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ABSTRACT
Most Collaborative Filtering (CF) algorithms are optimized
using a dataset of isolated user-item tuples. However, in
commercial applications recommended items are usually served
as an ordered list of several items and not as isolated items.
In this setting, inter-item interactions have an effect on the
list’s Click-Through Rate (CTR) that is unaccounted for
using traditional CF approaches. Most CF approaches also
ignore additional important factors like click propensity vari-
ation, item fatigue, etc. In this work, we introduce the
list recommendation problem. We present useful insights
gleaned from user behavior and consumption patterns from
a large scale real world recommender system. We then pro-
pose a novel two-layered framework that builds upon ex-
isting CF algorithms to optimize a list’s click probability.
Our approach accounts for inter-item interactions as well
as additional information such as item fatigue, trendiness
patterns, contextual information etc. Finally, we evaluate
our approach using a novel adaptation of Inverse Propensity
Scoring (IPS) which facilitates off-policy estimation of our
method’s CTR and showcases its effectiveness in real-world
settings.
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1. INTRODUCTION AND MOTIVATION
The Netflix Prize competition [1] was a seminal event in

recommender systems research. The original set-up of the
competition set the stage for much following research. Over
the years, additional directions have been explored such as
implicit feedback [9], the cold-start problem [21], rank op-
timization [19, 23, 30] etc. Yet, the original setting of op-

∗This work was done while at Microsoft R&D Center in
Israel.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2883057.

timizing for isolated user-item tuples still dominates con-
temporary recommender systems research. In this work we
try to break away from this paradigm and consider a struc-
tured approach to investigate and model the more complex
dynamics of the list recommendation problem.

The list recommendation problem can be defined as fol-
lows: Given a specific user u at time t our goal is to produce
an ordered personalized list of K items lut = {i1, i2, . . . , iK}
that maximizes the probability that u will click on an item
from lut. Note that we assume that the same set of recom-
mended items may yield different click probabilities when
ordered differently, hence this formulation is different than
that of the set recommendation problem (unordered lists). It
is also different from learning to rank approaches for collab-
orative filtering that train on pairwise relations but ignore
deeper interactions between items.

In Section 2, we review in detail the main prior work re-
lated to the list recommendation problem. The approach
presented in this paper has several key advantage points
over prior work: First, as we show in Section 4, the ex-
pected CTR of a list lut depends on many complex factors
beyond the user-item ratings such as diversity, item fatigue,
popularity trends, contextual factors, the list layout on the
screen, and many others. Prior approaches have considered
some of these factors individually, but in this work we con-
sider all of them jointly accounting for possible interactions.
Second, many previous studies focused on the diversity fac-
tor assuming that a trade-off exists between accuracy and
diversity. In contrast, we propose a structured approach in
which diversity is optimized alongside the overall accuracy.
Finally, many ranking approaches for collaborative filtering
attempt to rank the entire catalog of items whereas in our
formulation we optimize only for a list of K items presented
to the user. The number of items (K) is typically small and
therefore we can consider the specific position of each item
in the list. We do not assume that the list order implies an
order on the quality or fitness of the items. Namely, we do
not assume that the first item is better than the second item
which in turn better than the third item etc. Instead, we
learn the optimal ordered combination of items based on the
individual characteristics of each item, its position in the list
and interactions with other items. For example, in Section 4
we demonstrate a surprising pattern for the interaction be-
tween item-ratings (accuracy) and diversity that varies with
the item’s position in a list.

In this paper we treat the classical collaborative filter-
ing problem of predicting ratings for user-item tuples as a
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“solved” problem and look beyond it at the list recommen-
dation problem. We assume we already have a collaborative
filtering algorithm implementation (in our case the Xbox
recommender [11, 17]) that produces accurate predictions
to user-item ratings. We utilize this existing algorithm and
treat its predictions as features for a “second layer” of learn-
ing aimed at optimizing the list of items to be presented
to the user. Hence, our set-up is a two-layered learning
approach in which the collaborative filtering algorithm is
trained in the first layer to serve as features (together with
additional information) for the second layer. This second
layer can potentially use a very different dataset from the
first layer. For example, the Xbox recommender system uses
a dataset of purchase signals (implicit binary ratings) to
learn a matrix factorization model as our first layer [17].
Then, the second layer solves a classification problem based
on a dataset of list impressions in which the binary label
indicates whether a user clicked on an item from a list.

Our ultimate goal is to optimize the lists’ Click-Through
Rate (CTR). Therefore, one may question the need for dif-
ferent datasets in the first and second learning layers. Based
on our experience, collaborative filtering algorithms such as
matrix factorization are very effective in learning interests or
“taste”, yet they are less useful in optimizing for CTR. This
two-layered set-up effectively extracts the relevant informa-
tion from the first dataset in order to improve predictions in
the second one. Furthermore, many commercial companies
already possess the first collaborative filtering layer and em-
ploy different heuristics to generate recommendation lists.
We chose a two-layered approach for practical reasons as
it builds upon those existing systems already in production
while proposing a structured approach to compose the final
recommendation lists.

