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ABSTRACT
In this paper we study the problem of linking open-domain
web-search queries towards entities drawn from the full en-
tity inventory of Wikipedia articles. We introduce SMAPH-
2, a second-order approach that, by piggybacking on a web
search engine, alleviates the noise and irregularities that
characterize the language of queries and puts queries in a
larger context in which it is easier to make sense of them.
The key algorithmic idea underlying SMAPH-2 is to first
discover a candidate set of entities and then link-back those
entities to their mentions occurring in the input query. This
allows us to confine the possible concepts pertinent to the
query to only the ones really mentioned in it. The link-back
is implemented via a collective disambiguation step based
upon a supervised ranking model that makes one joint pre-
diction for the annotation of the complete query optimizing
directly the F1 measure. We evaluate both known features,
such as word embeddings and semantic relatedness among
entities, and several novel features such as an approximate
distance between mentions and entities (which can handle
spelling errors). We demonstrate that SMAPH-2 achieves
state-of-the-art performance on the ERD@SIGIR2014 bench-
mark. We also publish GERDAQ (General Entity Recogni-
tion, Disambiguation and Annotation in Queries), a novel,
public dataset built specifically for web-query entity link-
ing via a crowdsourcing effort. SMAPH-2 outperforms the
benchmarks by comparable margins also on GERDAQ.
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1. INTRODUCTION
As conversational interfaces become more popular in web

applications, interaction increasingly resembles natural lan-
guage dialogue and natural language understanding becomes
a key problem. A deeper level of semantic understanding
is necessary for improved precision, contextualization, and
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personalization of information exchange in ubiquitous com-
puting devices via natural language. One of the techniques
that has considerable traction to ground language with re-
spect to semantic representations is entity linking to large
repositories of structured knowledge such as Wikipedia or
Knowledge Graphs. The quality of entity detection is a
crucial first step towards the development of reliable and
robust query processing, representation and understanding
algorithms (see e.g.[10, 27, 28, 38, 43]).

Entity linking in queries is quickly emerging as a novel al-
gorithmic challenge [9] that faces two difficult issues: (i) the
noisy language of queries, characterized by misspellings, un-
reliable tokenization, capitalization and word order, and (ii)
their brevity, as queries typically consist of just a few terms.
Issue (i) has the main effect of degrading the coverage of the
string-to-entity mapping, which is a primary component of
entity annotators and is typically generated from well-edited
texts such as Wikipedia. Issue (ii) affects the availability of
context that can be leveraged to assist the disambiguation
of the spotted entity-mentions. As a consequence, the “co-
herence” estimates that are typically implemented by known
entity annotators to detect the most pertinent entities (see
e.g. [14, 17, 20, 32]) are much less reliable when applied
to queries rather than to well-formed documents, such as
books, blog posts or news.

Nowadays, when people face an unknown word, phrase or
query, they often search for it on search engines. In the best
case, they will receive a definition or other direct result; in
other cases, they obtain something else that is valuable: a
context for the query. Partially inspired by this process, we
propose to deal with the challenges posed by queries by pig-
gybacking on web search engines. The intuition behind the
piggyback approach, first introduced in [34], is that search
engines can be viewed as the closest available substitute for
the world knowledge that is required for solving complex
natural language understanding tasks.

Search engines tend to be robust to the issues raised by
queries because they have been designed to deal effectively
with surface problems like misspellings, tokenization, capi-
talization and word order; e.g., a query such as armstrog
mon landign is resolved to armstrong moon landing.
They also provide additional context, in the form of a se-
quence of snippets showing the query keywords in bold form
in their occurring documents. These snippets are ranked by
relevance, with respect to the query, by means of sophisti-
cated algorithms that leverage huge indexed document col-
lections (the whole web), link graphs and log analysis.
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Our starting point is the SMAPH system, winner of the
web queries track at the ERD Challenge, hosted by SIGIR
2014 [9], which dealt with the problem of annotating queries
with sets of Wikipedia named entities via a piggyback ap-
proach. We perform a thorough experimental analysis of
SMAPH, which allows us to identify, among others, a lim-
itation related to the abundance of false negatives (leading
to low recall). While investigating this problem, we also
generalize the task to the more challenging problem of fully
annotating queries not only with entities (the so-called C2W
task in [8]) but also with their linking mentions (the so-called
A2W task in [8]). Furthermore, in this paper we consider
not only named entities (NEs) but also general concepts,
which has been recognized as a key feature of modern query-
annotation tools [10].

We evaluate our systems on two datasets: (i) GERDAQ, a
novel dataset specifically built for the A2W problem, via an
extensive crowdsourcing effort, that we have released to en-
courage and support reproducible scientific research on this
problem; and (ii) the dataset employed for the ERD chal-
lenge. On GERDAQ, we show that our system, SMAPH-2,
achieves effective results on the A2W problem with respect
to strong baselines. On ERD, we show that SMAPH-2 is
the state-of-the-art by improving upon ERD’s winner and
all other annotators that were proposed and tested on ERD
after the challenge (i.e. since August 2014).

Technically speaking, SMAPH-2 deals with the A2W prob-
lem in two main phases. In the first phase we deploy the
piggyback approach, combined with a robust text annota-
tor designed for short texts (TagME-WAT [31]), to extract
candidate entities from the snippets resulting from an in-
put query. This alleviates the language noise and brevity of
queries by offering a longer and cleaner context. In the sec-
ond step, we adopt a novel link-back approach that prunes
the set of candidate entities and keeps only those more likely
to actually be mentioned in the query. The main idea behind
link-back is to try to connect via approximate matching and
entity-coherence optimization the predicted candidate enti-
ties to portions of the query. We propose two implementa-
tions of link-back: a simpler one, SMAPH-S, that deals with
each mention-entity pair individually, and a more sophisti-
cated one, SMAPH-2, that jointly evaluates all mention-
entity pairs. Both approaches rely on supervised learning,
based on both known and novel features. SMAPH-S trains
a regressor on single annotations and uses a boolean re-
sponse variable indicating whether the annotation is cor-
rect; SMAPH-2 is trained to rank the full set of annotations
for the whole query (called bindings), and uses as response
variable the F1 measure between the binding and the gold
standard for that query.
The paper’s main contributions are the following:

• We investigate for the first time the A2W problem for
open-domain web queries, stated as the problem of
identifying all entities and their mentions in a query.

