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ABSTRACT
Search tasks in users’ query sequences are dynamic and intercon-
nected. The formulation of search tasks can be influenced by mul-
tiple latent factors such as user characteristics, product features and
search interactions, which makes search task identification a chal-
lenging problem. In this paper, we propose an unsupervised ap-
proach to identify search tasks via topic membership along with
topic transition probabilities, thus it becomes possible to interpret
how user’s search intent emerges and evolves over time. More-
over, a novel hidden semi-Markov model is introduced to model
topic transitions by considering not only the semantic information
of queries but also the latent search factors originated from user
search behaviors. A variational inference algorithm is developed to
identify remarkable search behavior patterns, typical topic transi-
tion tracks, and the topic membership of each query from query
logs. The learned topic transition tracks and the inferred topic
memberships enable us to identify both small search tasks, where
a user searches the same topic, and big search tasks, where a user
searches a series of related topics. We extensively evaluate the pro-
posed approach and compare with several state-of-the-art search
task identification methods on both synthetic and real-world query
log data, and experimental results illustrate the effectiveness of our
proposed model.

General Terms: Algorithm, Experimentation, Performance

Keywords: Markov model, search task identification, search be-
havior

1. INTRODUCTION
In recent years, commercial search engines interact with their

users through all manner of new features, presentations and expe-
riences to meet users’ information needs. A series of interactions
between user and search engine can be necessary to satisfy a single
information need. A search task is defined [23, 15, 28] as a set
of queries serving for the same information need. Different from
query sessions that are often defined as a sequence of queries issued
within a fixed period of time [13, 27], search task is increasingly
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recognized as a more suitable atomic unit to measure search en-
gine performance than a single query or session. Essentially, search
task identification plays an important role in understanding users’
search intentions, tracking their satisfaction, and improving down-
stream search engine applications as well as new features, such as
query suggestion [9, 15] and personalized search [30].

Appropriate identification of search tasks in query sequences is
a challenging problem because people find it difficult to track how
and when users’ search intentions come into being, evolve over
time, and finally come to an end. The granularities of search tasks
vary case by case [18, 29, 4], including both small ones where
a user searches the same topic with an atomic information need
(i.e., search goal as defined in [18]), and large ones where a user
searches a series of related topics with an extended information
need (i.e., search mission as defined in [18]). For example, a
trip planning search task may include progressive subtasks such
as flight booking, hotel booking, car rental, weather and routes in-
quiries, where these subtasks are highly correlated with each other
sequentially. Another complex search task is that a breaking news
search of Nobel Prize winner is likely to evolve to an exploratory
search task of studying a certain scientific domain. By simply
grouping queries together by topic, it cannot handle various gran-
ularities and evolving intentions of search tasks. Taking the above
trip planning search task as an example, each subtask may belong
to a different topic, thus the whole search task will be split into sev-
eral individual tasks although they attempt to accomplish the same
information need. Generally speaking, such subtasks that together
serve an extended information need are highly correlated, and a
relatively high transition probability between their corresponding
topics can be observed in query sequences. Therefore, it is very
intuitive to extend well beyond the topics by modeling how query
sequences progress through search tasks from the perspective of
search topic transitions.

Existing methods on search task identification [18, 23, 15,
28, 20] generally solve two subproblems sequentially: 1) us-
ing queries’ textual information and semantic meaning to cluster
queries into search topics in observed query sequences, and 2) us-
ing obtained clusters together with temporal information to par-
tition query sequences into search tasks. However, these meth-
ods suffer several problems. On one hand, the progressive nature
of search tasks is seldom considered by previous works. For in-
stance, two search queries of the same semantic meaning may be
evolved from queries to two different search tasks and thus bear
different user intentions. The query “the martian” after the query
“movie showtimes” has the intention of movie ticket booking while
the same query is likely to have intention for the book title af-
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ter the query “audio books” is issued. From another perspective,
if two queries from two closely related topics where it is likely
one will evolve to the other, they may belong to a search task
with an extended information need. Therefore it is very impor-
tant to model the transition of topics various situation in observed
query logs, which is neglected by many existing works. On the
other hand, most of the existing methods do not consider the la-
tent factors of search tasks such as personalities and skills of the
users, user feedbacks of the previous query and the inherent com-
plexity of the search task. Thus, an effective method for identify-
ing search tasks requires not only an accurate inference of query’s
topic-membership, but also an appropriate estimation of the prob-
ability of topic transitions under different users with various con-
texts.