The contributions of this paper are threefold: (1) We in-
troduce the list recommendation problem and investigate
several factors that affect lists’ CTR using insights from
the Xbox recommender system. (2) We propose a simple
yet effective two-layered approach that builds upon existing
collaborative filtering solutions (first layer) in order to find
the optimal list to each user (second layer). As explained
in Section 2, our approach is novel and differs from previ-
ous research by considering the entire recommendation list
as unit. (3) In Section 6.2, we propose a novel modifica-
tion of Inverse Propensity Scoring (IPS) [25] for off-policy
evaluation. Using this evaluation technique, we empirically
illustrate the benefits of our approach and estimate a CTR
lift of up to 3x in Xbox’s main dash and up to 2.7x in Xbox’s
recommendations dash.

2. BACKGROUND AND RELATED WORK
Collaborative Filtering (CF) techniques have been used

widely in recommender systems. One of the key devel-
opments in CF research are Matrix Factorization (MF)
methods [12] which proved their usefulness in competitions
such as the Netflix Prize [1], KDD Cup’11 [6] and others.
Xbox recommendations also relies upon a MF algorithm [11,
17] which is used in this paper for the “first layer” of our
method.

The list recommendation problem is related to the top-K
[3] optimization problem. However, most work has been con-
cerned with ranking techniques borrowed from search prob-
lems, while work focused specifically on recommending lists
has been sparse. In the context of recommender systems,

learning to rank approaches have been applied mostly as
extensions to MF models [19, 23, 24]. These approaches
generally modify the loss function of the MF model to fit
a ranking task. However, they maintain the “traditional”
paradigm in which isolated user-item tuples are ranked one
against the other rather than considering the entire recom-
mendation list as a target for optimization. Hence they ne-
glect many relevant factors such as inter-item interactions
or contextual information. Furthermore, in recommenda-
tion scenarios it is possible that the best item should not be
placed in the first position but rather in a different location
depending on the specific layout. For example, in horizontal
recommendation lists (e.g., Netflix) it is likely that the best
items should be placed in the middle of the list rather than
at the edges. In this paper we learn to optimize an ordered
combination of K items without ranking items one against
the other.

This work is also related to different previous studies on
click prediction. Most studies were focused on either spon-
sored search results or advertisement [2, 8, 15, 22]. At the
heart of this paper is in fact a click prediction model de-
signed specifically for CF recommender systems such as the
Xbox recommender system.

Some prior work on list recommendation incorporate
fatigue, temporal features and diversity independently [13,
18, 31, 35]. However, these critical building blocks of recom-
mendation list optimization show complex interaction amongst
themselves and therefore should be modeled together. For
example, in the case of list diversity we provide a real-world
account from Xbox showing that the benefits of diversity
strongly depend on the user’s preferences (Section 4.1).

A plethora of studies discusses what is known in literature
as the accuracy vs. diversity trade-o� [29, 34]. For exam-
ple, Jambor and Wang [10] stated that “accuracy should not
be the only concern” in a recommender system and applied
constrained optimization to promote long tail items. Zhang
et al., [33] performed a user study showing that introducing
novelty and serendipity into music recommendations while
limiting the impact on accuracy can increase user satisfac-
tion. Rodriguez et al., [20] used A/B testing to show that
a multi-objective optimization approach for LinkedIn’s Tal-
entMatch system can increase reply rate by 42%. In contrast
to these studies and others, this paper does not address the
problem in terms of balancing a multi-objective trade-off.
Instead, we present a structured approach to learn the right
amount of diversity from data in a manner that effectively
improves our ultimate utility which is the system’s CTR.

Finally, recommender systems can be viewed as online
learning tasks with partial feedback in which multi-arm
bandit algorithms can be applied. Previous papers focused
mainly on the domains of online advertising and recommend-
ing news articles [14, 26, 27] where it is critical to balance
between exploration and exploitation. Top-K recommenda-
tions via contextual bandits were studied in [28] and shown
to be superior to learning-to-rank approaches. However, in
this work we present a principled approach that utilizes tra-
ditional collaborative filtering algorithm and are not con-
cerned with the explore-exploit dilemma.

3. DATASET
As discussed in Section 1, our two-layered approach uses

different datasets for each learning layer. The first layer is
based on a one-class collaborative filtering model which is
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Figure 1: Xbox 360 Main Dash - a vertical list of 2
items is highlighted on the right (in green).

trained using purchase data from tens of millions of Xbox
users. The model and dataset for the first layer are described
in [17]. The predictions of the first layer are used as features
for the second learning layer which is geared towards learn-
ing recommendation lists and trained using clicks collected
from Xbox.

