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ABSTRACT 
Analyzing how technology evolves is important for understanding 
technological progress and its impact on society. Although the 
concept of evolution has been explored in many domains (e.g., 
evolution of topics, events or terminology, evolution of species), 
little research has been done on automatically analyzing the evolu-
tion of products and technology in general. In this paper, we pro-
pose a novel approach for investigating the technology evolution 
based on collections of product reviews. We are particularly inter-
ested in understanding social impact of technology and in discover-
ing how changes of product features influence changes in our social 
lives. We address this challenge by first distinguishing two kinds of 
product-related terms: physical product features and terms describ-
ing situations when products are used. We then detect changes in 
both types of terms over time by tracking fluctuations in their popu-
larity and usage. Finally, we discover cases when changes of physi-
cal product features trigger the changes in product’s use. We exper-
imentally demonstrate the effectiveness of our approach on the 
Amazon Product Review Dataset that spans over 18 years. 

Keywords 
Technology evolution analysis, product evolution analysis, social 
influence, causality detection.  

1. INTRODUCTION 
Knowledge of product and technology evolution can offer many 
advantages. First, it can help people to learn about the way in which 
innovations appear and evolve. Users can gain insight into the way 
in which the changes of product features impact changes in their 
daily lives. Second, producers when equipped with comprehensive 
information on how products evolve could make better decisions. 
Finally, scientists in the areas related to the social aspects of tech-
nology and the history of science could benefit from data-driven 
approaches to support different hypotheses or verify their discover-
ies. 

Although “evolution” has been already explored in many sub-
domains of computer science, such as the evolution of topics 
[1,9,36], named entities [21,34] and terminology [3,15,16,20], few 
works approached the problem of automatically analyzing and 
portraying the evolution of products and technology. Yet, at the 
same time, a large number of product reviews have been created by 

users in the progress of the last years. Hence, collections of product-
related documents that span multiple years are already available 
making it possible to conduct various kinds of temporal analyses 
including the studies of technology evolution.  

In this work, we propose to use the collections of product re-
views for automatically analyzing product evolution. However, the 
type of the evolution analysis that we conduct is novel and diverts 
from the typical studies of topic or event evolution [1,6,9,36]. We 
believe that at least two points are important in the technology evo-
lution analysis, and, which, in our opinion, have not been sufficient-
ly studied within the realm of data mining and computer science.  

First, the evolution of products is a socially-related construct. 
The features of commonly used products usually have strong impact 
on the society. For example, it is known that early portable music 
devices equipped with batteries and earphones were small and effi-
cient enough to let their users freely listen to music while perform-
ing outdoor sports. Based on the above example we could say that 
product features (e.g., earphones and batteries) had certain 
social impact on user lifestyle (e.g., performing outdoor 
sports). In general, we think it is important to detect not only 
novel product features appearing over time but, more interestingly, 
to pinpoint their actual social impact in order to exhaustively reflect 
the evolution of products and technology in general. Actually, the 
phenomenon of technology impact on society has been an interest of 
social scientists and historians for long time [4,7,27]. The concept of 
technological determinism [7] presumes that a society's technology 
drives the development of social structure and cultural values. We 
thus put special emphasis in this work on social aspects of technolo-
gy progress.  

Second, although the straightforward statistical analysis [29,33] 
could explain the changes of a single product, generalizing to entire 
product categories is difficult. In other words, generic models that 
could be flexibly applied over different scopes (or product catego-
ries) to analyze the technology evolution are difficult to construct. 
To give an example, there should be a way to not only portray the 
evolution of Walkman (a particular product), but also the evolution 
of portable music devices (a product category) or music devices (a 
larger category) in general. Such flexible approach would allow for 
comparison of the evolution occurring across different granularity 
levels and hierarchies. 

We address the above mentioned challenges by providing novel 
methodology to extract evidences of technology impact on human 
activities. As the underlying document collection we use the Ama-
zon Product Review Dataset [22] which contains over 34 million 
reviews about over 2.4 million products written by 6.6 million users 
from June 1995 to March 2013.  

We formulate our task as the detection of cause-effect relations 
described in text, such that the change of product features causes (or 
influences) the changes in lifestyle. We first propose two types of 
time series (frequency-based and semantic-based) to capture the 
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change of terms denoting product features, social actions and usage 
in technology. We detect changes of these terms over time by track-
ing fluctuations in their popularity and shifts in their context. For 
capturing the latter we employ neural networks which are sequen-
tially retrained on temporal subsets of our dataset. Next, we propose 
methods for detecting causal relations based on both the time series 
and term probabilities in text. Furthermore, we go beyond detecting 
only binary causal relations attempting at finding the concept-level 
causality by aggregating binary causal relations. Note that, for lon-
gitudinal temporal document collections such as the one we use, the 
standard Natural Language Processing (NLP) methods [11,26,30] 
designed for causality or entailment detection within text cannot be 
directly applied. These can extract only explicitly mentioned causal 
relations, while in our work, we aim to detect implicit causality that 
relate temporally distant events. 

To sum up, we make the following contributions in this paper: 
1. We describe a novel approach for analyzing technology evo-

lution by considering its social influence over time. 
2. We propose using product reviews collected over multiple 

years for causality detection. The proposed methods are 
flexible over different levels of product categories.  

3. The effectiveness of our approach is demonstrated by exper-
iments on the Amazon Product Review Dataset spanning 18 
years. 

The remainder of the paper is organized as follows. We begin in 
Section 2 with the review of related work. In Section 3, we give the 
formal problem definition. Section 4 outlines our proposal for con-
structing time series to model technology changes and changes of 
product usage. Next, in Section 5, we describe how to uncover 
causal relations that underlie these changes. The experiments are 
explained in Section 6 and the evaluation results are discussed in 
Section 7. We conclude the paper in Section 8. 

2. RELATED WORK 
2.1 Social Studies of Technology 
Relationship between technology and social life has been an im-
portant topic of study for sociologists and historians of engineering, 
technology and science. Advocates of social constructivists, Bijker 
et al. in their book “The Social Construction of Technological Sys-
tems: New Directions in the Sociology and History of Technology” 
[4] emphasized the concept of Social Construction of Technology 
(SCOT). Their theories support the key idea of SCOT that technolo-
gy does not determine human action, but that, rather, human actions 
and human needs shape the evolutionary paths of technology. In 
contrast to SCOT, technological determinism [7] presumes that 
society’s technology drives the development of social structures and 
cultural values. The notion of the interaction between the technolo-
gy and society underlies the key motivation behind our work that 
understanding product evolution is a way to better understand the 
changes of society.  