Transition of search topics in query sequences is personalized
and contextual [11, 12] from the following several perspectives.
First, the personalities and skills of users may have an impact
on the search process. Patient users are less likely to abandon
the search task when irrelevant results are presented for the ini-
tial queries. It has also been studied in several works [32, 31] that
user’s familiarity with the topic domain has significant influence
on user search behaviors. For example, experts illustrated signifi-
cantly higher search success rate for their familiar topics. Second,
user’s next search choice is affected by the interactions between
the user and search engine. In recent years, commercial search en-
gines extend the traditional “10 blue links” experience on search
engine results page (SERP) by providing additional services based
on contextual information such as location, time of the day and on-
going real-world events. Different search experiences [16] such as
cards, direct answer and vertical results (image, videos, etc.) may
trigger further user interactions, thus have large impact on search
task development and transitions. Third, search tasks have their
inherent complexity and different types of search tasks varies in
terms of characteristics such as number of queries and lasting time.
Intuitively, the inherent complexity, together with user’s current
progress of the search task, will determine the possibility of topic
transitions in the next query. A search task which aims at learning a
new domain will probably include more informational queries [8]
as compared to tasks with particular web pages in mind such as
pizza ordering and address inquiry. All of the aforementioned la-
tent factors have their influence on the transition of search topics
in search sequences and hence on the formulation of search tasks,
which require an advanced model to take them into consideration.

In this work, we propose a new method to identify search tasks
and estimate users’ information needs based on both the content
and contextual information. A novel generative model based on
hidden semi-Markov model is proposed which assumes that the
transition of topics in query sequences is subject to not only the
semantic information of queries but also the corresponding search
factors. The concept of search factors is first introduced in this pa-
per to model the latent factors of formulating a search task, which
are assumed to be implicated by  s



Figure 1: An Illustration of how our proposed model deals with topic transition in query sequences compared with alternative
Markov models. The dash curve stands for topic transition, while the blue line denotes the dependency between states ln+1, ln and
search behaviors dn in our proposed model. We use different colors to denote different topics/states. However, in a normal hidden
Markov model ln+1 only depends on ln, while in a hidden semi-Markov model, ln+1 depends on ln and time duration dn;m.

– Assign it to a uniformly drawn search factor member-
ship Yn;

– Draw the real search behavior feature vector dn of this
query n: dn ∼ Gaussian(ωYn , σ);

– Draw the topic of the next query:
ln+1 ∼ Multinomial(δYn;ln).2

Comparing with the existing hidden semi-Markov model [6], the
state transition in our proposed model is jointly determined by the
current state and a multi-dimensional feature vector, instead of the
current state and only a single dimension – the time duration on
the current state. Figure 1 illustrates how our proposed model
differs from alternative hidden Markov models in modeling topic
transition in observed query sequences. From the aspect of hidden
Markov processes, each hidden state corresponds to a topic. User’s
search behaviors on the current state refer to the search behaviors
on the current query, which is defined to be the sequence of suc-
cessive queries sharing the same topic and ending with that query.
Thus we name this probabilistic model Generalized hidden semi-
Markov Model (GHSMM). The graphical model representation of
our GHSMM model is shown in Figure 2.

According to the above generative procedure, the topic transi-
tion probability matrix δ varies based upon the search factor of the
current query, instead of being invariant for all queries. In other
words, the topic of the query a user is to issue in the next is jointly
determined by both the topic of his/her current issued query and
the search factors of his/her current searching behaviors. For ex-
ample, suppose a Ph.D. student is searching sports news for fun
currently, if the time he/she spends on this query is short, he/she
may feel unsatisfied, and turn to search entertainment news in the
next. On the other hand, if he/she already spent a long time on this,
he/she may turn to search academic papers. For queries that share
the same search factor, it means that the users’ search behavior on
those queries are similar, for instance, the number of clicked docu-
ments among the returned web documents are similar, or the time
spend on those queries are about the same.