Figure 1 depicts the Xbox 360 main dash1. A list of two
personalized items are presented on the upper right hand
side. We call this list the main dash list. Below the main
dash list, the user can find the all recommendations button
which takes the user to the recommendations dash. In the
recommendations dash, the user is presented with a hori-
zontal list of 20 items. Both lists are refreshed before each
impression by heuristically sampling a new diverse set of
items using the predicted item scores from the first layer.
In this paper we propose to replace these heuristics using a
second layer based on supervised learning.

Our datasets are composed of impressions and clicks from
the main dash and recommendations dash collected during
one month in Q4, 2014. The total number of data points col-
lected in this period is much larger than the datasets used for
this paper. We removed users with more than 100 impres-
sions and further “diluted” both datasets by randomly sam-
pling users. The main dash dataset is composed of a sample
of 5, 339, 456 impressions served to 1, 406, 470 users. We re-
served the last (chronologically later) 10% impressions for an
evaluation test-set. Similarly, for the recommendations dash
dataset we used a sample of 6, 319, 843 impressions served
to 1, 423, 640 users and reserved the last 10% for evaluation.
Finally, we created binary supervised datasets by associat-
ing a positive label to impressions which resulted in a click
(on any item) and a negative label with impressions that did
not yield a click.

The characteristics of these two datasets are very different:
The main dash list is a vertical list of just two items. It is an
example of a passive scenario in which the user hasn’t pro-
actively requested recommendations. Instead, she is pre-
sented with the list while she is most likely focused on a
different area of the screen. In such passive scenarios, CTR
is typically very low and therefore we created a balanced
dataset by uniformly sampling the negative impressions for
each user. In contrast, the recommendations dash dataset is
an example of an active scenario in which the user has ac-
tively requested recommendations. This yields much higher
CTR levels, hence no dataset balancing was required. This

1The dashboard’s appearance changes with different update
versions. This image captures its appearance at the time of
data collection.
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(a) Upper slot: Empirical (b) Lower slot: Empirical

(c) Upper slot: Predicted (d) Lower slot: Predicted

Figure 2: Empirical and estimated click probability
for items in the upper and lower slots on Xbox’s
main dash as a function of the predicted rating and
similarity to the other item in the list.

dataset also differs in its presentation (horizontal instead
of vertical) and list length (20 items as opposed to 3). In
Section 7 we notice the influence of these differences on the
algorithm’s results.

4. INSIGHTS FROM THE XBOX RECOM-
MENDER SYSTEM

In this section we present some insights from the Xbox
recommender system that illustrate the possible shortcom-
ings of contemporary collaborative filtering techniques.

4.1 Inter-item Similarity Interactions
Recommending a list of size K is typically very different

from ranking top-K items. One key difference is the fact
that items’ relevance is not independent and diversity/similarity
plays a significant role in determining the list’s click prob-
ability. In contrast to many previous works that considers
an “accuracy vs. diversity trade-off”, we use data from the
Xbox recommender system to show that the actual rela-
tionship between accuracy and diversity is, in fact, more
complex.

Figure 2 depicts the click probability items in Xbox’s main
dash as a function of both their rating and the Jaccard simi-
larity to the other item presented in the same recommenda-
tion list. Sub-figures (a) and (b) depict the empirical click
probability surfaces for the items in the upper and lower
slots respectively. Sub-figures (c) and (d) depict the pre-
dicted probability surfaces for the upper and lower slots re-
spectively using a simple logistic regression model with a
third degree polynomial kernel. For the upper slot we see a
clear positive correlation between the predicted rating com-
ing from the MF model and the click probability, however
there seems to be very little relevance to the similarity with
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Figure 3: A histogram of the number of impressions
before a click event.

second item below it. This is not the case with the lower
item where a more complex pattern is revealed: For high
predicted ratings, it is best to not diversify and recommend
“more of the same”, but if the predicted rating is low it is
better to “hedge bets” by diversifying the list. We explain
the difference between the upper and lower items by consid-
ering the specific layout of the main dash recommendation
list (Figure 1). The typical user probably notices the upper
item before the lower one. Hence, the upper item’s click
probability is independent of the lower item but the lower
item’s click probability is highly dependent on what is shown
above it.

The Xbox recommender is based on a Bayesian model
that models the posterior probability of a user to purchase
an item [17]. These probabilities capture both preferences
and uncertainty. From Figure 2 we learn that if the system
has more certainty in user’s preferences it is better to present
a list with several similar items even if it means lower di-
versity. However, when the system’s estimation of the user
preference has less certainty, more clicks may be obtained
by diversifying the items on the list. Based on these in-
sights, the need to diversify varies and depends on both the
predicted rating, the list’s layout and each item’s position.