• We release to the public the GERDAQ evaluation data-
set for A2W. GERDAQ contains 1000 well-curated
queries that have been labeled via a two-phase crowd-
sourcing process. GERDAQ meets the highest stan-
dards in terms of precision and recall even though
A2W is a complex annotation task. This is the first
dataset for entity-linking in queries for which the con-
struction process is fully documented.

• We design a state-of-the-art query annotator, SMAPH-
2, for the A2W problem on web queries. SMAPH-2
uses a learning-to-rank model that jointly predicts the
best complete A2W annotation for the input query.
The ranking crucially relies on a novel set of features
we have designed for A2W that model the probability
that a candidate entity is actually mentioned in the
query, and thus should be “linked back” to it.

• In contrast to prior work, learning involves direct op-
timization of F1, the measure of evaluation.

• We present an extensive set of experiments that evalu-
ate SMAPH-2 on two benchmarks, the ERD@SIGIR2014
benchmark and our novel dataset GERDAQ, and show
that it achieves state-of-the-art performance on both.

2. RELATED WORK
The focus around entity annotators has increased signifi-

cantly in the last few years, with respect to several knowl-
edge bases such as DBpedia, Freebase and Yago [38, 28, 24,
14, 20, 32, 15, 29].

There is little prior work on entity annotators for queries,
mostly concerned with the detection of NEs [30], possibly
associated to intent [25] or pre-defined classes [27, 16, 13],
POS tagging or tagging with a limited number of classes
and other linguistic structures [1, 2], abbreviation disam-
biguation [41], assigning a coarse-grained purpose to each
segment [23]. Some of them operate just on the query text
(see e.g., [21]), others use query logs [1], click through in-
formation [26], search sessions [11], top-k snippets and web
phrase DBs [2, 18], and large manually annotated collec-
tions of open-domain queries to extract robust frequency or
mutual-information features and contexts [13].

Another interesting line of research that is related to query
segmentation has the goal of identifying important phrases
and compound concepts, like new york times, as indivis-
ible segments of a query. The search engine can exploit such
hints to increase result precision since documents that do
not contain a segment’s words in proximity or even the ex-
act same order can be discarded (see e.g. [33, 22, 39]). More
recently, a series of papers by Hagen et al. (see e.g. [18]) pro-
posed simple and effective scoring functions and showed via
a large experimental test that Wikipedia-page titles are very
effective in query segmentation. In contrast to our work,
these papers dealt with query segmentation only.

The paper closest to our study is [3], in which a fast and
space-efficient entity-linking method leveraging information
from query logs and anchor texts was designed in order to
solve a ranking version of the A2W problem where entity-
mention pairs are scored and ranked. The system was eval-
uated on the Webscope L24 (Yahoo Search Query Log To
Entities) dataset by concentrating on entities only, and not
considering mentions (i.e., a sort of ranked C2W). This way
the authors did not determine the final annotation for a
query but, rather, a ranked list of (possibly many) entities
which was then evaluated by means of typical ranking met-
rics. The authors did not evaluate their system on ERD
and against the annotators participating in ERD. In our pa-
per, instead, we propose and evaluate a solution to the A2W
problem and experiment in our design with some of the fea-
tures proposed in [3], showing that other features we will
introduce in this paper are more effective. We notice also
that all of our features are reproducible, e.g., via publicly
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available search engine APIs, while some features of [3] are
not because they are derived from query logs.

A few joint mention-entity machine learning approaches
have been proposed before [36, 37]. Sil and Yates [36] gen-
erate candidates with independent NER and entity link-
ing base systems, then re-rank joint candidates with a lin-
ear maximum entropy model trained to optimize the L2-
regularized conditional log likelihood on a training set of
documents. Guo et al. [37] perform joint mention detection
and entity linking on tweets. They generate candidates on
n-grams with a base linking model and represent with a bi-
nary vector the entity mentions predicted. Learning is cast
as a structured prediction task, via SVM, using the Ham-
ming distance between the predicted and gold vector as the
loss function. We instead propose to optimize directly F1,
which is the final evaluation metric, in a significantly simpler
formulation of the task.

The piggyback approach to language understanding was
first proposed in [34], where it was successfully applied to
the task of named entity recognition (NER) in web queries.

Our systems use TagME-WAT for candidate generation
and the AIDA system as a baseline. We recall briefly their
main features and refer the reader to the literature for de-
tails:

AIDA searches the input text for mentions using the Stan-
ford NER tagger and adopts the YAGO2 knowledge
base as catalog of entities. Disambiguation comes in
three variants: PriorOnly (disambiguation to the most-
common entity), LocalDisambiguation (independent per-
mention disambiguation), CocktailParty (global dis-
ambiguatation by maximizing the coherence among
annotations with a graph-based approach).

TagME searches the input text for mentions defined by
the set of Wikipedia page titles, anchors and redi-
rects. Disambiguation exploits the structure of the
Wikipedia graph, according to a voting scheme based
on a relatedness measure that takes into account the
amount of common incoming links between two pages.
The new and improved version of TagME, named WAT
[31], follows the main algorithmic structure of TagME
with two notable changes: it uses Jaccard-similarity
between two pages’ in-links as a measure of related-
ness, and PageRank to sort the candidate entities that
may annotate a mention.

3. PROBLEM STATEMENT
Let q = t1t2 · · · tn be a query, namely a sequence of n

terms. An entity is identified by a Wikipedia page that de-
scribes its underlying unambiguous concept. Entities can be
named entities (e.g., New York City, Ian Murdock) or gen-
eral concepts (e.g., City, Toyota Corolla, Peace). A mention
is a contiguous sequence of terms in q, say tbtb+1 · · · te, that
refers to an entity. An annotation is a mention-entity pair
and is represented by a triple (mb,me, e), where mb/me are
the beginning/end of a mention and e is the entity it refers
to. As an example, we can hypothesize two annotations
in query q = armstrong moon landign (note the typo).
The first annotation is a1 = (1, 1, Neil Armstrong); it in-
dicates1 that the mention t1 = armstrong is linked to the

1The string Neil Armstrong is the short version for
the Wikipedia URL identifier en.wikipedia.org/wiki/Neil
Armstrong.