We now describe our methodology of search task identification
based on the behavior driven topic transition process. Since the se-
lected topic transition rule based on user behavior imply how likely
2δYn;ln is the vector of probabilities of transitions from topic ln to
other topics under the transition matrix δYn .

user’s next query submission is influenced by his/her submission
of the current query, a sequence of queries under the same topic or
related topics naturally form a search task. Based on the inferred
topic membership of each query and its associated topic transition
rule, a thresholding of δYn;ln;ln+1 with a constant automatically re-
sults in search task partition. The inference of search factor mem-
bership Y and topic membership L together with the learning of
topic transition rules δ consequently partitions observed query se-
quences into search tasks. Note that our methodology of search task
identification could be well aligned with the definitions of goal and
mission in [18]. More concretely, the queries with the same topic
membership belong to the same goal, i.e. an atomic information
need, while queries from topics which have high transition proba-
bilities belong to the same mission, i.e., a related set of information
needs.

3. INFERENCE
According to the description of GHSMM model, the joint prob-

ability of N queries W = {wn}Nn=1, their corresponding topics
L = {ln}Nn=1, the search behaviors of their corresponding queries
D = {dn}Nn=1, their search factor memberships Y = {Yn}Nn=1,
and topic transition matrices δ, can be written as:

p(D,W, Y, L, δ|ω, σ, α, α′) =

N∏
n=1

∏
i

P (wn;i|ln, θ)
T∏
t=1

P (θt|α)

N∏
n=1

P (ln+1|ln, Yn, δ)P (dn|Yn, ω)

K∏
k=1

∑
t;t′

P (δk;t;t′ |α′k)

Given the observed query sequences and search behavior statis-
tics, there are two central inference problems associated with the
GHSMM model, which we will solve in the following two sub-
sections: 1) posterior inference of the per-query search factor
membership, topic membership, the per-topic word distributions,
and topic transition matrices, and 2) parameter estimation of each
search factor ω and hyper-parameters of word distributions and
topic transition matrices.

3.1 Variational Inference
Under the GHSMM model, given observations of both queries

W and search behaviors D in query sequences, the log-likelihood
for the complete data is given by p(D,W |ω, σ, α, α′). Since this
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Figure 2: Graphical model representation of GHSMM and
the variational distribution that approximates the likelihood.
The left figure shows the graphical model representation of
GHSMM, while the right figure shows the variational distri-
bution that approximates the likelihood.

true posterior is hard to infer directly, we turn to variational infer-
ence methods [7] to approximately solve the optimization problem,
whose main idea is to posit a distribution of the latent variables
with free parameters, and then fit those parameters such that the
distribution is close to the true posterior in Kullback-Leibler (KL)
divergence. The variational distribution is supposed to be simpler
than the true posterior, thus enables us to approximately solve the
original optimization problem. In Figure 2, the right part shows
the variational distribution that approximates the data likelihood.
Following the variational inference method, we introduce a distri-
bution q that depends on a set of free parameters, and we specify q
as the mean-field fully factorized family,

q(Y1:N , L, θ1:T , δ1:K |Φ1:N , γ1:N , ρ1:T , λ1:K)

=
∏
n

q1(Yn|φn)q1(ln|γn)
∏
t

q2(θt|ρt)
∏
k

q3(δk|λk)

where q1 is a multinomial, q2 is a Dirichlet, q3 is a symmetric
Dirichlet, and {Φ1:N , γ1:N , ρ1:T , λ1:K} are the set of free vari-
ational parameters corresponding to latent variables {Y,L, θ, δ}.
The original likelihood can be optimized to approximate the lower
bound as:

L = log p(D,W |ω, σ, α, α′)
≥ Eq[log p(D,W, Y, L, δ|ω, σ, α, α′)] (1)
− Eq[log q(Y1:N , L, θ1:T , δ1:K)].

