshares

of multiple copies of the same content, and the presence of these
copies can help catalyze recurrence. Still, neither are copies the
only cause of recurrence (recurrence is substantial even with a sin-
gle copy), nor must they be independently or externally introduced
(many later copies are attributable to previously seen copies).
Cascades whose reshares are divided across multiple copies tend
to recur. Recurring cascades are made up of more copies than non-
recurring cascades (2277 vs. 93). Reshares are also more spread
out across multiple copies in the former case (841 and 3445 re-
shares per copy for recurring and non-recurring cascades respec-
tively), suggesting recurrence may be characterized by multiple
smaller outbreaks. The most reshared copy accounts for 72% of
reshares in the initial burst for recurring cascades, and 93% for
non-recurring cascades. Altogether, the substantial differences here
suggest the strong predictive power of these characteristics.
The appearance of new copies correlates with recurrence. Fur-
ther, the introduction of new copies and the number of reshares over
time is significantly correlated (Pearson’s r=0.66), suggesting that
the appearance of new copies causes bursts, and thus recurrence.
On a related note, prior work showed that reposting content helps
make it popular [44].
Copies are not the only cause of recurrence. Nonetheless, not all
copies burst (only 6% are reshared at least 10 times on any single
day), and not all bursts are caused by new copies, as we will later
show. And while correlations between the number of copies and
other characteristics such as duration and country-entropy also ex-
ist, when we control for the number of copies in the initial bursts of
recurring and non-recurring cascades [42], all previously observed
differences in the temporal, sharer, and network characteristics of
these cascades still hold (W>108, p<10-10, mean effect size r=0.08).
Comparing recurring and non-recurring cascades with similar num-
bers of copies in their initial bursts, the initial bursts of recurring
cascades are still larger, longer-lived, and more diverse. In all, this
suggests that recurrence is not simply caused by distinct copies of
the same content spreading through the network, but is a result of a
more complex phenomenon which we explain in Section 4.
A majority of copies are internal to the network. Still, where do
these copies come from, and are they internal or external to the net-
work? By using the network to identify friends and pages who may
have previously shared a different copy of some content, we can
attribute 75% of newly uploaded copies to previously seen copies
in the network (this approach roughly estimates content-copying
that occurs within Facebook, as users who share a new copy may
not have seen a friend’s shared copy). This suggests a nuanced ap-
proach to studying recurrence — external sources may drive some
of the introduction of new copies to a social system, but a large pro-
portion of activity, which we can study, occurs within the network.
Pages may also catalyze recurrence. Pages are responsible for a
large proportion of highly-reshared copies (over 70% of reshares
are attributable to page-created copies in the second burst of re-
curring cascades). In recurring cascades, pages tend to re-upload,
rather than reshare content, doing so 50% of the time, as opposed
to 2% for users. Further, the most popular copy in the second burst
is likely to have been created by a page (70%). Given the relatively
higher degree of pages, which tend to have tens of thousands of
followers, as opposed to users who typically only have hundreds of
friends, pages may spark recurrence by posting a new copy of the
same content, rapidly exposing a number of followers to it.

Individual copies recur too! Recurrence of the individually most
popular copies in our datasets, while lower than when copies are
studied in clusters, is still substantial (18%). These individual copies
last a significant amount of time (261 days), with bursts further
apart (41 days). Like cascades of multiple copies, the initial bursts
of recurring individual-copy cascades are larger and longer-lived
than those of non-recurring cascades, with later bursts occurring in
different parts of the network. Recurrence of the same copy can
also be observed within clusters — 22% of the time, the most re-
shared copy in a burst was also most reshared in a previous burst.

4. MODELING RECURRENCE
Tying our observations together, we present an overall picture of

the mechanisms of recurrence, then suggest a model of recurrence
which we evaluate through simulations on a real social network.