2.2 Product Evolution 
When it comes to data mining approaches for the automatic analysis 
of product evolution the prior literature is rather sparse. Radhakrish-
nan et al. [29] researched modeling product evolution focusing on 
automatically ordering the names of product models (e.g. Windows 
95>98>2000>XP>7.0>8.0) by training CRF model using several 
classifier features. Strötgen et al. [33] explored relations among 
products by utilizing simple statistical analysis such as the changes 
in number of reviews and ratings.  

Our work differs from these researches in several aspects. First, 
we introduce a novel viewpoint to look at the evolution of products 

through the “social impact lens” for understanding how changes in 
product features impact the changes in human life. Second, we 
propose an approach to explore and quantify causal relationships. 
Third, our work is not limited to any specific models or to any cate-
gory level, so the proposed approach can be flexibly applied over 
different levels of categories (e.g., switching from the category of 
music devices to the lower category of mp3 players). 

2.3 Causality Detection 
A variety of approaches from computer science and statistics have 
been developed for detecting causal relations [18]. These can be 
categorized into NLP approaches [11,26,30], graphical models 
[8,32], Granger causality [2,10,12] and temporal logic [13,19].  

 Most of the causality works in the area of NLP are based on pat-
tern extraction [11,26,30]. For example, Girju et al. [11] proposed 
detecting causality by first discovering the lexico-syntactic patterns 
in text referring to causation and then applying several semantic 
constraints to validate and rank the candidate patterns using the 
confidence scores generated by these constraints. Other research 
works such as [26,30] focused on the problem of predicting the 
causality between events by generating semantic rules to express the 
causality in the text. However, the limitation of the semantic rule (or 
pattern) based approach is difficulty of extracting all possible ways 
in which users could express causality. Another disadvantage of that 
approach is that it can extract only explicitly mentioned causal 
relations in text, while in our work, we attempt to detect implicit 
causality that relates temporally distant events, and it is not directly 
referred to in text. 

Graphical models, such as Bayesian Networks (BN) and Dynam-
ic Baysian Networks, infer probabilistic models representing the set 
of causal relations between variables. The main idea is to find a 
graph or a series of graphs that best explain the data. The methods 
of BN inference can be further divided based on the way to find the 
best graph: one is to search over the set of possible graphs to max-
imize a scoring function [8], the other is to start with a fully con-
nected graph and remove the edges by conducting conditional inde-
pendence tests [32]. This approach is however limited due to its 
significant computation complexity which makes it difficult to 
search exhaustively over all possible graphs. 

Granger causality [12] is a popular approach for causal relation 
detection, and is, especially, used in economics. The idea is to per-
form hypothesis test for every pair of features on whether one time 
series of a feature is predicative about the time series of another 
feature within a given lag. In other words, a variable A causes B if A 
provides extra explanatory power to predict B more than the past 
values of B itself. However, this approach has several drawbacks. It 
involves applying regression on lags resulting in O(p2) time, where 
p is the number of features. Also, the statistical significance tests are 
conducted sequentially for all pairs of features. Several extension 
works based on the concept of Granger causality have been pro-
posed to tackle the complexity problem, such as Lasso Granger 
method [2], Vector Auto-Regressive (VAR), [10] etc. Another 
drawback is that Granger causality based methods as well as Bayes-
ian Nets typically solve the problem of type-level causality, which 
targets periodical or general causal relations (e.g., low air pressure 
causing rain, or common cold causing runny nose). However, our 
goal is to detect token-level causal relations where the cause is 
specific and often occurs only once (e.g., the release of a particular 
novel technology causing certain user response). In general, token-
level causality is more difficult to be detected than type-level cau-
sality due to the lack of direct prior evidences. 

The approach based on temporal logic [13,19] can be flexibly 
used to test unstructured relationships for specific time periods. 
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This approach is based on the assumption that a cause precedes its 
effect and the cause raises the probability of the effect [13]. Since 
temporal logic is based on probability, it can be directly employed 
for analyzing token-level causality. 

We thus adopt the temporal logic approach in this work thanks 
to its capability of handling the token-level causality. However, 
unlike the previous solutions [13,19], our work is different in that 
(1) it detects implicit causal relations between words within tem-
poral document collections. In particular, it extracts word level 
causal relations by causally binding changes related to one word 
with the changes related to another word within a specific time 
period. (2) Discovering causality between words is difficult due to 
the lack of direct prior evidences. So, in addition to detecting 
causal relations between two words, we also provide aggregation 
ways to better estimate the causal strength by grouping similar 
concepts or similar causal patterns.  

3. PROBLEM STATEMENT 
We first introduce the formal description of the problem.  

Causal relation, c→e, is the relation between a cause c and an 
effect e, such that the change in the cause leads to the change in 
the effect. In this work, we specifically allow the cause to be one 
of physical product features and the effect to be one of usage 
words describing the way in which products are used. To detect 
physical product features we employ classification approach 
(described in detail in Sec. 6.2), while we utilize verbs (e.g., 
download, jogging) and situation terms such as locations 
(e.g., gym, home) as terms denoting the product use.  

Formally, the strength of causal relation, I(c→e), is defined 
as: 

   ))(),(()( edcdfecI                                  

where function d (described in Sec. 5.1) quantifies the change of a 
cause term c and the change of an effect term e. Function f (de-
scribed in Sec. 5.2-5.3) estimates the causal strength between the 
two change types.  

The output consists of the ranked lists of detected causal rela-
tions as well as the time of their occurrences. Note that to allow for 
flexible approach the input data can be any category level of prod-
ucts. 

4. TIME SERIES CONSTRUCTION 
Constructing time series is the first step for detecting significant 
changes related of words. In this section, we introduce two ap-
proaches to measure the change, frequency-based and semantic-
based. The former tracks the changes of word popularity over time, 
while the latter quantifies variations in word usage.  

4.1 Frequency-based Approach 
Tracking the frequency of a word over time is a simple method to 
find time periods when the word has been increasingly used. In case 
of product reviews these often indicate time when new innovations 
came or new means of product usage occurred. To measure term 
frequency we split the dataset into non-overlapping time units and 
we calculate the average frequency of a term occurrence per docu-
ment at each time unit as follows: 
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where #(wDt) is the number of occurrences of a word w in the 
document set Dt at time unit t. |Dt| is the number of documents pub-
lished at t.  