The right-hand side of above equation, which we denote as L′,
is the lower bound that we use as the surrogate to the true log-
likelihood L in the following latent variable inference and param-
eter estimation. To tighten the bound with respect to the varia-
tional parameters, we are actually to maximize the alternative lower
bound L′. We employ a coordinate ascent framework for this opti-
mization, and optimize the lower bound L′ against each variational
latent variables and the model hyper-parameter. For variational la-
tent variables, we have

• update rules for φ’s as:

φn;k ∝ exp(
∑
t;t′

γn;tγn+1;t′ [Φ(λk;t;t′)− Φ(
∑
t′′

λk;t;t′′)]

− 1

2σ2

∑
m

(dn;m − ωk;m)2)

• update rules for γ’s as:

n;t ∝ exp(
∑
i

∑
v

wn;i;v [Φ(�t;v)− Φ(
∑
v

�t;v)]

+
∑
k

∑
t′
n−1;t′ [Φ(�k;t′;t)− Φ(

∑
t′′

�k;t′;t′′ )]

+
∑
k

∑
t′
n+1;t′ [Φ(�k;t;t′ )− Φ(

∑
t′′

�k;t;t′′ )])

• update rules for ρ’s as:

ρt;v ∝ αv +
∑
n

∑
i

γn;twn;i;v

• update rules for λ’s as:

λk;t;t′ ∝ α′k +
∑
n

γn;tγn+1;t′φn;k,

In summary, the probability of the n-th query belonging to the
search factor k is jointly determined by the probability that topic
ln transfers to topic ln+1 in the transition matrix associated with
the search factor k, and the difference between feature values of
the search factor k and user’s search behavior on that query. The
probability of a query n belonging to topic t is jointly determined
by: (a) Semantic clustering of queries; (b) Past influence: the tran-
sition probability from the previous state; and (c) Future influence:
the transition probability to the next state.

3.2 Estimation
We use a variational expectation-maximization (EM) algo-

rithm [10] to compute the empirical Bayes estimate of topic hyper-
parameters α, topic transitions hyper-parameters α′, and param-
eters of search factors ω in our GHSMM model. This varia-
tional EM algorithm aims to optimize the lower bound as shown in
Eqn (1) instead of the real likelihood, which iteratively fits the vari-
ational distribution q to approximate the posterior and maximizes
the corresponding bound with respect to the parameters. The latter
M-step is equivalent to finding the MLE using expected sufficient
statistics under the variational distribution.

Notice that a closed form solution for the approximate maxi-
mum likelihood estimate of α does not exist, we use a linear-time
Newton-Raphson method, where the gradient and Hessian are

∂L′

∂αv
= N(Ψ(

∑
v

αv)−Ψ(αv)) +
∑
t

(Ψ(ρt;v)−Ψ(
∑
v

ρt;v)),

∂L′

∂αv1αv2
= N(I(v1=v2)Ψ

′(αv1)−Ψ′(
∑
v

αv)),

where Ψ is the digamma function. Similar update rules can be
derived for α′.

The maximum likelihood estimation of search factors ω’s can be
derived through calculating the first derivative of lower-bound L′
against corresponding parameters. We obtain the update formulas
given as follows:

ωk;m =

∑
n φn;kdn;m∑
n φn;k

.

Given the search factor membership φn of each query, the param-
eters of search factors ω and their corresponding topic transition
matrices δ can be estimated through simple statistical counting.

In our mean-field variation inference algorithm, the computa-
tional cost of inferring variational latent variables is O(N ∗ (K ∗
T 2 +K ∗M +T ∗ C̄)+T ∗V ), where C̄ is the average number of
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Table 1: Search Behavior Features
Due to space limitation, we avoid showing accumulated features

that are based on similar search actions with instant features.
Feature q Description
Click Number The total number of clicks on the returned

results of a submitted query.
Dwell Time The average time between a user’s final ac-

tion on the last query and the submission of
the current query.

Click Position The average position of clicks on the results
of a query.