4.1 Why do cascades recur?
Our findings as a whole suggest a model of recurrence where

virality is a primary factor, and where the availability of multiple
copies can help spark recurrence.
Virality plays a primary role in recurrence. Virality, or broad-
ness of appeal, affects recurrence: cascades with initial bursts that
are larger, last longer, and are more demographically diverse are
more likely to recur. Specifically, moderately popular and diverse
cascades are most likely to recur. While recurrence typically oc-
curs in different parts of the network, the larger the initial burst
of a cascade, the larger the proportion of the potentially exposed
population in the subsequent burst that was already previously ex-
posed. This observation, coupled with the fact that users tend not
to reshare the same content multiple times, suggests that large ini-
tial bursts inactivate a significant portion of the network, inhibiting
a cascade’s future spread. Our subsequent simulations show more
clearly that this may indeed happen as the initial burst grows large.
Multiple copies in the network help spark recurrence. Bursts
in a cascade are separated by relatively long periods of inactivity.
By studying the availability of multiple copies of the same con-
tent, we find that these copies can act as catalysts for recurrence
in different parts of the network. Indeed, multiple introductions of
the same content correlate with recurrence. However, while more
copies initially increases the chance of recurrence, they are not the
only cause of it; recurring and non-recurring cascades with similar
numbers of copies differ significantly in virality. Moreover, mul-
tiple copies do not explain the substantial recurrence of individual
copies. To a lesser extent, we also discover that homophily in the
network affects the speed of the spread of a cascade in a network.

Together, moderate content virality and the presence of multiple
copies results in recurrence. While the likelihood of recurrence
does increase with the number of copies (or potential “sparks”), we
can still observe an interior maximum in how recurrence varies with
the number of reshares after fixing the number of copies, where a
moderate number of reshares results in the most recurrence.

4.2 A simple model of recurrence
Motivated by these findings, we suggest a simple model of cas-

cading behavior where recurrence depends on content virality:

• If the virality of a cascade is low, it may only appeal to a
small group of people, and is thus unable to spread far in
the network. Thus, a single, small peak results, with many
attempts to propagate in the network failing (Figure 8a).
• As virality increases, the cascade is able to spread substan-

tially further in the network, and may occasionally even jump
to other local communities in the network, spreading faster
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Figure 8: When virality is low, only a small number of attempts at
infection succeed. When virality is moderate, more attempts suc-
ceed, which aggregate into observable recurrence. When virality
is high, rather than a large number of bursts aggregating to form a
single large peak, the first successful burst infects a large portion of
the network, making it difficult for other copies to spread.

within them. As several bursts occur in the network, they
may be observed as recurring in aggregate (Figure 8b).

• However, as virality increases beyond some threshold, any
individual burst is likely to spread through a large portion
of the susceptible population, inhibiting the transmission of
subsequent copies (Figure 8c). This last point lies in contrast
to the trivial hypothesis that more independent copies leads
to more independent bursts that aggregate to form a single
large burst, which does not appear to be the case, as most
reshares in initial bursts can be attributed to a single copy.

4.3 Simulating recurrence
To see if such a model of recurrence can reproduce characteris-

tics of recurrence observed in the data, we now simulate recurrence
on a real social network. Our observations and model suggest the
use of an SIR model, where nodes in a network are initially sus-
ceptible (S) to a contagion, and then may become infected (I) when
exposed. Infected nodes subsequently recover (R) and become re-
sistant to the contagion. These models have been used to study the
spread of disease [6] and information [9, 13, 39] in a network.
Setup. Our simulation thus consists of an SIR model with multiple
outbreaks introduced at different times, and with resistant nodes re-
infectable at a lower rate. We parameterize our model as follows:
For a given contagion c, its virality, or equivalently, the susceptibil-
ity of every node in the network, is pc0. In other words, if exposed
to the contagion, the probability that the node will be infected is
pc0. Infected nodes attempt to infect all neighbors in the subsequent
time step, and then become resistant. As users sometimes share the
same content multiple times, resistant nodes have a constant lower
probability pc1 < pc0 of being re-infected. The introduction of each
copy of a contagion is normally distributed in time (N(µ, σ)).