We note that the frequency-based method can be easily imple-
mented and can scale up to big datasets. It is also relatively easy to 
measure correlations of two words by detecting their co-occurrences 
in documents. 

4.2 Semantic-based Approach 
While the frequency measure is easy to implement, it cannot capture 
cases when a word is used with stable frequency, yet, its surround-
ing context changes. For example, in the category Electronics, 
Portable Audio & Video, the frequency of the term car, which is 
considered here a situation word (description of a place where prod-
ucts can be used), does not change much across time in the Amazon 
Product Review Dataset. Yet, its context changes a lot. One reason 
for this is the change in the types of music devices used while trav-
elling by car, which evolved from cassette-based, through CD-based 
to mp3-based ones. This kind of semantic shifts can be detected by 
analyzing fluctuations in distributed representation of words. Dis-
tributed representation of words is based on the distributional hy-
pothesis which states that words appearing in similar contexts are 
semantically similar. Distributed representation enables to represent 
the semantics of a word by analyzing its context and to measure the 
semantic similarity of words as the distance between their vectors. 
Computing such representation by neural networks was first pro-
posed by Rumelhart et al. [31] in 1986. More recently, Mikolov et 
al. [24,25] introduced the Skip-gram model which utilizes a simpli-
fied neural network architecture for learning vector representations 
of words from unstructured text data. We apply this model due to 
the following advantages: (1) it can capture precise semantic word 
relationships; (2) the model can easily scale to millions of words due 
to the simplified neural network architecture. 

Fig. 1 overviews the process of constructing semantic time series 
of words. First, we collect all the words that occurred higher number 
of times than the predetermined threshold (5 times) at any time 
within our dataset. Based on these vocabulary we then train the 
Skip-gram1 model using all the reviews published in the first year. 
Thus from the beginning, every word is going to have a position in 
the vector space. Note that, for those terms which have not appeared 
in the first years, the model still assigns some initial vectors. Next, 
for each subsequent time unit2, we iterate over epochs and train the 
word vectors until convergence. We define the measure of conver-
gence as the average angular change in word vectors between 
epochs as shown below: 
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where the χw(t,) is the vector of word w at time slot t and epoch . 
For each time slot t, after each epoch, the model will stop updating 
the word vectors if ρ is lower than 0.0001.  

We finally construct the time series of a word w by computing 
the semantic distance between its distributed representations at 
time t and at time t-1 (see Fig.1). The semantic distance is meas-
ured as follows3:  
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1 We use a window size of 10 and the dimension number of 100. 
2 We use one month as a time unit in the experiments. 
3 Note that there is no need for applying space transformation 

such as the one in our previous work [35] because term vectors 
at each time unit are computed by retraining data from the pre-
vious time unit. 
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Figure 1. Overview of Constructing Semantic-based Time 

Series. 

5. CAUSALITY DETECTION 
As discussed in the problem statement (see Sec. 3), we consider 
the occurrence of the changes related to physical product features 
and the ones related to terms describing product usage as the 
premise of the occurrence of any causality. In this section, we 
first construct function d for detecting changes in time series. We 
then create function f by estimating the causality strength between 
pairs of a change in physical product features and the one in 
product usage. Finally, we propose two ways for aggregating 
binary causal relations.  

5.1 Change Detection 
Changes in the two time series representations of words (frequen-
cy-based and semantic-based) discussed in Sec. 4 have different 
meanings. When the frequency of a word significantly increases, 
it means the word becomes more popular which may be the result 
of either some change in technology or change of concepts related 
to or dependent on the technology. On the other hand, in the case 
of the semantic-based time series, each point actually represents 
the dissimilarity (distance) when compared with the data from the 
previous time unit. Therefore, in this case, the peak points (or 
points above threshold) mean high context change. Similarly, 
valley points (or points below threshold) indicate little context 
change or the lack of any change. Thus, we can regard the peak 
periods as semantic change periods.  

In the frequency-based time series we detect the increase peri-
ods by assuming that the increase period is the period between the 
adjacent “valley” and “peak”. To detect peaks and valleys, we 
refer to the method described in [5], the idea of which is that a 
peak is considered as the highest point between “valleys”. What 
makes a peak is the fact that there are lower points around it. We 
employ this method due to its advantage of fast computation and 
flexibility in parameter changes. It uses the distance, denoted as 
lookahead), to look ahead from a peak candidate. A minimum 
difference (denoted as delta) between a peak and the following 
points is also specified to distinguish an actual peak from a jitter. 
After detection of peaks, we estimate the increase period by con-
sidering a parameter slope, which guarantees the absolute value of 
minimum slope within the increase period.  

Algorithm 1 describes the process of the change detection4 
over both the frequency-based and the semantic-based time series 
in detail. It is composed of two parts. For finding the frequency 
changes we compute part 1 and 2 (the increase detection is based 
on peak detection), and for finding the semantic changes we only 
compute part 1 (peak detection). 

 
Algorithm 1  ChangeDetection(Ʈ) 
Input:  Time series Ʈ, Parameters lookahead, delta, slope 
Output:  Change periods (PeakƮ or IncreaseƮ)  
1:   /* Part 1: Peak and Valley Detection */ 
2:   minima, maxima ← ∞, -∞ 
3:   for Ʈi in Ʈ do: 
4:       if Ʈi > maxima then 
5:           maxima ← Ʈi 
6:          end if 
7:       if Ʈi < minima then 
8:           minima ← Ʈi 
9:       end if 
10:     if Ʈi < maxima − delta and maxima ≠ ∞ then 
11:         if maxima > {Ʈk | Ʈk ∈ Ʈ[i, i+lookahead]} then 
12:             PeakƮ ← add (Ʈi, maxima)  
13:             maxima, minima ← ∞, ∞ 
14:         end if 
15:     end if 
16:     if Ʈi > minima + delta and minima ≠ -∞ then 
17:         if minima < {Ʈk | Ʈk ∈ Ʈ[i, i+lookahead]} then 
18:             ValleyƮ ← add (Ʈi, minima)  
19:             maxima, minima ← -∞, -∞ 
20:         end if 
21:     end if 
22:  /* Part 2: Increase Detection */ 
23:  for adjacent (valley, peak) in (Valley, Peak) do 
24:      leftbound ← (Ʈpeak – Ʈleftbound) / (peak − leftbound) > slope 
25:      IncreasesƮ ← add (leftbound, peak) 
26:  end for 

Fig. 2 shows the example of change periods detected for the term 
jogging in its frequency-based time series (Fig. 2(a)) and the 
semantic-based time series (Fig. 2(b)).  
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(a) Frequency-based time series 
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(b) Semantic-based time series 

Figure 2. Example of change periods detected for the term 
jogging for the frequency-based (Fig. 2(a)) and the seman-
tic-based (Fig. 2(b)) time series. Green dots indicate the val-
leys of the time series, and the red dots represent the peaks of 
the time series. Red rectangles mark the detected change peri-
ods. 