4.2 Item Fatigue
Item fatigue occurs when a user is recommended the same

item multiple times. After several impressions of the same
item to the same user, the click probability decreases. In
Xbox, we refresh the recommendation list prior to each visit,
however some items are repeated multiple times. In the main
dash there exists a noticeable effect of item fatigue on the
overall CTR. In Figure 3, we demonstrate this effect by in-
vestigating the variation in the number of impressions before
a click event is observed. For each click event, we counted
the number of times the user was presented with that same
item prior to clicking on it. We averaged these across all
users and items and present the histogram of the number of
impressions preceding the first click. The histogram exposes
an interesting pattern: The item-fatigue is not always in-
versely correlated with the click probability. The histogram
suggests that there is a threshold number of impressions
which is required to maximize the click probability on an
item. This threshold varies for different recommender sys-
tems and may even change across users and items. This in-
sight indicates the need for a principled approach to account
for item fatigue when optimizing for list recommendation.

TimeSlot 1 2 3 4 5 6
% of Users 26.98 25.61 23.62 19.23 18.42 12.51

Table 1: Percentage of users with significantly
higher CTR (compared to average CTR across
whole day ) in various time slots. Note that a sub-
set of users could feature under multiple time slots
where others might not feature in any timeslot.

4.3 CTR Variations by Time of Day
Click probabilities vary throughout the day and peak at

different times for different users. Existing work in handling
temporal dynamics for collaborative filtering either study
long term temporal effects or use heuristics to optimize for
session diversity [5, 12, 32]. In Table 1, we study the time-
of-day click patterns of Xbox users. We split days into six
time slots of four hours and consider the CTR per each time-
slot. We count the number of users in each time-slot whose
CTR for that time-slot is at least 30% higher than average.
Note that for some users, there may be more than one time-
slot in which their CTR is significantly higher than their
average CTR. On the other hand, there could be another
subset of users for whom there is no significant increase in
CTR in any time-slot. Table 1 shows that many users have
one or more preferred time-slots in which their consumption
of recommendations are considerably higher than in other
time-slots. This pattern can and should be exploited by
recommender systems to optimize the timing and repetition
of specific items.

5. METHODOLOGY
The insights described in Section 4 motivate a secondary

supervised learning layer aimed specifically at optimizing
CTR for recommendation lists. The datasets described in
Section 3 form a classification problem consisting of list im-
pressions and their consequent “click” or “no-click” labels.
The second layer utilizes predictions from a first collabo-
rative filtering layer together with many other potentially
informative features in order to learn the click propensity of
a list. Formally, we associate each impression in our dataset
with a context feature vector denoted by xtul, where u, l and
t represent the impression’s user, list and time respectively.
We denote by ytul the binary label, where ytul = 1 means
that user u was presented with l at time t and clicked on at
least one item from l, and ytul = −1 means otherwise. Given
a dataset D of feature-label tuples (xtul, y

t
ul) ∈ D we learn

a predictor h(xtul) = ŷtul that generalizes user-list temporal
predictions denoted by ŷtul ∈ [−1, 1]. In Section 5.1 we ex-
plain this supervised model and in Section 5.2 we discuss
how our contextual features xtul are constructed. Finally,
in Section 5.3 we describe an effective list recommendation
policy, denoted by Φ, which utilizes the ŷtul predictions to
construct and recommend lists to users.

5.1 Gradient Boosted Trees
Our secondary layer utilizes Gradient Boosted Trees (GBT)

[7] to solve the list recommendation problem. GBT is an en-
semble method [4] which constructs a classifier

ŷtul = hM (xtul) =

M∑
m=1

gm(xtul) (1)
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by sequentially adding M “weak” base estimators denoted
by gm. Formally, at stage 1 ≤ m ≤ M the full estimator is
hm−1 =

∑m−1
i=1 gi and a new base estimator gm is added so

that the new full estimator becomes hm = hm−1 + gm. The
base estimators are chosen to fit the pseudo-residual∑

(xt
ul
,yt
ul

)∈D

∂L(ytul, hm−1(xtul))

∂hm−1(xtul)
,

where L is the binomial deviance loss function L(y, f(x)) =
log(1 + exp(−2yf(x))) as in [7]. Each base estimator is a
tree that partitions the input space into J disjoint regions.
The number of base estimators M and the number of leaves
J were determined by means of cross validation and set to
M = 98 and J = 16.

In Section 4 we showed the existence of complex feature
interactions as well as non-linearities with respect to the
click probability. For the task of list recommendation, we
choose the GBT algorithm because it can easily detect and
exploit these patterns without the need to carefully craft a
kernel. In Section 7, we illustrate this advantage by compari-
son of GBT to linear regression and Support Vector Machine
(SVM) classifiers.

5.2 Feature Extraction
Recall that given a specific user u at time t our goal is

to produce an ordered personalized list of K items lut =
{i1, i2, . . . , iK}. Our second layer learns the click propensity
of a list lut using a contextual vector xtul. Here we consider
xtul and the features used to construct it.