Here, we make a simplifying assumption that independent copies
of the same content are introduced into the network at different
points in time. Following the intuition that more connected entities
(e.g., pages) are likely to start outbreaks, the target nodes to infect
are sampled, with replacement, proportional to the node’s degree.
m copies are introduced in total.

We simulate this model for 1000 discrete time steps with µ=500,
σ=250, and m=50, varying pc0 between 5×10-4 and 10-3 and where
pc1=0.5·pc1. We run our simulation on the network of a country with
approximately 1.4 million nodes and 160 million friendship edges,
repeating the simulation 5000 times. We measure the total number

of infections (or reshares) in each time step, and identify bursts as
defined in Section 2.2.
Results. Within certain ranges of virality (6×10-4≤ pc0 <8×10-4),
we can consistently reproduce recurring cascades. Figure 9a shows
several examples of the time series of these simulations. In aggre-
gate, we can obtain a distribution of number of peaks similar in
shape to Figure 5. Plotting the number of peaks against number
of reshares in the initial burst (or alternatively, pc0), we observe an
interior maximum — a moderate amount of virality results in the
most recurrence (Figure 9b), replicating our previous findings.

When the virality of the contagion is high (pc0≥8×10-4), a large
fraction of the highly connected portion of the graph becomes in-
fected by a single copy in the initial burst, suppressing subsequent
bursts as many nodes are now resistant. To show this happening,
we consider for each simulation, in addition to our original model,
an alternate-universe setting where the resistances of nodes are re-
set following the initial burst. We can then measure how much
the initial burst inhibited the second by observing the likelihood
of a second burst in the alternate case, as well as the overlap of
nodes infected in the second burst with nodes in the initial burst.
A significant difference in the total number of peaks when virality
is high (1.0 vs. 2.0, t=92, p<10-10), but not when virality is low
(pc0≤7×10-4, n.s.) suggests that the supply of susceptible nodes
is indeed being used up in the former case, but not the latter. A
significant positive correlation of initial peak size with the size of
the overlap of the second peak in the alternate setting (0.76) further
supports this hypothesis and our prior observations.

Likewise, the connectivity of graph deteriorates significantly af-
ter a large initial burst (pc0≥8×10-4). Here, we measure the al-
gebraic connectivity [18] of the graph if all the nodes involved in
the initial burst are removed, and compare this to a baseline that
removes the same number of nodes at random. Connectivity is sig-
nificantly lower in the former case (579 vs. 1065, t>17, p<10-10),
especially in comparison to the graph’s initial connectivity (1105).

These results together suggest that under such a model of recur-
rence, a large initial burst does indeed inhibit subsequent bursts,
as we previously hypothesized (Figure 8c). Also in support of our
prior observations, increasing the number of introduced copies m
monotonically increases recurrence.
Limitations and alternatives. Importantly, our model assumes
that recurrence is sparked primarily by independent copies intro-
duced to the network. However, the reality of recurrence is subtler:
individual copies recur significantly in the network, and homophily
may also moderate recurrence. Allowing virality to vary with time
[24] or having nodes wait according to a power-law distribution
[17, 35] may also reproduce recurrence with only a single copy.
Decision-based queuing processes [8] may also help model the long
periods of inactivity between bursts.

5. PREDICTING RECURRENCE
Is it possible to predict if a cascade will resurface in the future?

Observing just the initial burst of a cascade, we use features re-
lated to the temporality, network structure, user demographics, and
presence of multiple copies to determine a) whether recurrence oc-
curs, b) if the recurrence will be relatively smaller or larger, and
c) when the recurrence occurs. Overall, we find that cascades with
longer initial bursts that consist of multiple small outbreaks tend to
recur, supporting the hypothesis that content virality and multiple
copies play a significant role in recurrence. Nonetheless, we obtain
similarly strong performance predicting recurrence for individual
copies of content. Predicting recurrence may enable us to better
forecast content longevity in a network.