5.2 Estimating Causal Strength 
To measure the strength of causality between a cause and an 
effect we adapt the approach of temporal logic [17,18]. It is based 

                                                                 
4 We use value of 18 for lookahead, 0.01 for delta for both for 

frequency- and semantic-based time series. slope is equal to 
0.005 for the frequency-based time series for increase detection. 
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on the key principles of probabilistic causality that: (1) a cause 
temporally precedes its effect, (2) the occurrence of the cause 
raises the probability of its effect.  

Based on these principles, Eq. 4 gives an estimation of causal 
strength between a cause c and an effect e. Intuitively, it can be 
interpreted as the more the probability of the occurrence of an 
effect e increases given the occurrence of cause c, the higher is 
the strength with which c causes e. The causal strength is associ-
ated with a causal time period [ts, te] which is necessary consider-
ing that the same causal relation (i.e., relation binding the same 
pair of a cause and an effect) can have different causal strengths 
at different time periods:  
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where P[ts,te](e|c) is the probability of an effect e given the occur-
rence of cause c within [ts, te]. We compute this probability by 
dividing the term frequency of e in the documents which contain 
the cause c by the one in the documents that lack c. M[ts,te](c) is the 
set of documents which contain c during the time period [ts, te] 
and M[ts,te](¬c) is the set of documents which do not contain c 
during [ts, te]. V represents all terms which appear in M[ts,te](c) or 
the ones in M[ts,te](¬c).   

One problem with Eq. 4 is that it is computed irrespectively of 
the influence of other potential causes on the same effect. In par-
ticular, there may exist several other causes of the effect (for 
example, ones causing both c and e). In another case, c may not 
be a genuine cause (being only a spurious or a weak cause). Thus, 
based on the list of candidate causes computed by Eq. 4, we de-
termine whether a particular candidate cause c is a significant 
cause of e by contrasting it with all the candidate causes of e. The 
global causal strength of c→e is then computed by Eqs. 5 and 6. 
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Here, X is the list of candidate causes obtained by applying Eq. 
4. Intuitively, Eqs. 5-6 estimate the causal power of a given can-
didate cause c by measuring how much, on average, the co-
occurrence of c with other candidate causes can explain the ap-
pearance of e. Note that using only the selected candidates helps 
to reduce the computation time of Eqs. 5 and 6. 

5.3 Aggregation of Causal Relations 
The above-described method outputs binary causalities, that is, it 
computes causal strength between pairs of a single cause and a 
single effect. However, binary causal relation has limited power 
to prove the credibility of the findings. We thus propose two 
aggregation ways to accumulate the influences of other binary 
causations which have similar meaning to the target pattern. In 
other words, by aggregation, we can find more evidence to sup-
port particular result. For example, if the following binary causal 
relations are returned mp3→walking, minidisc→running 
and mp3→jogging, then we are more confident in their cor-
rectness since they essentially mean similar things, and thus sup-

port each other. Intuitively, we would like to merge such pairs and 
combine their importance measures. 
    The objective of the extended method is then to discover and 
aggregate causal relations that are semantically similar. Since 
there are two sides, cause and effect, we could (a) form semantic 
groups in each side, respectively, or (b) construct semantic group-
ing simultaneously on both sides. These two approaches are de-
scribed in the following two subsections. 

5.3.1 Grouping by Similar Concepts 
Fig. 3 illustrates the aggregation process by grouping similar 
concepts. The left graph is the original graph in which thin, grey 
undirected links mean the connected nodes are semantically simi-
lar to each other, while the red directed links denote cause-effect 
relations. The right hand side graph shows two steps for complet-
ing the aggregation: step 1 is to detect clusters of similar causes 
and similar effects; step 2 is to aggregate the scores of causal 
strengths between any two clusters. These two steps are discussed 
in the following.  
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Figure 3. Overview of Aggregation by Similar Concepts.

Step 1. We start with the clustering method to discover seman-
tic groups on the cause and effect sides separately. Take the cause 
side as an example. We first construct a similarity graph for the 
causes. Any two causes will be connected in such a graph if their 
semantic similarity is above the threshold (the threshold equals 
0.5 by default). Then we sort all the pairs of connected causes by 
their semantic similarity. In the process of grouping, we start from 
the most similar pair (ci, cj) to find the common neighbors of ci 
and cj and we group ci and cj with such common neighbors. Next, 
the second least similar pair is taken and the processing goes in 
the same way. The grouping continues until reaching the least 
similar pair. In this process, each node may be assigned to differ-
ent groups. Since the grouping starts from the most similar pair, it 
thus forms groups with high inner-similarity within the group 
members, which guarantees the generated concept (or cluster) to 
be correct and pure. Another advantage compared to other cluster-
ing methods is that we do not need to pre-determine the number 
of clusters as in k-Means (k clusters) or Hierarchical Clustering 
(degree of cut). We conduct the same grouping process on the 
effect side as well. Algorithm 2 describes the grouping procedure 
in detail. 

Step 2. After grouping cause words and effect words respec-
tively, the final score of causal strength between a cause cluster 
and an effect cluster is the sum of the global implication scores 
between the clusters’ members normalized by the total number of 
possible links between both the clusters. The aggregated implica-
tion between a group of causes, C and a group of effects, E, is 
computed in Eq. 7: 
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where σ is the threshold for deciding whether we create a cause-
effect relation link between a cause word and an effect word (σ 
equals 0 by default). num(C) and num(E) are the number of terms 
in C and the one in E, respectively. 
 