Wikipedia page dedicated to the astronaut Neil Armstrong.
The second annotation is a2 = (2, 3,Moon Landing) indi-
cating that the substring t2t3 = moon landign refers to
the event of landing on the moon.

A query binding for a query q is a set of annotations, that
is, a set of non-overlapping mentions and the entities they
refer to. The following example shows two possible bindings
for query q = armstrong moon landign:

b1 = {(1, 1, Neil Armstrong), (2, 3,Moon Landing)};

b2 = {(1, 1, Louis Armstrong), (2, 2,Moon)}
The first query binding b1 identifies the first term as a

mention of the astronaut “Neil Armstrong”, and the last two
terms as a mention of the “Moon landing” topic. The second
binding b2 identifies the first term as a mention of the jazz
musician “Louis Armstrong”, and the second mention as one
single term referring to the entity “Moon”.

Our goal is to design effective algorithms that find the
most pertinent binding for a query q (in the example, b1
rather than b2). As discussed above we follow [8] and dis-
tinguish between two entity linking tasks, now formulated
over queries rather than texts: (i) the C2W Task aims at
detecting only the entities referred to in q without identi-
fying their mentions; (ii) the A2W Task aims at detecting
the full binding of q consisting of mentions and the entities
they refer to. The former task was the one addressed by the
participants of the 2014 ERD Challenge, the latter is the
one typically addressed in (short and long) texts.

Queries can be inherently ambiguous. For example, apple
price may refer to the cost of Apple Inc.’s stocks or to the
market price of apples. In case of ambiguous queries, we aim
at the identification of the single most likely binding for the
query according to human common sense.

4. THE GERDAQ DATASET
In this section we describe the process that led to the cre-

ation of our query-annotated dataset GERDAQ. The queries
of this dataset have been sampled from the KDD-Cup 2005
competition dataset, which consists of 800,000 queries. First
we polished the dataset by discarding the queries that looked
like web addresses (i.e., those containing www or http), then
we randomly sampled 1000 queries according to a distribu-
tion that reflected their word-count length.

Guaranteeing a well-curated query annotation process, con-
sisting in the detection of mentions and their entities, is a
difficult process even for humans. Queries are short, pos-
sibly misspelled and otherwise malformed; query content
could be unknown to a worker; queries are often ambigu-
ous thus inducing different humans to link multiple entities
for the same mention. These issues typically lead to noisy,
incorrect, sparse, sometimes multiple annotations that had
to be properly curated and reconciled in order to generate a
robust and reliable dataset over which query annotators can
be trained and tested reliably.

In order to achieve this goal we performed the annota-
tion involving many human raters (aka workers) in a crowd-
sourcing environment, CrowdFlower, in two phases, called
recall-oriented and precision-oriented, detailed below.

4.1 Phase 1: Recall-oriented
Given a query, this phase aims at finding a wide range

of annotations a query may contain, focusing on coverage
rather than on precision.
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Partition Queries Queries with at least Avg. Annotations Avg. Annotations Avg. query
one annotation per non-empty query per query length (chars)

Training 500 446 2.10 1.86 25
Development 250 221 2.05 1.81 22

Test 250 222 1.95 1.73 23

Table 1: GERDAQ dataset statistics. We use “GERDAQ train”, “GERDAQ dev” and “GERDAQ test” to
refer to the three splits in the paper.

For each query we asked the workers to spot annotations in
queries, namely both the mention and a pertinent entity the
mention refers to (see Section 3). Workers were instructed to
make sure that the concept they were thinking of for a men-
tion was actually the one described by the Wikipedia page
they were going to link. Workers were asked for each query
to spot as many mentions of Wikipedia entities as they could
and link them to Wikipedia URLs. Mentions were verified to
be actual substrings of the query and URLs were verified to
be existing Wikipedia articles. Each worker’s contributions
were tested against 70 randomly interspersed gold-standard
queries to identify and exclude unreliable workers.

Each query was processed by at least 10 workers to guar-
antee a robust annotation process given its difficulty. The
job, which completed in a few hours, collected a total of
10,038 trusted judgments. A judgment is a set of annota-
tions spotted by a worker for a query. The workers found
a total of 3,197 distinct annotations (3.2 per query). A to-
tal of 271 workers took part in the job; they processed 37
queries each on average.

1 2 3 4 5 6 7 8 9 ≥ 10
1048 384 291 229 215 190 189 234 218 199

Table 2: Distribution of judgments over the 3,197
distinct annotations. Read the first column as“1,048
annotations were found by a single worker”

Table 2 shows the distribution of how many workers spot-
ted the same annotation: about half of the annotations were
found by one or two workers, but many of these rarely found
annotations were actually correct and valid (see Table 3).

4.2 Phase 2: Precision-oriented
Since no worker is expert on all subjects, they can produce

wrong annotations or miss correct ones. Thus, we designed
a second phase for discarding bad annotations from Phase
1. We created a second job on CrowdFlower, asking workers
who did not take part in the first job to rate, on a scale from
1 to 10, the likelihood that an annotation found in Phase 1
was correct. Workers were prompted with questions like: In
the query armstrong moon, how likely does armstrong
refer to the entity “Neil Armstrong”? Workers were also
provided with an abstract of the candidate Wikipedia page
(e.g. Neil Alden Armstrong was an American astronaut...),
to better tell appropriate entities from wrong ones.

Each query was processed by at least 3 workers, for a total
of 390 workers who processed 26 queries each on average, and
collected a total of 9,612 annotation scores. Table 3 shows
the distribution of average scores assigned to an annotation
by workers, normalized in [0, 1]. We notice that many anno-
tations have a high average score, and thus can be assumed
to be highly pertinent to the query. Comparing these fig-
ures with Table 2 we notice that most annotations found in

the previous phase by just one or two workers are actually
pertinent because they get high scores in this second phase.

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
53 81 94 134 169 251 325 369 633 712 375

Table 3: Distribution of average annotation scores.
Example: 81 annotations received an average score
in [.1, .2). 375 annotations were given the maximum
score by all workers (last column).