Time Duration The time duration of a query.
Click Speed The number of clicks divided by the time

duration of a query.
Scanned Pages The number of result pages user scanned for

an issued query.
Time Interval The time interval between the submission

of current query and that of the next query.
Query Number The total number of queries within the

search task that current query belongs to.
Click Number Per
Query(CNPQ)

The average number of clicks per query
within the current search task.

words in a query, N is total number of queries, K is the number of
search factors, M is the dimension of search behavior features, T
is the number of topics, and V is the vocabulary size. Notice that
in computing γ we take the advantage of the sparsity of W which
contains only N ∗ C̄ nonzero elements. The computational cost of
the estimation of hyper-parameters is O(K ∗ T 2 + T ∗ V ). The
computational cost of the estimation of the parameters of search
factors is O(M ∗ K ∗ N). Thus the total computational cost of
our algorithm is O(N ∗ (K ∗ T 2 +K ∗M + T ∗ C̄ ∗ V )), where
M < T 2 can by ensured by controlling the number of search fac-
tor features we use. Also notice that C̄ is a small constant, and we
have V � N when the number of queries N is large enough, thus
the total computational cost can be simplified to O(N ∗K ∗ T 2),
which is linear in the number of queries with a fixed number of
search factor patterns K, a fixed number of states/topics T .

4. SEARCH BEHAVIOR FEATURES
As the search behavior features are very valuable and useful,

we experimented with many search behavior features besides those
popular query content features utilized in existing approaches. The
objective is to capture some key search behaviors which may in-
fluence a user’s choice of the topic of his/her next query given the
topic of the current issued query. We summarize these search be-
havior features in Table 1. Our features generally originate from
statistical counting of search engine users’ basic actions, such as
issuing query, clicking URL, turning page. Those actions are mea-
sured by counting the number or time for each issued queries, re-
sulting in the following features. For each query, we simply mea-
sure how many URLs are clicked (denoted as “Click Number”), and
how many seconds it lasts (denoted as “Time Duration”). More-
over, for each query, we further calculate some complex statistical
features, including the average time interval between each click and
its following click (denoted as “Dwell Time”), the average position
of clicks (denoted as “Click Position”), the number of clicks di-
vided by the time duration (denoted as “Click Speed”), and the av-
erage number of result pages scanned by user (denoted as “Scanned
Pages”).

Besides features that describe users’ behaviors on each single



Table 2: Inference and Estimation of GHSMM on Synthetic
Data

Metric Small Synthetic Large Synthetic
1
V

∑
v |
�v−�̂v
�v

| 0.129 0.285
1
K

∑
k |
�′
k−�̂

′
k

�′
k
| 0.077 0.110

1
K

∑
k |
!k−!̂k
!k

| 0.139 0.301
1
K

∑
k |
�k−�̂k
�k
| 0.162 0.319

1
N

∑
n I(Yn 6= Ŷn) 0.096 0.138

GATE[2]: This is a Greedy Agglomerative Topic Extraction al-
gorithm. It extracted topics based on a pre-defined topic
similarity function, which considered both semantic simi-
larity and mission similarity. Here mission similarity refers
to the likelihood that two queries appear in the same mis-
sion, while missions are sequences of queries extracted from
users’ query logs through a mission detector.

5.2 Data Sets
5.2.1 Synthetic Data

The goal of the experiments on synthetic data is to show that our
proposed algorithm is able to reconstruct the underlying search fac-
tors and corresponding topic transition matrices from the observed
topic transition examples and users’ search behaviors. For given
model dimensions (M,N,K, T ), we start by randomly drawing
the word distribution in T topics based on hyper-parameters α, K
search factors {ω̂k}k=1:K where each ω̂ is a vector of length M ,
and their corresponding topic transition matrices {σ̂k}k=1:K based
on hyper-parameters α′. Then based on the generative process
of our GHSMM model, we randomly draw the topic and search
factor of the first query for each user, and draw the topic of the
next query based on the topic and search factor of the current
query. The search factor Ŷn of each query Sn is randomly as-
signed, and accordingly we generate that query’s search behavior
dn, i.e. clicked information associated with the query, which fits
the assigned search factor. Also we draw the content of each query
based on its topic and the topic’s corresponding word distribution
θ. Note that vectors α and α′ are of size V and K respectively,
where each element αv and α′k is generated in [0.5α̂, 1.5α̂] and
[0.5α̂′, 1.5α̂′] respectively before simulation. Our experiments are
conducted on synthetic data simulated with the following two set-
tings:

• Small: M = 100, N = 1000, K = 10, T = 20, α̂ = 0.1,
α̂′ = 0.1. Simulations were run 100 times using the pre-
generated model parameters of search factors ω̂ and topic
transition matrices σ̂. We report the average performance
over the 100 data sets;

• Large: M = 1,000, N = 50,000, K = 100, T = 100,
α̂ = 0.1, α̂′ = 0.1. Simulations were run 5 times.