Algorithm 2  GroupSearch(G) 
Input:  Similarity graph of causes Gcause (or effects Geffect) 
Output:  Cause groups Cgroup = {C0, C1,…, Cm}  

(or Effect groups Egroup = {E0, E1,…, En}) 
1:  Pairs {(ci, cj), (ci, ck),…, (cj, ck)} ← SortSimilarity(Gcause)  

/* sort the pair of terms by their semantic similarity from high-
est to lowest */ 

2:  Cgroup {C0 ⊃ (ci, cj),…, Cu ⊃ (cj, ck)} ← IniGIdx(Pairs)  
/* initialize group index */ 

3:  CurrGIdx ← 0 
4:  for all pair (ci, cj) in Pairs do 
5:      {ck, cp,…, cq} ← CommonNeighbors(ci, cj) 
6:      for c in {ck, cp,…, cq} do 
7:          GIdx(ci, cj, c) ← Minimum(CurrGIdx, GIdx(ci), GIdx(cj))
8:      end for 
9:      CurrGIdx ← CurrGIdx + 1 
10: end for 
 

5.3.2 Grouping by Similar Patterns 
In this section, we propose to aggregate causalities by simultane-
ously considering the similarity on both sides. The idea is that a 
cause-effect relation (c→e) for which there are many similar 
cause-effect relations, should receive more votes. In other words, 
such causal pattern is important. Fig. 4 illustrates the aggregation 
process. The left hand side graph is the initial graph in which a 
node is a cause-effect relation and an edge represents the semantic 
similarity between any two cause-effect relations. The right hand 
side graph is obtained after aggregating the causality scores based 
on the similarity relations and then grouping causes and effects.  

Initial 
Node ScoreEdge Weight
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c     e

c     ec     e

c     e
 

Aggregated 
Node ScoreEdge Weight

c     e c     e
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c     ec     e
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Figure 4. Overview of Aggregation by Similar Patterns.

Formally, let G = (V, Q) be an undirected graph with the set of 
vertices V and set of edges Q. We put each initial causal relation 
(c→e) that was found so far into a single node and we assign the 
initial score of the node to be equal to the causal strength of this 
relationship (as computed by Eq. 5). An edge in G represents the 
fact that any two causal relations (Vi, Vj) are similar more than the 
predefined threshold (by default equal to 0.5). An edge weight is 
estimated by the sum of the semantic similarities of both sides 
(cause and effect) and is denoted as wji. Let Neigh(Vi) be the set of 
vertices that link to a vertex Vi. The score of a vertex Vi, denoted 
as Aggr(Vi), is computed in a way similar to TextRank algorithm 
[23] by interactively computing Eq. 8 until convergence (i.e., the 
difference of aggregated scores is less than 0.0001): 
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where d is a damping factor set by default to 0.85.  

After aggregating the causality score of each node, we perform 
a simple node grouping by combing the neighbors of each node 
and keeping the largest clusters. For example, in case of two 
clusters {V1, V2, V4} and {V1, V4}, we keep the larger cluster {V1, 
V2, V4}. Since each node is a causal relation (c→e), we combine 
all the causes and combine all the effects within each cluster to 
form a concept representing the group of causes, C, and the one 
representing the group of effects, E. The causality strength be-
tween C and E is estimated by the maximum score among all the 
pairs of cause and effect within C and E (see Eq. 9) 

)}({max),( , ecAggrECI EeCcpattern  
              (9) 

6. EXPERIMENTS 
6.1 Dataset 
For the experiments we use the Amazon Product Review Dataset 
provided by Stanford Network Analysis Platform (SNAP) [22]. 
This dataset includes product descriptions as well as their hierar-
chical categorization and 34 million reviews written for over 2.4 
million products. The reviews were written since June 1995 up to 
March 2013. This period is long enough for evolution studies 
considering that technology experienced dramatic changes within 
the recent years. For the evaluation, we choose two large sub-
categories of Electronics category: Electronics, Portable Audio & 
Video and Electronics, Camera & Photo. We have selected these 
categories because many important changes occurred within the 
past decade in relation to the products belonging to these catego-
ries. Table 1 summarizes the statistics of the selected categories. 

Table 1. Statistics of Evaluated Categories. 

Category #Products #Reviews Time Span 
Electronics, Portable 

Audio & Video 7,809 182,831 2000-2012 

Electronics, Camera 
& Photo 21,289 289,956 1999-2012 

6.2 Feature Extraction 
First, we need to extract candidate cause and effect terms as brief-
ly mentioned in Sec. 3. In the current implementation, we use 
verbs (e.g., navigate, scroll) and situation terms (e.g., gym, 
home) as effect terms. We automatically detect verbs using POS 
tagger5. As for the situation terms, we extract the nouns appearing 
directly after prepositions (e.g., in, during). Note that it is also 
possible to utilize existing vocabulary lists for selecting situation 
terms such as the lists of locations.  

On the other hand, automatically retrieving physical product 
features requires more processing. The problems lie mainly in 
that: (1) physical product features vary across different products, 
therefore, we cannot use any predefined or general feature lists 
while still not missing any unique characteristics of products. 
Another issue is that (2) some physical terms are novel (e.g., USB, 
mp3) which may not exist in commonly used vocabulary lists or 
dictionaries. It is thus difficult to define the meaning of such new 
words by using existing dictionaries.  

Considering these challenges, we propose classification model 
to distinguish if a term is a physical product feature or not. As 
classifier features, we make use of both the semantic meaning of 
words and their characteristics derived from a lexical database 
                                                                 
5 The following part of speech types were used: VB, VBD, VBG, 

VBN, VBP and VBZ by applying NLTK POS tagger   
   (http://www.nltk.org/api/nltk.tag.html   accessed on 29/01/2016) 
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such as WordNet6. The types of classification features we use are 
as follows:  
1. Word Semantics: We use the distributed representation [24] of 

a word to represent its meaning because similar terms should 
belong to the same class. To capture term meaning, we train 
fixed word embeddings by using all the reviews of the target 
category regardless of their time stamps. After training, similar 
terms, such as cassette, CD and mp3, will be positioned 
close to each other in the vector space (since they all represent 
the same concept of storage medium). This means they are 
more likely to belong to the same class. We set the number of 
dimensions for word embeddings to 100.  

2. Lexical characteristics: We select 5 classifier features derived 
from the WordNet as follows.   
a. Distance to the node “physical entity” (integer): We meas-

ure the distance to the node “physical entity” in the Word-
Net hierarchy. The smaller the depth is, the more physical 
the word is likely to be.  

b. Distance from the node “abstraction” (integer): We meas-
ure the distance from the node “abstraction” to the target 
word within the WordNet hierarchy. The higher the dis-
tance, the more “physical” (less abstract) the word is likely 
to be. This is because physical product features tend to be 
represented by concrete, rather than, abstract words.  

c. Number of hyponyms (integer): General words tend to have 
on average more hyponyms. Since physical product fea-
tures are usually more specific, then we assume that the 
fewer hyponyms a word has, the more physical it is likely 
to be.  

d. Similarity to physical product feature markers (float): We 
adopt here the WordNet Similarity measure [28] to calcu-
late the semantic similarity between a given word and a set 
of fixed markers of physical product features: “size”, 
“weight”, “color”, “shape”, and “material”. The assumption 
is that the higher the similarity is, the more physical the 
word is likely to be.  

e. Plural form (binary): In many cases, if a word can be ex-
pressed in plural form, then it is more likely to be a physi-
cal product feature such as batteries, cases, etc.  