Two of the authors manually analyzed a sample of the
scores assigned to annotations. They observed that annota-
tions with scores smaller than 0.58 were all wrong and thus
to be discarded; those with a score higher than 0.65 were all
correct and thus to be kept; while those in between (a few
dozens) were manually double checked for correctness until
complete agreement between the two authors was reached.
As cited above, queries can be inherently ambiguous, and
this reflects into workers assigning a high score to two en-
tities linked by the same mention. This happened for 90
mentions over a total of 2043. In such cases, we keep the
entity with highest score, given that workers considered it
the most probable meaning2. At the end the dataset con-
sists of 2043 distinct annotations (2.0 annotations per query
on average), this constitutes the final GERDAQ dataset (see
Table 1 for basic statistics).

We randomly split GERDAQ into training set (500 queries),
development set (250 queries), and test set (250 queries). We
will make the dataset publicly available under a Creative
Commons license3. We trained our systems on the training
set and did parameter tuning, feature selection, and manual
error analysis on the development set, keeping the test set
only for the very final evaluation.

5. THE SMAPH SYSTEMS
In the present paper we discuss three query annotators

that piggyback over search engines.
We first discuss SMAPH-1, which was designed to deal

with the C2W problem (Section 5.1), and dig into some of
its features and experimental results that were not presented
in the paper for the ERD Challenge [9]. Then we present
two new systems for solving the A2W Task: SMAPH-S and
SMAPH-2. The first one is our first solution to the A2W
Task (Section 5.2); it computes annotations of the input
query by executing a local disambiguation approach. The
second one, SMAPH-2, is our best solution to the A2W Task
(Section 5.3) whose annotation process pivots on a collec-
tive disambiguation approach that jointly processes groups

2The GERDAQ dataset also features secondary meanings
spotted by the workers, that are not considered in this paper,
but are available for future work.
3Dataset at http://acube.di.unipi.it/datasets/
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of mention-entity pairs in search of the best query binding
among them.

5.1 SMAPH-1: The ERD Challenge system
SMAPH-1 piggybacks on the results returned by the pub-

lic API of Bing, and works in three phases.

Fetching. The query q to be annotated is issued to the
Bing search engine through its public API, enabling the
spelling correction feature. This way results are not affected
by spelling errors possibly present in the query. SMAPH-1
concentrates its analysis over the first 25 snippets returned
by Bing. In addition to that, it concatenates q with the
word wikipedia, issues it again to Bing and takes the
top 10 results. The modified query boosts results from
Wikipedia, without constraining the search to Wikipedia
articles, which would return high-ranking articles loosely re-
lated to the actual query.

Candidate-entity generation. Entities are drawn from
three sources. Wikipedia pages occurring in Bing results
for query q form the set E1, and those occurring for query
q+wikipedia form the set E2. A third, bigger set E3 of
entities is found by annotating the top 25 snippets resulting
from the search of q with the text annotator WAT4 (see Sec-
tion 3). This annotator has been designed to process short
documents (e.g., tweets), and snippets are indeed excerpts of
well-formed sentences of a few dozen terms. WAT finds men-
tions in the snippets and links them to Wikipedia entities,
by exploiting the context provided by the snippet. For each
snippet, WAT returns a set of annotations. We only keep
the ones that overlap with a bold-highlighted substring of
the snippet, as those substrings are the way in which query
terms appear in web pages.

An analysis of the coverage of the three sources in Section
6.4 will show that this is a high-recall and pretty accurate
source of candidate entities, having three clear advantages



5.2 SMAPH-S: Local entity link-back
As we will see in the experimental section, most errors

made by SMAPH-1 are false negative entities that appear
as candidates, are explicitly mentioned in the query, but are
assigned a low score due to their bad features and, thus,
eventually discarded. This reflects into a result with high
precision but low recall. To overcome this limitation, we
decided to enforce the bond between candidate entities and
the query terms that cite them, in order to come up with
features that boost the score of entities cited by the query.

With this motivation, we decided to move our focus to
the A2W problem, which forces us to think not only about
the entities associated to a query, but also about the men-
tions (terms of the query) that refer to those entities. Our
first step has been therefore to design a variant of SMAPH-
1, called SMAPH-S, that enforces this by a process we call
linking-back. The goal of this step is to match the candi-
date entities of the set E1 ∪ E2 ∪ E3 to the most appropriate
mentions present in the input query. In this link-back pro-
cess, some entities will be discarded because they cannot be
linked to any mention in q. The final result is a set of full
annotations (i.e., mention-entity pairs) of the input query.

The implementation of the link-back step employs a su-
perset of the features employed by SMAPH-1 – which draw
only from entity characteristics, see Table 4 –, including a
set of new features that capture aspects of the binding be-
tween mentions and entities (see Table 5). We point out that
the features listed in both tables are the result of a feature
selection process from a larger set of features involving anno-
tations, bold parts of snippets and entities. The description
of features in Table 5 uses, in addition to the definitions
introduced in Section 5.1, the following definitions:

• F(e, a) is the number of times (frequency) that entity
e has been linked in Wikipedia pages by anchor a.
• G(e) is the set of anchors used in Wikipedia to link e.

SMAPH-S implements the link-back step with an SVM
linear regressor trained to predict the likelihood that entity
e is a pertinent concept for the mention m occurring in q.
The regressor R is trained on GERDAQ train. For each
gold-query q, let us denote with Seg(q) the set of all possi-
ble segments in q (a segment is an n-gram of any length) and
with Eq = E1 ∪ E2 ∪ E3 the set of its candidate entities. The
training examples for the regressor are all pairs Seg(q)×Eq,
for all queries q in the dataset. A pair is considered a posi-
tive annotation iff it appears in the gold standard; all other
pairs are considered to be negative annotations. Needless to
say, the training examples are heavily unbalanced towards
negative ones. We generate a feature vector for each anno-
tation (m, e) by taking the features in Tables 4 (for entity
e) and 5 (for annotation (m, e)). Feature anchorsAvgED is
key: it is the average edit distance between mention m and
all anchors that point to e in Wikipedia, which are possible
ways to reference e. Edit distances are weighted wrt the
number of times e is pointed to by an anchor (the square
root mitigates the effect of high-frequency anchors). The
more times e has been referenced by anchors similar to m,
the lower anchorsAvgED will be.