“First Layer” or Collaborative Filtering.
Foremost of our features are the predicted ratings of the

list’s items as generated by our first layer (the collabora-
tive filtering layer). We denote by ruj the predicted rating
for a specific user u on the item at position j. The first
K features in xtul are the ratings to each item. Namely,
xtul = (ru1, ru2, . . . , ruK , . . .). Note that in contrast to most
ranking algorithms this formulation doesn’t assume a de-
scending order on the items and allows the model to learn
any possible order. For example, for horizontal recommen-
dation lists we may learn that the best items should be
placed at middle of the list rather than at the beginning.

In this work the ruj values are the probabilities for the
user to purchase the item given by a probabilistic matrix
factorization model as explained [17]. Nevertheless, the ap-
proach in this paper is not limited to any specific type of CF
model and can even benefit from integrating several different
CF models. With these features the contextual vector xtul
grows linearly with K. Generally, the number of items that
can be simultaneously presented to a user is limited and the
list’s length K is not too long. In our case K = 2 for the
main dash list and K = 20 for the recommendations dash
list.

Similarity/ Diversity Features.
As shown in Section 4.1, CTR depends on interaction ef-

fects between predicted item rating, item similarities and
list position. We can learn these complex interactions by
encoding item-to-item similarity features in xtul. In this pa-
per we used the Jaccard similarity between item i to item j

given by simi,j =
|Ui∩Uj |
|Ui∪Uj |

, where Ui and Uj are the sets

of users that purchased items i and j respectively. The
total number of item-to-item similarities grows quadrati-

cally in K, but using feature selection techniques we found
that for our purposes, similarities between adjacent items
in the list are sufficient. Hence, the number of features
stays linear in K and the next K − 1 features in xtul are:
xtul = (ru1, . . . , ruK , sim1,2, sim2,3, . . . , simK−1,K , . . .).

Item Fatigue.
The relationship between CTR and item fatigue is dis-

cussed in Section 4.2. In xtul we employ two types of fatigue
features: For a user u and item i at time t we (a) count
the number of times that u has been exposed to i in the
previous week, denoted by ctui, and (b) measure the time
duration (in minutes) since i’s last impression to u, denoted
by mt

ui. The fatigue features for each item in l are included
in xtul according to the item’s position in a similar fashion
to the previous features.

Trendiness and Temporal Features.
Typically, there is an increased public interest in recently

released items. This phenomenon can be attributed to ex-
ternal advertisement campaigns and word-of-mouth “viral”
effects. We therefore denote by di the number of days since
item i’s release date and include these features in xtul for
each item in the list according to its position. Based on our
experience, we also know that user behavior tend to change
between weekdays and weekends [2]. Hence, we included ad-
ditional is weekendt binary features that indicates whether
time t is a weekend or not. Finally, as discussed in Sec-
tion 4.3, many users have a preferred time of day in which
they are more likely to consume a recommendation. By di-
viding the day into six slots, each representing a period of
four hours, we find users “favorite” time-slots as discussed in
Section 4.3 and include a binary is best timeslottu feature
for the user u at time t.

User Features.
We included features that aggregate a user’s historical be-

havior by looking at the items the user clicked on in the past
year and extracting user-specific features. With slight over-
loading of notation we denote by du the average number of
days since an item’s release date and the date in which user
u clicked on it. Additionally, for each item i in the list we
denote by pdiu the price difference between item i and the
average price of items that u has purchased in the past. We
include pdiu for each item and du in xtul.

Popularity Features.
We also consider items’ aggregate characteristics averaged

over the past month. We denote by ctri and pci, item i’s
monthly average CTR and daily purchase count, respec-
tively, and include these in xtul for each item in the list.

5.3 List Recommendation Policy
So far we have described a method to estimate the click

propensity ŷtul of a list based on its characterizing feature
vector xtul. We will now describe a recommendation policy
which will utilize these predictions in order to choose the
actual recommendation lists to be presented to users. A de-
terministic policy might present each user u with the list that
maximizes ŷtul in Equation (1). However, this “exploitation”
strategy lacks any freshness and may result in very similar
lists being repeatedly presented to the user. The fatigue
features will prevent the lists from being identical, yet we
wish to facilitate more control over diversity and possibly

67



some exploration. Hence, we define a stochastic list recom-
mendation policy that utilizes the ŷtul predictions in order
to generate better recommendation lists. We denote our list
recommendation policy by Φ, and φtu(l) denotes the proba-
bility that user u will be presented a list l at time t according
to policy Φ. We denote Xbox’s current production policy by
Π, and πu(l) denotes the probability that user u will be pre-
sented a list l according to Π. Note that Π’s list probabilities
are not time dependent.

We begin by defining a naive policy Φ using the Boltz-
mann distribution over the lists as follows: When user u
requires a recommendation list at time t, our policy Φ will
sample a list l from the set of all possible lists L according
to probabilities φtu(l) given by

φtu(l) =
eαŷ

t
ul∑

k∈L e
αŷt
uk

. (2)

The non-negative parameter α controls exploitation with
α = 0 for uniform sampling and α → +∞ for maximal
exploitation.