We train SVM classifier with linear kernel and default settings 
using 250 manually tagged terms and then we evaluate its per-
formance through 5-fold cross validation. Table 2 shows the pre-
cision, recall, F1-score and accuracy of the classifier when apply-
ing all the types of features. The results indicate that considering 
both the semantic meaning and lexical features results in the 
highest performance in terms of precision (0.874), F1-score 
(0.865) and accuracy (0.859). We thus use both semantic and 
lexical features for extracting physical product features. 

Table 2. Evaluation of SVM Classification Model. 

Feature selected Precision Recall F1-score Accuracy
Semantic + Lexical 0.874 0.863 0.865 0.859 

Semantic 0.833 0.812 0.810 0.804 
Lexical 0.670 0.957 0.788 0.726 

6.3 Analyzed Methods 
We describe here the baselines and the proposed methods to be 
tested. 

Baselines. We prepare two baselines as follows: 

                                                                 
6 https://wordnet.princeton.edu/ (accessed on 29/01/2016) 

(1) Jaccard Coefficient (JaccCoef): in this method we first de-
tect change periods in the time series of a given candidate effect 
term. Then, within each change period, we directly compute the 
Jaccard Coefficient [14] score between any candidate cause term 
and the effect term. The cause term which has the highest Jaccard 
Coefficient score will have the highest causality strength. We 
apply this naïve baseline to examine whether the term co-
occurrence would be sufficient to estimate the causality.  

(2) Lasso Granger Causality (LassoGC) [2]: this method 
computes the causality strength based on the theory of Granger 
Causality [12]. Granger Causality is widely adopted to detect the 
type-level cause-effect relations. We use it in order to investigate 
whether the type-level causality detection method could be suita-
ble for our task. LassoGC is selected as a baseline due to its effi-
ciency and scalability in computing Granger causality within 
large groups of features. It utilizes Lasso algorithm for linear 
regression to search for a set of causes C which minimizes the 
sum of the average squared errors of regressing for an effect e.  

Proposed Methods. We test four proposed methods as below.  
(1) Initial Causality (IniCausal): this method (see Eq. 4 in 

Sec. 5.2) is regarded as the basis for the concept of detecting 
causality between two words over time.  

(2) Global Causality (GlobCausal): this method (see Eq. 5 and 
6 in Sec. 5.2) is applied to test if considering the global infor-
mation of all the candidate causes of a given effect can remove 
spurious causes.  

(3) Aggregation based on Similar Concept (AggrConcept): 
this method (see Sec. 5.3.1) is used for testing if the aggregation 
by similar concepts helps to generate better results. This aggrega-
tion groups both the causes and effects separately and outputs the 
cause-effect results in a cluster format.  

(4) Aggregation based on Similar Pattern (AggrPatt): we ap-
ply this method (see Sec. 5.3.2) to test if the aggregation by simi-
lar patterns performs differently from the aggregation by similar 
concepts. In other words, we examine if it is better to aggregate 
both sides of relations at the same time. 

7. EVALUATION 
We conduct both quantitative and qualitative evaluation. Their 
results are described in this section. 

7.1 Quantitative Evaluation 
7.1.1 Test Sets 
As far as we know, no ground truth data is available for the task 
of token-level causality detection within temporal document col-
lections (i.e., detection of causal relation such that the change in 
one word implies the change of another word). We have thus 
manually created test sets containing cause and effect pairs that 
existed within the time span of each category utilizing external 
resources including Wikipedia, several dedicated websites [37-48] 
and a Web search engine. We prepared 54 cause-effect pairs of 
the category Electronics, Portable Audio & Video and 56 pairs for 
the category Electronics, Camera & Photo considering their cor-
responding time spans. The ground truth data contain two types of 
effects: actions and usages. Actions are described by verb phrases 
while use situations are described by nouns such as location 
terms. Table 6 shows examples of ground truth patterns for the 
category Electronics, Portable Audio & Video. We will consider 
the output causal pair as correct if both its cause and effect sides 
are semantically similar to the corresponding sides in any of the 
ground truth cause-effect pairs. Note that in the ground truth, the 
effects are sometimes described by verb phrases (e.g., “watch 
movies”), while the tested methods output either verbs or situation 
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terms as effects. Therefore, when the detected effect is in the form 
of a verb (e.g., watch), we consider it to be correct if its underly-
ing verb matches any verb in the ground truth.  

7.1.2 Evaluation Measures 
For evaluation, we output up to 10 top results for each year. Then, 
we combine the results generated for all the years and compare 
with the ground truth. We compute precision, recall and F1-score 
to measure the performance of each method. 

Since we make use of two types of time series (frequency-
based and semantic-based), we generate the results for each type 
separately and we evaluate them separately (see columns “Fre-
quency-based” and “Semantic-based” in Tables 3-4). In addition, 
we also evaluate the performance when combing the results com-
ing from the two types of time series (see column “Freq.-based + 
Sem.-based” in Tables 3-4). In order to keep the number of re-
turned results the same for different approaches, we merge in each 
year the top 5 results returned by the method using “Frequency-
based” and the one using “Semantic-based” time series.  

7.1.3 Evaluation Results 
Tables 3-4 describe the performance of each analyzed method. 
We notice that the proposed methods AggrConcept and AggrPatt 
outperform the two baselines over all the metrics, which proves 
the proposed approach performs well. We list the other findings 
below: 

(1) Co-occurrence is not enough for measuring causality. 
According to Tables 3-4, the causality detection is quite difficult 
as evidenced by quite poor performance of JaccCoef. This sug-
gests that although the co-occurrence describes the relatedness of 
two terms, it fails to capture the causation (the cause must be a 
necessary condition for the effect [17]). 