In order to annotate a query q, SMAPH-S greedily se-
lects its annotations in three steps: (i) it constructs the
set Seg(q) × Eq, as done for the training; (ii) sorts all can-
didate annotations (m, e) in that set by decreasing score
R(m, e); and (iii) scans the sorted candidate annotations

Drawn From All Sources
ID Name Definition
1 webTotal W(q)
2 isNE 1 if e is a named entity, 0 otherwise. Based

on Freebase as detailed in [5]

Drawn From Sources E1 and E2
(q∗ is q for E1 or qw for E2)

ID Name Definition
3 rank position of e’s URL in U(q∗)
4 EDTitle MinED(T (e), q∗)
5 EDTitNP MinED(T ∗(e), q∗)
6 minEDBolds min{MinED(b, q∗) : b ∈ B(q∗)}
7 captBolds number of capitalized strings in B(q∗)
8 boldTerms (1/|B(q∗)|)

∑
b∈B(q∗) |b|

Drawn From Source E3
ID Name Definition
9 freq (|s ∈ C(q) : (·, e) ∈ A(s)|)/|C(q)|
10 avgRank (

∑
i∈[0,25) pi)/25 where

pi =

{
i if (·, e) ∈ A(C(q)i)
25 otherwise

11 pageRank PageRank of e in Wikipedia Graph
P := {ρ(s,m, e) : (m, s) ∈ X(q)};

12 ρmin min(P)
13 ρmax max(P)
14 ρavg avg(P)

L := {lp(m) : (m, s) ∈ X(q)};
15 lpmin min(L)
16 lpmax max(L)

C := {comm(m, e):(m, s) ∈ X(q)}
17 commmin min(C)
18 commmax max(C)
19 commavg avg(C)

A := {amb(m) : (m, s) ∈ X(q)};
20 ambigmin min(A)
21 ambigmax max(A)
22 ambigavg avg(A)
23 mentMEDmin min(MinED(m, q):(m, s) ∈ X(q))
24 mentMEDmax max(MinED(m, q):(m, s) ∈ X(q))

Table 4: Features of a candidate entity e (used by
SMAPH-1, SMAPH-S and SMAPH-2) for query q.
Let X(q) := {(m, s) : s ∈ C(q) ∧ (m, e) ∈ A(s)}.

ID Name Definition

25 anchorsAvgED

∑
a∈G(e)

(√
F(e, a) · ED(a,m)

)
∑

a∈G(e)

√
F(e, a)

26 minEdTitle MinED(m, T (e))
27 EdTitle ED(m, T (e))
28 commonness comm(m, e)
29 lp lp(m)

Table 5: Features of a candidate annotation (m, e)
(used by SMAPH-S and SMAPH-2), where m is the
mention (list of query terms) and e is the entity.

and keeps (mi, ei) only if mi does not overlap with any pre-
viously selected annotation, stopping whenever R(mi, ei) is
lower than a threshold. The threshold is chosen in order to
maximize the average-F1 on GERDAQ dev.
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The experimental section will evaluate the performance of
SMAPH-S on GERDAQ and will show that relying on indi-
vidual mention-entity pairs one by one to select the binding
for the query q is too restrictive and results in low F1. This
motivated the design of a collective disambiguation process
that is the novel core of SMAPH-2, the best performing an-
notator we propose in this paper.

5.3 SMAPH-2: Joint entity link-back
Instead of judging each annotation individually, the last

annotator carries out a collective analysis of all candidate
annotations of the input query q, and searches for the bind-
ing that maximizes F1, the task’s primary evaluation mea-
sure. The better a binding is (in terms of F1) the higher its
predicted score should be. For this reason we implement a
joint mention entity prediction model that predicts the F1
score for a full binding, the complete set of annotations for
a single query. Considering the whole set of annotations, in
one binding, we can design features that capture properties
of the relation between multiple annotations and the input
query (e.g., how many query terms are covered by the bind-
ing) and among annotations themselves (e.g., the semantic
relatedness among their entities). Those features are de-
scribed in Table 6. In SMAPH-2 we use also the features
regarding single entities and annotations (Tables 4 and 5).

ID Name Definition
R := {rel(e1, e2) | e1, e2 ∈ E(bq) ∧ e1 6=
e2}

30 relmin min(R)
31 relmax max(R)
32 nTokens |q|
33 covg

∑
(m,e)∈bq (|m|)/|q|

34 sumSegLp
∑

s∈ Seg(q) lp(s)

35 avgSegLp
∑

s∈ Seg(q) lp(s)/|s ∈ Seg(q)|
36 nBolds |B(q)|
37 nDisBolds |{b : b ∈ B(q)}|
38 minEdBlds

∑
b∈B(q)MinED(b, q)|

Table 6: Features of a candidate binding bq for query
q (used by SMAPH-2). E is a function that maps a
binding to the entities it contains. rel(e1, e2) is the
relatedness among entities e1 and e2, measured by
the Jaccard similarity of the sets of incoming links
for e1 and e2. Recall also that Seg(q) is the set of all
possible segments of a query q (see Section 5.2).

5.3.1 Candidates enumeration
We first enumerate all possible segmentations of q using

a BIO encoding, namely sequences of the symbols B-I-O of
length |q|, which respectively denote the beginning, continu-

ation and absence of a segment. These are o(3|q|), as not all
possible BIO sequences correspond to valid segmentations (a
label I can only follow I or B). Furthermore, the query length
is typically short. The final set of segmentations generated
by the BIO sequences of q is called BIOq. For example, for
query q =armstrong mon lading (|q| = 3), the set BIOq

includes the segmentations (vertical bar “|” indicates seg-
ment truncation): armstrong|mon|lading (correspond-
ing to BIO sequence BBB); armstrong|mon lading (BBI);
armstrong mon|lading (BIB); armstrong|lading (BOB);
armstrong (BOO); etc.

Complete binding candidates are then generated from each
query q by taking each segmentation G ∈ BIOq and as-
signing to each segment in it any possible entity in Eq =
E1 ∪ E2 ∪ E3 (with repetitions). This generates a total of
O(|BIOq| × |q| × |Eq|) training examples for each query q,
which are heavily unbalanced towards negative ones. We
adopted a simple pruning heuristic to significantly confine
the size of this set, so that the model can be trained in
around 30 minutes. The heuristic is based on the follow-
ing algorithm. It assigns, for each segmentation G ∈ BIOq,
candidate entities drawn from Eq to segments s ∈ G (in the
algorithm, this set is Cs):
• For each pair (s, e) ∈ G×Eq, if MinED(s, T (e)) ≤ 0.7,

add (s, e) to Cs;
• For each entity e ∈ Eq that has not been added in the

previous step, add (s, e) to Cs for all s ∈ G.
• The set of candidate bindings generated for G is the

Cartesian product Cs1 × · · · × Cs|G| .