According to the definition of Φ in Equation 2, each possi-
ble list (i.e., each combination of items) has some probability
to be presented to the user given by φtu(l). Therefore, this
initial formulation extrapolates predictions over many unob-
served list combinations. On the other hand, the production
policy Π employs several heuristics and business rules that
filter many items and considers only a subset of lists for each
user. For example, by design, Π will never recommend a
list containing individual items that we predict the user will
dislike. This is one example of many similar business rules
heuristically employed by Π and optimized using online ex-
perimentations. Reviewing the business rules employed by
our production policy Π is sensitive and regardless it can-
not be covered in the context of this paper due to space
limitations.

It is clear that the extrapolation defined in Equation 2
includes many cases of bad recommendation lists. However,
our training data is based on the policy Π and doesn’t have
support over the entire feature space. Therefore, this ex-
trapolation includes many unreliable predictions that should
not be considered at all. Moreover, the extrapolation in
Equation 2 prohibits any reasonable estimation of Φ’s per-
formance using the off-policy evaluation techniques that we
develop in Section 6.2. Therefore, we constrain Φ to use sim-
ilar heuristics as Π which will prevent it from extrapolating
predictions over lists that were never observed in the past.
We denote by Lu ⊂ L the subset of lists that user u was
exposed to by Π, and alter our definition of Φ to consider
only lists in Lu as follows:

φtu(l) =


e
αŷtul∑

k∈Lu e
αŷt
uk
, if l ∈ Lu

0, otherwise
(3)

Now, policy Φ is constrained to present each user a list from
the same subset of lists as Π would have shown her. This
change serves two goals: First, it prevents the system from
“drifting” away and suggesting poor recommendation lists
due to unreliable extrapolation. Second, the off-policy eval-
uation technique we employ in Section 6.2 requires that the
evaluated policy will have the same probability support over
lists as the production policy. The definition in Equation 3
enables us to evaluate Φ using logs from Π.

6. OFFLINE VS. OFF-POLICY EVALUATION
We use classical o�ine evaluation techniques in order to

evaluate the ability of the GBT model to generalize the sec-
ond layer learning task. Offline evaluation is important in
order to quantify and optimize the learning task, however it
does not provide a method to estimate the potential effect
on the system’s CTR. Therefore, in Section 6.2 we present
a novel adaptation of Inverse Propensity Scoring (IPS) [25]
in order to estimate the CTR if policy Φ was to replace the
production policy Π.

6.1 Offline Evaluation
As explained above, we utilize predictions from our “first

layer” MF model together with additional features in order
to create a contextual feature vector xtul. Our “second layer”
uses these contextual vectors xtul in order to predict if a
list will be clicked or not. Our offline evaluation is based
on comparing the Receiver Operating Characteristic (ROC)
curves of different classifiers and measuring the Area Under
the Curve (AUC). Results are presented in Section 7.1.

6.2 Off-Policy Evaluation
In order to evaluate a recommendation policy like Φ, one

may implement the policy and perform a controlled experi-
ment (A/B testing). However, implementing a new recom-
mender system on Xbox, as on any other real-world large
scale system, is expensive and time consuming. Hence, we
wish to have an evaluation of Φ using a dataset D generated
by the current production policy or logging policy Π. We
present here a novel adaptation of Inverse Propensity Scor-
ing (IPS) [25] designed to estimate Φ’s improvement over Π
using off-policy techniques.

We denote by EutΦ [ytu] the expected CTR for user u at time
t under policy Φ. Note that Φ is a stateful policy i.e., the
probabilities φtu(l) depend on the user and change with time.
We therefore wish to compute an expectation of EutΦ [ytu] over
the time interval [0, T ]. Let Au be a user impression event
which occurs every time user u appears in the system. We
denote by p(Au|t) the probability of an impression Au given
the time t. It can be shown that the expected CTR for user
u over [0, T ] is equivalent to the expected number of clicks
in [0, T ] divided by the expected number of impressions:

EuΦ[ytu]

∫ T
t=0

p(Au|t)EutΦ [ytu] dt∫ T
t=0

p(Au|t) dt
. (4)

Next, we estimate EuΦ
[
ytu
]

as follows:

EuΦ[ytu] =

∫
p(Au|t)EutΦ [ytu] dt∫

p(Au|t) dt
=

∫
p(Au|t)EutΠ

[
φtu(l)ytul
πtu(l)

]
dt∫

p(Au|t)dt

= EuΠ

[
φtu(l)ytul
πu(l)

]
≈ 1

|Du|
∑

yt
ul
∈Du

φtu(l)ytul
πu(l)

, (5)

where Du are user’s u ratings in the dataset D.
The second equality in Equation 5 follows from:

EutΦ [ytu] =
∑
l∈Lu

φtu(l)ytul =
∑
l∈Lu

πu(l)
φtu(l)ytul
πu(l)

= EutΠ

[
φtu(l)ytul
πu(l)

]
.