(2) Time series analysis is not enough for measuring causali-
ty within text. LassoGC is the typical method for computing the 
causality between time series. It however delivers poor results 
when applied for discovering the causality within text. Note that 
unlike LassoGC our proposed methods take into consideration 
both the time series and the probability of term occurrence within 
text. In contrast to continuous data (e.g., humidity, GDP), where 
LassoGC is typically applied, text tends to be more arbitrary and 
complex. Relying solely on the time series analysis is thus not 
sufficient for detecting causal patterns in text collections. 

(3) Computing causality over all candidate causes is neces-
sary. GlobCausal has been found to be consistently more effec-
tive than IniCausal. This signals that some spurious or weak 
causal relations are removed by additional filtering that retains 
genuine causes (see Eqs. 5-6).  

(4) Aggregation process helps to validate and group cause-
effect patterns. As we discussed in Sec. 5.3, by aggregating se-
mantically similar binary causal relations, we provide more evi-
dence of the actual causality. For example, the pair 
iPod→jogging is returned at the 68th rank by the method 
GlobCausal, while AggrConcept and AggrPatt return it within 
the top 5 results. In addition, the grouped similar cause-effect 
relations have better explanatory power. Another observation is 
that AggrPatt performs better than AggrConcept when using the 
frequency-based time series. 

(5) Frequency-based and semantic-based time series com-
plement each other. Although methods using both the frequency-
based and semantic-based time series are generally effective, their 
combination helps to discover more correct cause-effect relations 
than when used alone. This is because there is relatively small 
overlap between their outputs. Thus, we can say the approaches 

based on these time series complement each other. This is demon-
strated by the improved performance when combing the results 
from the methods based on each of the time series. The frequen-
cy-based time series approaches allow discovering frequent rela-
tions. On the other hand, the semantic-based ones help to find the 
causality between components not commonly mentioned in the 
dataset, yet, subject to semantic change (i.e., change of the con-
text in which a word is used). This can be observed by analyzing 
example results in Table 6 (IDs: 18, 23, 26, 33 and 46) which are 
found by applying methods that utilize the semantic-based time 
series. The verbs store, share, delete, surf and navi-
gate are verbs indicating new kinds of actions that became 
available following the advent of mp3, Napster and iPod. 

7.2 Qualitative Evaluation 
To further evaluate the quality of the results we also conducted 
user-based analysis. We invited 5 subjects (2 males and 3 females 
in their 30s) to annotate the results using several quality criteria. 

7.2.1 Settings 
Before describing the results, we first clarify the evaluation set-
tings. We utilize the detected physical product features as poten-
tial causes, while the extracted verbs and situations are regarded 
as two types of effects. We also generate two types of time series 
as described in Sec. 4: the frequency-based and the semantic-
based time series. So, in total, we have 4 environment settings 
considering possible combinations of the effect types and time 
series types. These are summarized in Table 5. 

Table 5. Types of Environment Settings. 

Settings Description 

freq_verb Using frequency-based time series to detect causal-
ity between physical features and verbs 

freq_sit. Using frequency-based time series to detect causal-
ity between physical features and situation terms 

sem_verb Using semantic-based time series to detect causali-
ty between physical features and verbs 

sem_sit. Using semantic-based time series to detect causali-
ty between physical feature and situation terms 

As discussed above, we have 6 methods to be tested (4 pro-
posed methods and 2 baselines). The cause-effect results by every 
combination of the method and environment settings are then 
returned for each of 11 years (the time period when the reviews in 
the category Electronics, Portable Audio & Video of the Amazon 
Product Review Dataset were created).  

The annotators were asked to evaluate the results generated for 
each year by the 24 approaches (6 methods, each with 4 environ-
ment settings). Note that the top 10 results with the highest cau-
sality strength are returned on average for each year by every 
analyzed method. The criteria of the evaluation consist of 3 di-
mensions: correctness, novelty and comprehensibility (as de-
scribed in the next section). Each annotator thus gives: 11(years) 
* 4(environments) * 6(methods) * 3(dimensions) = 792 scorings.  

7.2.2 Evaluation Criteria 
We used 3 criteria reflecting the general notion of usefulness of 
the cause-effect relations that ideally should be correct, novel and 
understandable. The criteria are described below.  
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 Correctness: it measures how sound the results of each year 
are. During the assessment, the annotators were allowed to 
utilize any external resources, such as Wikipedia, Web 
search engines, books, etc.  

 Novelty: it measures how novel the results are within the same 
year. In other words, it quantifies how varying and diverse 
information the annotators could acquire after viewing the 
results at a given year.  

 Comprehensibility: it measures how easy it is to understand 
and explain the results. 

All of the scores were given in the range from 1 to 5 (1: not at 
all, 2: rather not, 3: so so, 4: rather yes, 5: definitely yes). 

7.2.3 Evaluation Results 
Correctness. Fig. 5 describes the average correctness scores 

over each combination of methods and experimental environ-
ments. We first notice that the baseline LassoGC achieves com-
petitive correctness score. It may be because LassoGC has rela-
tively good performance in detecting frequent and dominant pat-
terns such as CD player→recording, CD player→burn, 
mp3 player→downloading, etc. Such dominant patterns 
tend to be highly scored by annotators. As for the evaluation 
results of other methods, they are basically consistent with the 
results described in Sec. 7.1.3.  

0
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freq_verb freq_sit. sem_verb sem_sit.

Correctness

IniCausal GlobCausal AggrConcept

AggrPatt JaccCoef (baseline1) LassoGC (baseline2)  
Figure 5. Evaluation of Results based on Correctness. 

Novelty. Fig. 6 describes the average novelty scores. The pro-
posed methods based on aggregation procedure, AggrPatt and 
AggrConcept, outperform the baselines over each different set-
ting. Even GlobCausal is better this time than both the baselines 
when using semantic time series (on average, outperforming 
JaccCoef by 57.3% and LassoGC by 6%). The poor performance 
of LassoGC under the novelty criterion implies the limitation of 
LassoGC in detecting causality in time series across text collec-
tions since this method always gives priority to dominant causes 
(e.g., CD, mp3, iPod, etc.) or effects (e.g., download, rec-
ord, etc.) ignoring infrequent, yet, important ones (e.g., share, 
delete, surf, navigate, etc.). In other words, these results 
are consistent with the ones shown in Sec. 7.1.3. 
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Figure 6. Evaluation of Results based on Novelty. 

Comprehensibility. Finally, Fig. 7 compares the comprehen-
sibility scores of the returned results. We note that both the ag-
gregation methods AggrConcept and AggrPatt achieve much 
better performance than the other methods, helping annotators to 
make more sense from the generated causal relationships.  