The final set of candidate bindings for query q is the union
of those Cartesian products for all G ∈ BIOq. This simple
heuristic reduces the generated examples to an average of
495 bindings per query on GERDAQ train, and it keeps, for
most queries, the candidates with highest F1.

5.3.2 Features
Each candidate binding

b = (m1, e1), (m2, e2), · · · , (m|b|, e|b|)

is associated with a feature vector F (b) generated as follows:
(i) features of Table 4, relative to entities, are computed over
entities e1, · · · , e|b|, and their maximum, minimum and av-
erage values for each entity are added to F (b); (ii) features
of Table 5 are computed over b’s annotations and their max-
imum, minimum and average values for each annotation are
added to F (b); (iii) features of Table 6, relative to the can-
didate binding as a whole, are computed over b and added
to F (b). The final length of the feature vector F (b) is three
times (because of min, max and avg) the number of features
in Tables 4 and 5 plus the number of features in Table 6, for
a total of 96 features.

5.3.3 Learning
For each query qi and its gold binding bi in GERDAQ

train, we generate all candidate bindings bij as described
above. For each bij we generate F (bij), the features for
candidate bij . Then we assign a response value to bij by
computing the F1 (yij below) between bi and bij .

This response has a number of desirable properties: by
design yij ∈ [0, 1] since it is the F1 between the gold binding
and a candidate binding, e.g., if bij = bi, then yij = 1. The
ranking function will learn to prefer the candidate binding
that locally maximize F1. Notice also that if no gold binding
is generated in the candidate list for qi, we can still use the
rest of the candidates to learn the ranking function as we are
able to compute the F1 between any candidate binding and
the gold one. In a classification approach, binary or struc-
tured, it would not be possible to learn from queries if the
gold standard (the true label) is not among the candidates.

Thus, in this framework, it is quite simple to encode the
data in a way that suits the problem in a principled way.
Furthermore, we can use any off-the-shelf learning to rank
library to learn a ranking function. In our case we used a
boosted tree ranking model [42].
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5.3.4 Best binding prediction
The annotation of a query q consists of four steps: (i)

we generate the set of candidate entities Eq = E1 ∪ E2 ∪ E3,
as described in Sect 5.1; (ii) we construct the set BIOq

of all BIO-sequences of q, as done above for training; (iii)
we create the set Aq of candidate bindings by associating to
each mention s ∈ BIOq all entities in Eq; the same heuristics
employed at training time are adopted for pruning here; (iv)
we rank the bindings in Aq by means of the learned ranker
R′ and pick the binding A∗(q) with the highest rank.

6. EXPERIMENTS

6.1 Evaluation metrics
We evaluate the performance of all query annotators with

standard metrics based on precision (P), recall (R) and F1 [5,
8, 40]. We provide an example of the computation of the
metrics for a single query. Let q = armstrong mon lading,
and let the corresponding gold standard binding for the
A2W problem be:

{(1, 1, Neil Armstrong), (2, 3,Moon Landing)}
thus, the first term is a mention of the astronaut, while the
second and third form a single mention of the ”landing on
the Moon” event. Let the following be a system’s prediction:

b̄ = {(1, 1, Neil Armstrong), (2, 2,Moon),

(3, 3,Moon Landing)}
Annotation (1, 1, Neil Armstrong) is a true positive (TP);

(2, 2,Moon) and (3, 3,Moon Landing) are false positives
(FPs); (2, 3,Moon Landing) is a false negative (FN). Hence,
overall, TP=1, FP=2, FN=1, yielding P=1/3, R=1/2, and
F1=2/5. We notice, in passing, that such F1 value would
be the response assigned to the system’s response b̄ above,
while training SMAPH-2. Overall, performance on a dataset
is obtained by computing the values for TP, FP and FN over
the whole dataset. We call these metrics micro-{P,R,F1}.
As proposed in recent evaluation frameworks [5, 40], we also
report the arithmetic average of Precision, Recall and F1,
denoted as average-{P,R,F1}6.

It is important to consider that queries sometimes contain
no entities (in particular, named entities). The way these
cases are accounted for can play a significant role in the final
evaluation metrics. The ability of a system to not annotate
entities where there are none is crucial. This aspect is better
captured by average measures, while micro measures focus
on the quality of retrieved entities/annotations.

6.2 The experimented annotators
In our experiments we tested the following annotators (for

algorithmic details see the previous sections):

WAT is the improved version of TagME introduced in [31]
for the A2W task (annotation detection). As related-
ness function in the disambiguation process we used
the Jaccard similarity among in-links, because it per-
formed best on GERDAQ.

AIDA is the A2W annotator introduced in [20], we down-
loaded the code from the official web site7. AIDA offers

6These metrics are also sometimes referred to as macro-
{P,R,F1}. If the gold binding of a query is the empty set, we
define recall to be 1.0. If the proposed binding for a query
is the empty set, we define precision to be 1.0.
7http://www.mpi-inf.mpg.de/yago-naga/aida/

several disambiguation methods, we tested all of them
and found that they offer almost the same performance
on GERDAQ, so we only report the best number.

NTNU-UiS is a query annotator for the C2W task (en-
tity only detection), introduced in [19] that uses a
multi-stage framework, first recognizing entity men-
tions, next scoring candidate entities using a learning-
to-rank method, finally, using a greedy algorithm to
find all valid interpretation sets for the query.

NTUNLP introduced for the C2W task in [7] searches the
query trying to match freebase surface forms with the
longest-match strategy. The disambiguation step is
built on top of TagME and Wikipedia.

Seznam introduced for the C2W task in [12] uses Wikipedia
and DBpedia to generate candidate annotations, than
builds a graph of mentioned entities exploiting the link
structure of Wikipedia. The disambiguation step is
based on PageRank over this graph that assigns a score
to each entity.

SMAPH-1 (Section 5.1) deals with the C2W task.

SMAPH-S (Section 5.2) is our first proposal for the A2W
problem, derived from SMAPH-1, evaluates each mention-
entity pair individually.