To test the robustness of our method, we add noise to the original
synthetic data:
Behavior Noisy: Instead of using dn to simulate users’ search
behaviors at the n-th query, we use a noisy value d′n, which is ob-
tained by adding Gaussian noise on dn.

5.2.2 Real World Data
We evaluate our method on two real world data sets. The first

data set is adapted from the query log of AOL search engine [3].
The entire collection consists of 19.4 million search queries from
about 650,000 users over a 3-month period. We cleaned the data

Table 3: Likelihood Comparison in Training and Testing
In the column of Metric, “Training” stands for training likelihood, while

“Predictive” stands for predictive likelihood. A higher likelihood means a
better performance.

Data set Metric GHSMM HMM HSMM

Small Synthetic Training -107.38 -186.61 -138.49
Predictive -143.42 -238.14 -180.31

Small Synthetic Training -116.97 -227.31 -154.09
with Behavior Noisy Predictive -158.94 -276.28 -201.25

Large Synthetic Training -168.75 -261.53 -207.34
Predictive -198.49 -313.77 -248.69

Large Synthetic Training -181.57 -303.72 -231.28
with Behavior Noisy Predictive -221.98 -372.25 -271.04

AOL Training -271.35 -463.28 -332.06
Predictive -368.92 -580.74 -419.19

Yahoo Training -309.14 -531.87 -353.90
Predictive -404.08 -650.83 -459.05

by removing the duplicated queries which were submitted consecu-
tively within 1 minute. We randomly selected a subset of users who
submitted over 1,000 queries during this period, and collected their
corresponding search activities, including the anonymized user ID,
query string, timestamp, the clicked URL. As a result, we collected
1,786 users with 2.2 million queries, and their activities span from
18 days to 3 months. The second data set is collected from Ya-
hoo search engine, from Jan 2013 to September 2013. Similarly,
we cleaned the data and randomly selected a subset of users who
submitted over 3,000 queries during this period. As a result, we
collected 1,475 users with 1.9 million queries, and their activities
span from 54 days to 9 months.

5.3 Evaluations
Inference and Estimation. Table 2 evaluates the accuracy of our
proposed variation inference algorithm in parameter estimation and
search factor membership inference under the GHSMM model on
synthetic data. Notice that we infer δ̂ and Ŷ based on the corre-
sponding variational parameters ρ and Φ, respectively. From the
table, we find that our GHSMM model can not only recover the
parameters of search factors ω and topic transition matrices δ very
well, but also recover the hyper-parameters α and α′ very well.
Meanwhile, we find that GHSMM can accurately predict the mem-
bership of search factor for each query.

Model Fitness. Table 3 compares the fitness of the proposed
GHSMM model with Markov-based models on real world data
sets. For each model, we show its log probability on the train-
ing data, and log predictive likelihood on queries falling in the final
10% of the total number of queries in the entire sequences. To
avoid overfitting issues, we adopt the cross validation strategy, and
select the optimal number of search factors K and topic number
T . Basically higher likelihood means better. From Table 3, we
find that GHSMM fits real world data sets better than alternative
Markov models. And the differences between the proposed model
and those alternative models are statistically significant. HSMM
performs better than HMM, which implies that real world query
logs do embody multiple topic transition rules rather than a single
one. The experiments on synthetic data sets with additional behav-
ior noise show that even though the predictability of GHSMM de-
grade when noise presents, it is robust enough to outperform HMM
and HSMM.