(6)

Equation 6 is key for the off-policy evaluation as it allows
replacing an expectation over Φ with an expectation over the
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Figure 4: ROC Curves for different classification algorithms. The AUC values is noted in the legend. All
AUC measures have significance levels (p-values) ≤ 0.0001.

logging policy Π. This equation is valid only if both policies
have the same probability support over lists. By design this
is indeed the case.

The third equality in Equation 5 follows from using the
policy Π in the definition given by Equation 4. It is true
under the reasonable assumption that the probability for an
impression event p(Au|t) is independent of the recommenda-
tion policy. Finally, the last equality in Equation 5 is simply

an empirical estimate of the expectation EuΠ

[
φtu(l)ytul
πu(l)

]
.

Relation to Inverse Propensity Scoring.
Our estimate of EuΦ[ytu] bears resemblance to the Inverse

Propensity Scoring (IPS) of [25]. In fact, it can be consid-
ered as a specific case of IPS. However, despite reaching a
very similar result, both papers employ different derivations
in order to justify it. Moreover, our version differs from [25]
in several other key aspects: First, in our case the logging
policy Π has sufficient support over all lists by way of design.
When compared to the IPS description in [25], this means
that we may drop the max operation in [25]’s estimator and
use τ = 0 (Equation 2 in [25]). Furthermore, we have famil-
iarity of the logging policy and assume accurate estimates
of its probabilities πu(l). Hence, the “regret” term given by
Equation 5 in [25] is assumed to be zero and our estimates
are guaranteed to be unbiased. In both versions the logging
policy is time independent, however in [25] the evaluated
policy is deterministic and in our case we evaluate a non-
deterministic stateful policy. While this extension does not
incur any estimation bias, we do not provide any bounds
on its accuracy and convergence with respect to the dataset
size. In fact, the per-user EuΦ[ytu] estimates are potentially
very noisy. However, as we show next, the final measures
we report are stable and overcome this hurdle by averaging
the EuΦ[ytu] estimates of 1.4 million users.

7. RESULTS
We present here the offline and off-policy evaluation re-

sults of our method using the datasets from Xbox’s main
dash and recommendations dash.

7.1 Offline Results
As explained in Section 5.1, we predict the click propen-

sity ŷtul from a context vector xtul using a GBT classifier.We
compare this classifier to baselines employing Logistic Re-
gression (LR) and Support Vector Machines (SVM). In their
basic form, these are linear models which are inferior to GBT
in their ability to capture complex interactions in the input
space. We therefore add an evaluation using a kernelized
version of these baselines utilizing a polynomial kernel with
degree d = 4.

Figure 4 depicts the ROC curves of the different algo-
rithms. The corresponding AUC values are noted in the
legend. In both the main dash and the recommendations
dash GBT is the most appropriated for the prediction task
at hand. The kernelized SVM algorithm has the best perfor-
mance out of the baselines. In general, the kernelized version
of each baseline always outperform the linear version. This
implies the existence of non-linear complex interactions be-
tween features in the input space. The prediction task seems
somewhat harder in the recommendations dash where AUC
values are lower compared to the main dash. However as we
show next, both the main dash and the recommendations
dash can benefit dramatically by employing the method de-
scribed in this paper which will yield a significant increase
in CTR.

7.2 Off-policy Results
Our goal is to predict the CTR improvement of the Xbox

system if we were to use Φ instead of Π. We estimate the
overall CTR by aggregating the per-user estimates according
to their relative share in the dataset as follows:

CTRΦ =
1

|D|
∑
u∈U

|Du| · EuΦ
[
ytu
]
, (7)

where U is the set of all users in our dataset D. The mea-
sure CTRΦ is an estimate of the overall CTR using Φ. Nat-
urally, CTRΦ emphasizes heavy users who drive more clicks
than others. It is common practice in recommender systems
research to define measures in which all users are weighted
equally in the test-set regardless of their activity level. That

69



1.03 1.08

1.45

2.67

3.02

0.99 1.03
1.20

1.70 1.79

0

0.5

1

1.5

2

2.5

3

3.5

0.5 1 2 10 100

C
TR

 L
if

t

α

CTR

Avg.
CTR

(a) Main Dash

1.16
1.27

1.50

2.46

2.71

1.06 1.10
1.19

1.41 1.41

0

0.5

1

1.5

2

2.5

3

0.5 1 2 10 100

C
TR

 L
if

t

α

CTR

Avg.
CTR

(b) Recommendations Dash

Figure 5: CTR lift values for the main dash and the recommendations dash of this paper as a function of α.

was the case in many prominent competitions such as the
Netflix Prize [1] and KDD Cup’11 [6]. We therefore define
a secondary measure which measures the average CTR per-
user:

Avg CTRΦ =
1

|U |
∑
u∈U

EuΦ
[
ytu
]
. (8)

We report results in terms of lift over our current produc-

tion system: lift = Estimated CTR
Production CTR . As you may recall from

Section 3, the main dash dataset is extremely unbalanced
(very low CTR) and we balanced it by uniformly sampling
the negative examples. In this evaluation we used the unbal-
anced version of the test-set in order to get a real estimate of
the CTR which is also comparable to the current production
CTR. We did not change our training-set and all previous
results and discussions are still valid.