SMAPH-2 (Section 5.3) is our final annotator that deals
with the A2W problem by evaluating annotation sets
collectively.

The first two annotators (i.e., AIDA and WAT) are the
baselines for the C2W and A2W problems, while SMAPH-
S serves as a first step towards our best proposal for A2W,
namely SMAPH-2. Other annotators employed here are cur-
rently (as of October 2015) the top-ranking annotators of the
ERD Challenge.

6.3 Datasets
Our experiments have been conducted on two datasets:

ERD The dataset used in the ERD Challenge to test the
annotators solving the C2W problem on NEs only [9].
It consists of 500 queries fully annotated with NEs
drawn from Freebase. The ERD Challenge dataset is
not available off-line. Systems can be tested by send-
ing queries to the ERD Challenge platform to be an-
notated. The query’s gold standard remains unknown,
so it does not let one carry out any error analysis.This
makes the evaluation against this dataset a real third-
party check of the robustness of annotators.

GERDAQ This is the novel dataset we have built via Crowd-
Flower (Section 4), properly designed to test the query
annotators on both the C2W and the A2W problem,
including all possible entities of Wikipedia (hence, not
just NEs).

A third public dataset, the Webscope L24 (Yahoo Search
Query Log To Entities), features a set of annotated queries.
Unfortunately its usage terms prevent us to experiment with
it, since one of the authors of this paper is employed by a
commercial entity.

6.4 Coverage of entity sources
We evaluated the coverage of the three entity sources in-

troduced in Section 5.1 for the SMAPH systems. This is an
important analysis, because it allows to quantify the impact
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of various signals employed in the design of those sources,
and their complementarity. Table 7 reports the coverage and
precision of each entity source. E1, Wikipedia pages appear-
ing when searching q; E2, Wikipedia pages appearing when
searching q + wikipedia; E3, entities found by annotating
snippets. Plus their union. Source E3 is the largest single
source of entities, though having small precision. Entities
in E1 are included in E2: Wikipedia pages found by search-
ing q are also found by searching q + wikipedia, hence
E1 ⊆ E2. However, E1 has higher precision than E2. Merging
all sources together adds to plain E3 a +2.7% coverage on
all entities and +0.9% coverage of named entities. An at-
tentive reader might notice that E2 ∪ E3 reaches the highest
coverage, and that there’s no need of adding E1 to increase
it, since E1 ⊆ E2. However, the fact that e ∈ E1 provides a
stronger signal than e ∈ E2 about the likelihood of e being
an entity pertinent to the query, and only by including E1
this signal is exploited. Coverage of E1 ∪E2 ∪E3 is an upper
bound for the recall of the three SMAPH systems, as they
all employ the three sources of candidate entities.

E1 E2 E3 E3 ∪ E1 E3 ∪ E2 E1 ∪ E2 ∪ E3
CE 14.8 28.7 84.9 86.1 87.6 87.6
PE 35.3 21.5 23.4 22.5 19.6 19.5
CNE 26.6 41.9 92.7 93.5 94.4 94.4
PNE 44.6 24.2 23.2 22.4 19.2 19.1

Table 7: Coverage (C) and precision (P) of the en-
tity sources E1, E2, E3 on GERDAQ test. Top two
rows report coverage and precision about all enti-
ties, bottom two rows are limited to Named Enti-
ties. C stands for coverage (how many gold entities
are found), P stands for precision (how many enti-
ties found are gold). Read the leftmost column as
“entity source E1 finds 14.8% of all gold entities and
26.6% of the gold named entities, with a precision of
35.5% among all entities and 44.6% among named
entities”.

6.5 Feature selection for entity disambiguation
and pruning

The final set of features employed by the annotators were
presented in Tables 4, 5 and 6, above. They are a subset of a
wider number of features from which we discarded those that
proved not to be effective via a feature selection process by
ablation. Due to the lack of space, we do not report details
on the excluded features, but we cite the most eminent ones.

Among the excluded features we mention the score pro-
vided by the models introduced in [3] for query entity link-
ing, heavily based on word embeddings (i.e. word2vec).
These models measure the similarity of the word embed-
dings of the query terms to the word embeddings of the first
paragraph of the Wikipedia page that describes e. Though
this score works well if used alone (see [3]), it does not add
to our model additional information to decide whether an
entity is pertinent for a query or not, because we already
exploit a larger (and, experimentally, more effective) con-
text for a query term given by the snippets in which the
term appears. This context is then efficaciously used by the
text-annotator WAT for entity disambiguation.

We plan to investigate more why it is the case that em-
beddings were not useful in the current setup, as it seems

likely that they should help given that the problem is very
high-dimensional at the source (query strings). A possibil-
ity is that it might be necessary to re-train the embeddings
given the peculiar language of queries. At the same time,
there is not much available public data to learn embeddings
for queries. It might be possible to see if there is any benefit
to this approach by training the embeddings on the rest of
the KDD Cup queries.

6.6 Exp #1. NE-only detection (NE-only C2W
task)

In this task the goal is to identify named entities men-
tioned by queries of the ERD and GERDAQ datasets. Some
of the annotators we experiment with are designed to detect
all entities (general and NEs) and, in some cases, their men-
tions; however, in this experiment we evaluate their ability
to spot named entities only, without considering the corre-
sponding mentions.

System F1avg

AIDA 22.1
WAT 58.6
Seznam 66.9
SMAPH-S 67.0
NTU 68.0
SMAPH-1 68.8
NTNU-UiS 69.9
SMAPH-2 70.8

Table 8: C2W over ERD dataset (average-F1).

Table 8 reports the average-F1 computed by the ERD on-
line evaluation infrastructure. The table shows that WAT
is superior to AIDA over the annotation of queries, but
it is up to 10% worse than the winner of the ERD Chal-
lenge (SMAPH-1), which is in turn superseded by our new
proposal SMAPH-2 by another +2% (absolute) in average-
F1. We notice that after the completion of the ERD Chal-
lenge, other systems have been proposed and tested on the
ERD platform. Systems such as NTNU-UiS and NTU have
scored better results than the original SMAPH-1. Nonethe-
less, SMAPH-2 obtains again the top spot. In absolute
terms, these figures show that queries are difficult to an-
notate. The F1-measure over queries obtained by WAT and
AIDA is significantly lower, −16% absolute, than their F1’s
achievements on short texts [8]. Therefore the design of ded-
icated annotators for web queries is crucial in order to reach
reasonable performance. Another interesting observation is
that linking-back entities to mentions seems not useful if
not properly implemented; e.g., by a joint full-query predic-
tion approach. In fact, SMAPH-S performs worse even than
SMAPH-1.