 
 

Table 3. Results for the Category Electronics, Portable Audio & Video. 

Method Frequency-based Semantic-based Freq.-based + Sem.-based 
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score 

JaccCoef 0.11 0.18 0.14 0.11 0.18 0.14 0.11 0.18 0.14 
LassoGC 0.14 0.22 0.17 0.14 0.22 0.17 0.18 0.28 0.22 
IniCausal 0.18 0.28 0.22 0.11 0.18 0.14 0.21 0.34 0.26 

GlobCausal 0.20 0.32 0.25 0.19 0.30 0.23 0.29 0.46 0.35 
AggrConcept 0.24 0.38 0.30 0.28 0.44 0.34 0.36 0.58 0.45 

AggrPatt 0.28 0.44 0.34 0.21 0.34 0.26 0.34 0.54 0.42 
          

Table 4. Results for the Category Electronics, Camera & Photo. 

Method Frequency-based Semantic-based Freq.-based + Sem.-based 
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score 

JaccCoef 0.10 0.16 0.12 0.10 0.16 0.12 0.11 0.18 0.14 
LassoGC 0.16 0.26 0.20 0.23 0.36 0.28 0.26 0.34 0.29 
IniCausal 0.13 0.20 0.15 0.21 0.34 0.26 0.30 0.48 0.37 

GlobCausal 0.15 0.24 0.18 0.29 0.46 0.35 0.35 0.56 0.43 
AggrConcept 0.16 0.26 0.20 0.38 0.60 0.46 0.44 0.70 0.54 

AggrPatt 0.21 0.34 0.26 0.43 0.68 0.52 0.46 0.74 0.57 
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Figure 7. Evaluation of Results based on Comprehensibility 

7.2.4 Additional Observations 
One interesting finding is that by using our approach, we could 
also detect certain evolving relationships. In particular, we could 
track how the technology changed within the same situations. For 
example, in the results of the category Electronics, Portable Au-
dio & Video, we have found that under the situation car, the 
technology changed according to the sequence of ra-
dio>CD>MP3>VCR>TV>iPod. This suggests that the music 
devices used in cars changed over time.  

Similar type of findings can be also observed in the category 
Electronics, Camera & Photo. By solely looking at the cause side, 
we can see that the storage media of the camera evolved accord-
ing to the chain of {film, tape}>sd card>memory 
card>DVD. We can also observe different actions involved with 
the new storage media. For example, at the very beginning, peo-
ple utilized {Kodak, film} to take a photo and they needed to 
print the photos, while, in the later years, cameras became 
more advanced utilizing digital formats of data that can be trans-
ferred externally such as via sd card. The corresponding actions 
changed then to {plug, transfer, convert} indicating new 
possibilities for viewing photos such as by using computers.  

8. CONCLUSIONS 
Technology and product evolution is an interesting, yet, at the 
same time, quite challenging concept for analysis. Given the 
abundance of product review collections that already span rela-

tively long time periods we propose to utilize them for automati-
cally detecting knowledge about technology progress over time. 
The intriguing characteristics of our research is a novel approach 
in which we attempt at automatically estimating the effects of 
technology and product evolution on our lives. For this we specif-
ically propose detecting cause-effect relations on word time se-
ries. We use not only the frequency-based time series but also 
propose constructing time series that capture changes in word 
usage over time by applying neural networks. Both temporal 
representations provide complementary results as demonstrated in 
the experiments. Furthermore, we aggregate the binary causal 
relations for obtaining correct and comprehensible causal pat-
terns. Experimental evaluation demonstrates that our methods 
outperform baselines both when compared with ground truth as 
well as when evaluated by annotators.  

We believe that the proposed methods can be also applied to 
other scenarios besides the product and technology evolution 
(e.g., in the collections of news articles or scientific publications) 
with minor adaptations. For example, in this paper, we decrease 
the number of candidate term pairs for causality estimation by 
constraining the terms to those involving the cause as a technolo-
gy feature (candidate causes) and to those related to way in which 
technology is used (candidate effects). Yet, different constrains on 
selecting the candidate causes and effects can be applied in other 
domains (e.g., named entities in news article collections or scien-
tific terminology in scientific publication collections). 
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Table 6. Example results where Cause and Effect are the ground truth relations. The tags (0, 1) shown in parentheses denote the 
results using the frequency-based and semantic-based time series, respectively (1 means the results match the ground truth 

causal relations, while 0 means otherwise). 

ID Cause→Effect 
JaccCoef 
(baseline) 

(Freq., Sem.)

LassoGC 
(baseline) 

(Freq., Sem.)

IniCausal 
(proposed) 

(Freq., Sem.)

GlobCausal 
(proposed) 

(Freq., Sem.) 

AggrConcept
(proposed) 

(Freq., Sem.)

AggrPatt 
(proposed)

(Freq., Sem.)
4 radio→car (0, 0) (1, 0) (0, 0) (0, 1) (0, 1) (0, 1) 
9 CD player→skip (rewind the track on CD) (1, 1) (1, 0) (1, 1) (1, 0) (0, 1) (0, 0) 
10 CD player→recording sound (1, 1) (1, 1) (1, 0) (1, 0) (1, 0) (1, 0) 
14 CD player→car (0, 0) (0, 1) (0, 1) (0, 1) (1, 1) (1, 1) 
16 CD player→display on panel (0, 0) (0, 0) (0, 0) (1, 0) (0, 0) (1, 0) 
18 mp3→store more music (0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (0, 1) 
23 Napster→share song files (0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (0, 0) 
26 mp3 player (iPod)→delete songs (0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (0, 1) 
30 mp3 player (iPod)→watch movies (0, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) 
32 mp3 player (iPod)→jogging (0, 0) (1, 0) (0, 1) (0, 1) (1, 1) (1, 1) 
33 iPod→surf the web (0, 0) (0, 0) (0, 1) (0, 1) (0, 1) (0, 0) 
36 mp3 player (iPod)→gym (0, 0) (1, 0) (1, 1) (1, 1) (1, 0) (1, 1) 
38 iTunes→download songs (1, 1) (1, 1) (1, 1) (1, 0) (1, 1) (1, 1) 
42 iPod→car (0, 0) (1, 0) (0, 0) (0, 0) (0, 1) (0, 0) 
46 iPod→navigate song lists (0, 0) (0, 1) (0, 0) (0, 1) (0, 1) (0, 1) 
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