678



Recurring CascadesNon-Recurring

(a) Simulated Time Series

�

�

�

�

�

�
�

�

��

����

���

����

��

�����
���������

���������1.0

1.5

2.0

2.5

3.0

101 102 103 104

# Reshares in Initial Burst

# 
B

ur
st

s

(b) # Peaks vs. Reshares, Simulated

Figure 9: (a) By varying content virality, a model of recurrence that
assumes independent introductions of copies of the same content
can simulate recurrence. (b) It also replicates the observation that a
moderate number of reshares results in more recurrence.

AUC on Feature Sets

Temporal 0.74 0.76 0.55
+ Demographic 0.78 (0.63) 0.76 (0.58) 0.56 (0.52)
+ Network 0.81 (0.72) 0.77 (0.66) 0.57 (0.53)
+ Multiple-Copy 0.89 (0.82) 0.78 (0.70) 0.58 (0.54)

Table 2: We obtain strong performance in predicting whether recur-
rence occurs and if the subsequent burst will be smaller or larger,
but not in predicting when recurrence occurs. Individual feature set
performance is in parentheses. The column headers refer to Sec-
tions 5.2, 5.3, and 5.4 respectively.

5.1 Factors driving recurrence
Based on our observations, we develop several features that help

predict recurrence, and group them into four categories:
Temporal features (7). Initially longer-lived bursts are suggestive
of recurrence, motivating the importance of the number of days be-
fore and after the peak is reached, as well as the number of reshares
before and after, and the height of the initial peak. The average
gradient of the initial burst before and after the peak further char-
acterize the shape of the initial burst.
Demographic features (5). The differences in user characteris-
tics and diversity we previously observed suggest the importance
of age, gender, as well as the entropy in the distribution of age,
gender and country of the initial burst.
Network features (6). Recurring cascades appear to be more con-
nected in their initial bursts, having more friendship and follower
edges, in addition to having a larger potentially exposed popula-
tion. The number of users, pages, and proportion of pages in the
initial burst also vary.
Multiple-copy features (8). The availability of multiple copies
plays a significant role in recurrence, motivating the use of the num-
ber of copies observed in the initial peak, the entropy in the distri-
bution of reshares of each copy, the mean reshares per copy, and
the proportion of reshares attributable to the most popular copy.
Pages also play a role in recurrence, suggesting that the proportion
of copies created by pages, the proportion of all reshares made by
pages or attributable to page-created copies, and whether the most
popular copy was created by a page are useful features.

5.2 Does it recur?
Prediction task. We formulate our prediction task as a binary clas-
sification problem: given only the initial burst of a cascade, we aim
to predict if a second burst will be observed (i.e., if the cascade will
recur). We use a balanced dataset of recurring and non-recurring

cascades (N=40,912 for image memes, 89,368 for videos) so that
guessing results in a baseline accuracy of 0.5. Given the non-linear
relation of several features to recurrence (e.g., that a moderate num-
ber of reshares results in the most recurrence), we use a random
forest classifier. In all cases, we perform 10-fold cross-validation
and report the classification accuracy, F1 score, and area under the
ROC curve (AUC).
Results. Overall, we find strong performance in predicting recur-
rence (Accuracy=0.82, F1=0.81, AUC=0.89). A logistic regression
classifier results in slightly worse performance (AUC=0.78). Ta-
ble 2 shows how performance improves as features are added to
the model, as well as individual feature set performance. While
multiple-copy features perform best, temporal and network fea-
tures, and to a lesser extent demographic features, also individually
exhibit robust performance, suggesting that each significantly con-
tributes to recurrence. In the absence of strong multiple-copy fea-
tures (fewer copies of any one video exist), we obtain worse perfor-
mance in predicting the recurrence of videos (Acc=0.69, F1=0.66,
AUC=0.76), with temporal features instead performing best.