We also tested annotators on the queries available in the
test portion of the GERDAQ dataset, restricting the eval-
uated entities to NEs only. Table 9 confirms the previous
experiment: SMAPH-2 improves SMAPH-1 by about 3%
(average-F1) and 5% (micro-F1). Since the ERD dataset’s
gold standard is unknown, with the GERDAQ dataset we
can perform an in-depth analysis reported in the following
table. The table shows, among other things, that WAT has
higher entity recall than AIDA. This is possibly due to the
latter depending on off-the-shelf APIs for preprocessing of
named entity detection.
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In this experiment, a significant portion of the queries
have no gold entities attached, and this explains why micro
measures are smaller than average measures.

Annotator Pavg Ravg F1avg Pmi Rmi F1mi

AIDA 94.8 59.6 58.4 31.6 4.8 8.3
TagME 75.4 83.3 63.2 52.1 49.6 50.8
WAT 70.3 85.3 64.4 42.8 66.9 52.2

SMAPH-1 85.5 82.7 74.5 62.0 62.5 62.2
SMAPH-S 82.6 82.3 73.1 58.7 59.7 59.2
SMAPH-2 85.8 84.5 76.0 65.5 62.9 64.2

Table 9: C2W over GERDAQ dataset (test portion)
and NEs only.

6.7 Exp #2. Generic entity detection (C2W
task)

This experiment is similar to Exp #1 but without any
restriction on the kind of detected entities, which may be
now all entities represented in Wikipedia, including generic
concepts. Because of the features of the ERD dataset, we
can perform this experiment only on GERDAQ, which also
features general entities, and not just NEs.

Annotator Pavg Ravg F1avg Pmi Rmi F1mi

AIDA 94.0 12.2 12.6 28.6 1.5 2.8
TagME 60.4 51.2 44.7 52.7 49.6 51.1
WAT 49.6 57.0 46.0 43.0 56.4 48.8

SMAPH-1 77.4 54.3 52.1 58.5 54.0 55.9
SMAPH-S 64.8 56.2 51.4 57.0 54.7 55.8
SMAPH-2 72.1 55.3 54.4 64.1 51.3 57.0

Table 10: C2W results on GERDAQ test, all enti-
ties.

In comparison to the NE-annotation of the previous sec-
tion, we notice that detecting generic entities is a harder
problem. F1 decreases by about 7% (micro F1) and 22%
(average F1). The significant decrease might be attributable
to the fact that NEs are easier to detect because they are
less ambiguous.

Again, text annotators such as AIDA and WAT are sig-
nificantly worse than query annotators. SMAPH-S is again
worse than SMAPH-1, but with a smaller gap, thus provid-
ing some credit for the usefulness of local link-back. SMAPH-
2 is still the best entity annotator with a significant increase
with respect to WAT of about 9% in average/micro F1 (ab-
solute) and about 2% with respect to SMAPH-1.

6.8 Exp #3. Annotation detection (A2W task)
The goal of this experiment is to evaluate annotators over

the most general scenario of the detection of all entities and
their mentions. As in Exp #2, we will use here only GER-
DAQ, the only dataset that provides well-curated annota-
tions on queries.

We first notice that on the general mention-entity annota-
tion, F1 is lower than F1 achievable for C2W. In fact, Table
10 shows that the best average-F1 on C2W (i.e. 54.4% of
SMAPH-2) decreases on A2W to 51.4%, thus confirming
that the A2W problem is more difficult.

Again, off-the-shelf text annotators (AIDA and WAT) are
worse than query annotators, but now SMAPH-S improves

Annotator Pavg Ravg F1avg Pmi Rmi F1mi

AIDA 94.0 12.2 12.6 28.6 1.5 2.8
TagME 58.4 49.7 43.0 50.3 47.9 49.1
WAT 47.2 54.3 43.6 40.3 53.0 45.8

SMAPH-S 59.5 50.6 46.3 51.0 49.4 50.2
SMAPH-2 68.4 52.3 51.4 59.9 47.9 53.2

Table 11: A2W results on GERDAQ test. Metrics
based on Strong Annotation Match (namely, exact
match on both entities and mentions).

over them by about 3-4% in average/micro F1. SMAPH-2 is
still the best annotator with a gap over SMAPH-S slightly
larger on A2W than that observed in the C2W task; about
+5% average-F1 and +3% micro F1. This enforces our
previous observation on the importance of designing spe-
cific query annotators. We notice that link-back, even in
the local-disambiguation approach, improves text annota-
tors by at least 3%. The increased gap between SMAPH-S
and SMAPH-2 in the A2W task, with respect to the C2W
one, seems to provide solid evidence of the value of the sim-
ple joint entity mention detection and linking we have intro-
duced in this paper.

7. CONCLUSIONS
In this paper we have investigated the problem of entity

linking of open-domain web search queries. Specifically, we
implemented and evaluated variants of piggyback models, a
second-order approach in which web search engine results
for the input query are analyzed to generate candidate men-
tions, candidate entities and features for prediction with
machine learning. We designed a system, called SMAPH-
2, that introduces two major novel algorithmic ideas: (i)
a link-back approach that serves the purpose of validating
the candidates generated by the piggyback step that oth-
erwise tends to overgenerate and (ii) a simple and effective
joint mention and linking approach based on learning to rank
that optimizes directly the F1 metric between predicted and
gold annotations over the full query. SMAPH-2 yields state-
of-the-art results in the online ERD@SIGIR2014 challenge
evaluation framework. Furthermore, we built and will share
GERDAQ, a novel dataset we developed specifically for web-
query entity linking via a crowdsourcing effort, and show
that SMAPH-2 outperforms the benchmarks by comparable
margins on GERDAQ.

Our study paves the way to other investigations that em-
ploy better annotations discovered by SMAPH-2 in several
IR applications, such as query classification and clustering
[4, 35], query expansion [10] and, possibly, query segmenta-
tion [18], e.g., via the mention-detection step which is robust
with respect to misspelling and shuffling of query terms.
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