Figure 5 summarizes the CTR lifts on both datasets for
different values of α. As expected, the results improve with
higher values of α: At α = 0 the lists are chosen uniformly
and the lift values are lower than 1 indicating a reduction
in CTR with respect to the production policy. At α = 100
the system is at “full exploitation” mode and the best list (in
terms of ŷtul) is almost certainly chosen. When comparing
the main dash to the recommendation dash we see that the
lift improvement in the main dash is much better. This is
in accordance with the offline results as seen in Figure 4.
Finally, we note that the overall CTR values exhibit higher
improvement rates than the per-user values. Our training-
set do not balance data instances per user, hence users with
many ratings will have better rating predictions. This ex-
plains the higher values for the overall CTR.

Additional Baselines.
Thus far we showed significant lift values for the approach

presented in this paper when compared to Xbox’s current
recommender system. Xbox’s system applies many heuris-
tics tightly tuned to optimize its CTR and serves as the
first baseline for this paper. Here, we wish to compare
our approach with additional prominent approaches taken
from previous studies. Due to the lack of relevant datasets,
most previous works in the context of collaborative filter-
ing try to heuristically balance between the predicted accu-
racy and other factors such as diversity [13, 35]. The cur-
rent Xbox system also employs heuristics which are already
finely tuned for CTR optimization. Therefore, it is very

hard to show any significant CTR lift using other heuristic
approaches. However, we found that approaches based on
multi-objective optimization [10, 20] techniques can in fact
show improvement on top of the current system.

The first baseline utilizes constrained multi-objective op-
timization. It attempts to maximize the predicted ratings
subject to constraints on the relevant features. The fea-
tures are the same as in the context vector xtul except for
the first K rating features which are used in the objective
of the optimization. Formally, for a specific user u at time
t, let f li be the i’th feature in xtul after the first K rating
features. Namely, xtul = (ru1, ru2, . . . , ruK , f

l
1, f

l
2, . . .)

2. Our
first baseline finds a list l of K items that optimizes the
following objective:

max
l∈Du

K∑
k=1

ruk

s.t. ∀i : Tmini ≤ f li ≤ Tmaxi , (9)

where Tmini and Tmaxi are minimal and maximal thresholds
for the i’th feature. A second baseline is based on maximiz-
ing the predicted ratings as well as a weighted sum of the
features as follows:

max
l∈Du

K∑
k=1

ruk +
∑
i

wif
l
i . (10)

The threshold values Tmini and Tmaxi from Equation 9 and
the weights wi from Equation 10 are parameters that were
chosen to optimize the CTR using Nelder-Mead optimiza-
tion [16].

Table 2 compares these baselines with the approach pre-
sented in this paper. Optimization based on Equation 10
consistently yields better results than than Equation 9. Nev-
ertheless, the approach presented in this paper outperforms
both baselines. We observe that the main dash lift values are
better than those of the recommendations dash and that the
overall CTR values exhibit higher improvement rates than
the per-user values. Both observations are consistent with
those of Figure 5.

Finally, Figure 6 depicts a break down of the lift values for
users with different number of purchased Xbox games (from
the dataset used for the first layer). The approach presented
in this paper outperforms the baselines in most cases with a

2We suppress the indexes u and t from f li for brevity.
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Figure 6: A breakdown of CTR lift values for users with different number of purchased Xbox games.

Main Dash
This Paper Equation 9 Equation 10

CTRΦ 3.02 1.28 1.36
Avg CTR 1.79 1.16 1.21

Recommendations Dash
This Paper Equation 9 Equation 10

CTRΦ 2.71 1.13 1.19
Avg CTR 1.41 1.06 1.08

Table 2: Expected CTR and average CTR lift values
using the approach proposed in this paper (α = 100)
vs. alternative approaches based on multi-objective
optimization.

clear trend of improvement as the number of items increase
(i.e, for “heavy users”). The matrix factorization model is
using purchases as its training signal hence its predicted rat-
ings are more accurate for users with more purchases. Fur-
thermore, “heavy users” with more games typically tend to
spend more time in front of their consoles and click on more
recommendations. Therefore, click events from these users
are more common in our training-set for the second layer
which translates to better lift values as discussed earlier.

8. CONCLUSIONS
This paper discusses the list recommendation problem and

proposes a second learning layer on top of traditional CF
approaches. The benefits of our approach are empirically
illustrated using a novel modification of Inverse Propensity
Scoring (IPS) . We believe these results showcase the need
for recommendation list optimization and indicate that there
is much room for improvement on top of current state of the
art CF techniques.
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