For image meme cascades, the most predictive features of re-
currence relate to cascades having multiple small outbreaks (fewer
reshares per copy (0.78) and a higher entropy in the distribution
of reshares across copies (0.72)), and longer initial bursts (more
days before (0.63) and after (0.63) the peak). These features re-
main important for video cascades. Mirroring the dual importance
of multiple-copy and temporal features, just the number of reshares
per copy and the average gradient of the initial burst after its peak
alone achieve strong performance (0.81). Though the initial burst
of a recurring cascade is on average significantly larger, size-related
features are weaker signals of recurrence (≤0.59).

5.3 Will the recurrence be smaller/larger?
Prediction task. Assuming that we know that a cascade will recur,
how much smaller or larger will the second burst be? Knowing the
relative size of the next recurrence can differentiate bursty cascades
that are rising or falling in popularity. Given the initial burst of a
cascade, we aim to predict if the relative size of the second burst, or
the ratio of the size of the second burst to that of the first, is above or
below the median (0.28). As the median evenly divides the dataset,
we again have a balanced binary classification task with a random
guessing baseline accuracy of 0.5.
Results. We also find strong performance in predicting the rela-
tive size of the subsequent burst (Acc=0.72, F1=0.69, AUC=0.78
for image memes, AUC=0.85 for videos). Temporal features here
outperform all other feature sets, with the most predictive features
relating to the cascade having a long initial burst.

5.4 When does it recur?
Prediction task. If a cascade will recur, when will we observe
the next burst? With a cascade’s initial burst, can we predict if the
duration between bursts will be greater than the median (14 days)?
Results. We find that the timing of recurrence is far less predictable
(Acc=0.56, F1=0.51, AUC=0.58 for image memes, AUC=0.60 for
videos). Nevertheless, longer initial bursts are most indicative of
recurrence happening earlier.

5.5 Predicting recurrence for individual copies
Given the correlation of the appearance of multiple copies with

bursts, multiple-copy features perform strongest in predicting re-
currence. But what if we want to predict recurrence of a single
instance of some content, where multiple copies do not exist by
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definition? Surprisingly, we obtain similarly strong performance in
predicting the recurrence of individual copies (N=28,454, Acc=0.80,
F1=0.79, AUC=0.88 for image memes, AUC=0.82 for videos). Net-
work features are strongest (AUC=0.84), with fewer edges between
users and pages (0.68) in the initial peak the most predictive of
recurrence. As individual copies have a single point of origin,
fewer edges between pages and users and more edges between
users (0.61) suggests that the burst may have resulted more from
users sharing content from other users than high-degree pages shar-
ing that content with their followers. This observation, together
with the fact that longer initial bursts continue to be strongly pre-
dictive of recurrence (>0.65), suggests the continued significance
of virality with respect to individual copies.

The relative size of the subsequent burst is similarly predictable
for individual copies (0.83 for image memes, 0.84 for videos), but
interestingly, the time of recurrence is more predictable (0.68 and
0.63 respectively), which may be because any recurrence must be
a continuation of the initial copy, as opposed to possibly being
sparked by a new, less related copy.

6. RELATED WORK
Significant prior work has studied information diffusion in on-

line social media [7, 14, 37] — with respect to memes, work has
demonstrated the effect of meme similarity [16] and competition
for limited attention on subsequent popularity [46]. Most relevant
is previous work that looked at the temporal dynamics of diffusion
and developed epidemiological models of recurrence.

Among work that aims to predict the future popularity of on-
line content [12, 32, 44], one relevant line of research has involved
modeling the temporal patterns of the diffusion of information in
social media [2, 36, 49] or using these patterns to predict future
popularity or forecast trends [4, 9, 10, 14, 15, 24]. Perhaps driven
by the general shape of the initial burst of a cascade, many of these
models implicitly assume that the temporal shape of a cascade con-
sists primarily of a rising and falling period, and focus on modeling
the initial activity around a peak [2, 36, 48] or the overall popular-
ity discounting subsequent spikes [10]. Beyond the initial burst of
activity, we studied the long-term temporal dynamics of content on
Facebook over a year.

In prior work, when multiple bursts are observed in a time se-
ries, they tend to be of a topic or hashtag rather than an individual
piece of content, and are commonly attributed to external stimuli
[23, 29, 33, 38] (e.g., news related to that topic). While knowing
about external events can help forecast the temporal pattern of the
resulting spike [36], there has been little work in predicting if new
spikes will appear in the future lacking such knowledge. In partic-
ular, rumor recurrence is bursty, with or without external stimuli,
and sometimes with embellishments and other mutations [1, 31,
19], but there is little understanding of this phenomenon. Patterns
of human activity can also explain periodicity in popularity [5, 22,
34], but the vast majority of recurrence we observe in this paper
is aperiodic. While external stimuli explains some instances of re-
currence, we discover other factors that influence recurrence. In
contrast to most work that has observed multiple bursts in topics,
we observed recurrence even at the level of an individual copy.

Finally, substantial work has studied how bursts in streams or
time series can be detected [26, 27, 41]. In this paper, we adopted
a simple definition of burstiness, parameterizing peaks and bursts
relative to the mean activity observed.

Recurrence has also been studied in the context of epidemiology,
though primarily from a modeling perspective. Many base their
analysis on SIR models [39], simulating recurrence through intro-
ducing dormant periods [25], seasonality effects [3], or changes in

contagion fitness [20], which may be periodic [40]. More recently,
some work studied content popularity using these models, while ac-
counting for user login dynamics and content aging [13]. The struc-
ture of the network can also cause periodicity in epidemics [30,
45]. Many focus on modeling specific types of recurrence (e.g.,
historical disease epidemics [3]). In contrast, many recurrences we
observe are aperiodic, and findings on synthetic networks may not
easily generalize. Inspired by this line of work, we adapted an SIR
model assuming multiple points of infection on a real social net-
work, and show that key characteristics of recurrence we observed
can be reproduced.

7. DISCUSSION AND CONCLUSION
Our results start to shed light on the mechanism of content re-

currence — studying a large dataset of popularly reshared content,
we find that recurrence is common, and that content can come back
not just once, but several times. Strikingly, content may nearly
cease to circulate for days, weeks or even months, prior to experi-
encing another surge in popularity. Such a phenomenon may seem
highly unpredictable, but we find trends in how recurring cascades
behave, and can predict whether content will come back. The vi-
rality, or appeal of a cascade plays a role in recurrence: cascades
whose initial bursts are long-lasting, moderately popular, and mod-
erately diverse are most likely to recur. The presence of multiple
copies of the same content sparks recurrence, though homophily in
the network may also influence recurrence.

One limitation of our work is that we only analyze content within
a single network. Though most copies of the same content were
made within the network, a minority appeared without a prior path.
Analyzing the transfer of content between different social networks
may reveal different mechanisms of recurrence. Separately, while
the appearance of multiple copies correlates with recurrence, this
does not hold in the case of individual-copy recurrence. Under-
standing recurrence in the absence of multiple copies (e.g., through
studying homophily in more detail) remains future work.

Based on our observations, we presented a simple model that
exhibits some features of recurrence (e.g., pronounced bursts with
little activity in-between, and an internal maximum in the number
of bursts as a function of the number of reshares). Future work
could extend such models to account for homophily and commu-
nity structure in the network.

While the temporal shape, network structure, and user attributes
are already highly predictive of resharing behavior, other factors
may improve prediction accuracy further: sentimentality or humor
may make content evergreen, while content tied to current events
may have an expiration date. Seasonality effects may also cause pe-
riodic recurrence: we did observe an instance of a daylight-savings
image meme which appeared, as expected, exactly at the two points
during the year when people needed to adjust their clocks. Also,
other types of content may exhibit different properties of recur-
rence (e.g., link sharing may be more externally driven); the in-
teractions of users with shared content (e.g., comments) may also
reveal the reasons why some content came back; the societal con-
text of memes, as well as their interactions (or competition) with
other content, may also reveal more insight into their popularity
[43]. Perhaps most suggestive that much remains to be studied is
that while we can predict if recurrence will happens, it remains a
significant challenge to predict when recurrence will happen.
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