Query Clustering. As the topic memberships of queries play an
important role in not only identifying the search tasks in query logs,
but also learning typical topic transition tracks, we find it necessary

560



O
D

P
 S

im
ila

ri
ty

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

GHSMM
HMM
HSMM
LDA-Hawkes
Session
GATE

(a) AOL
O

D
P

 S
im

ila
ri
ty

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

GHSMM
HMM
HSMM
LDA-Hawkes
Session
GATE

(b) Yahoo

Figure 3: Query Labeling on Real World Data Sets. The Y -axes
of figures are measured by ODP Similarity.

to assess the quality of query clustering of the proposed model.
In this series of experiments, we evaluate the quality of obtained
query clusters/topics, which depends on their purity, or semantic
coherence. Since no ground truth about the correct composition of
a topic is available, we assess purity by the average similarity of
each pair of queries within the same topic as:

Purity =
1

K

∑
k

∑
qi;qj∈tk

Sim(qi, qj)

Nk(Nk − 1)/2
∗ 100%,

where Nk is the number of queries in topic k.
To evaluate the similarity between queries, we employ the

Open Directory Project (ODP)3 directory, which has been widely
used for evaluating the similarity between two queries automati-
cally [5]. The ODP, also known as DMOZ, is a human-edited
directory of more than 4 million URLs. These URLs belong
to over 590,000 categories organized in a tree-structured tax-
onomy where more general topics are located at higher lev-
els. For instance, the URL {tech.groups.yahoo.com/group/amrc-l/}
belongs to Top/Arts/Animation/Anime/Clubs_and_Organizations,
while the URL {http://valleyofazure.tripod.com/} belongs to an-
other directory Top/Arts/Animation/Anime/Characters.

To measure the similarity between categories, we use a notion of
similarity between the corresponding categories provided by ODP.
In particular, we measure the similarity between category Ci of
query qi and category Cj of query qj as the length of their longest
common prefix P (Ci, Cj) divided by the length of the longest path
among those of Ci and Cj . More precisely, we define this similar-
ity as: ODP Similarity

Sim(qi, qj) =
|P (Ci, Cj)|

max(|Ci|, |Cj |)
,

where |C| denotes the length of a path. For instance, the similar-
ity between the two queries above is 3/5 since they share the path
“Top/Arts/Animation” and the longest one is made of five directo-
ries. We evaluate the similarity between two queries by measur-
ing the similarity between the most similar categories of the two
queries, among the top 5 answers provided by ODP.

Figure 3 compares the performance of our GHSMM model with
alternative Markov models, and several state-of-the-art query clus-
tering approaches. GHSMM and LDA-Hawkes can better catego-
rize unlabeled queries than all the other methods. HSMM perform
better than HMM. Thus, we conclude that multiple topic transition
rules lie under real world query logs instead of a single fixed one.

Quantitative Analysis of the Inferred Topics. In addition to
query clustering, we design the following experiment to analyze
how well our inferred topics from real world query log match the
3http://www.dmoz.org/
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Figure 4: Quantitative Analysis of the Inferred Topics.

real-world categories from another aspect. For the transitions be-
tween each topic-pair (including self-transition), we calculate their
average similarity as

Sim(l, l′) =

∑
i;j:li=l&lj=l′

I(Ci == Cj)∑
i;j:li=l&lj=l′

1

where Ci and Cj is the corresponding category of query qi and qj .
Figure 4 presents the statistical visualization (Box plot) of

Sim(l, l′) of both internal transitions: self-transitions, and exter-
nal transitions: transitions between different topics. As we can see
from Figure 4, the queries assigned to the same topic have much
higher similarity than those assigned to different topic. This im-
plies that the queries with the same topic are much more likely
to belong to the same real world topic category, while queries as-
signed with different topics are more likely to belong to different
real world topic categories.

Search Task Identification. To justify the effectiveness of the pro-
posed model in identifying search tasks in query logs, we employ
a public AOL data subset4 provided by [23]. Manual annotation
was done on 1424 queries and results in 554 annotated search tasks
with 2.57 queries per task. This subset contains 13 users with
around 110 queries per user. We also recruited eight search edi-
tors to annotate the associated task for each query in a subset of
query sequences from the Yahoo data. The subset was extracted by
randomly sampling 100 users. The average number of queries per
user is around 50 and the number of annotated tasks is 1150 in this
subset.

We measure the performance by a widely used evaluation metric,
F1 score

F1 =
2 ∗ ppair ∗ rpair
ppair + rpair

;

where ppair denotes the percentage of query-pairs in our predicted
search tasks that also appear in the same ground-truth task, while
rpair denotes the percentage of query-pairs in the ground-truth
tasks that also appear in the same predicted task.

The annotations in the above two data sets do not distinguish
search goals and search missions, while one of the advantage of
the proposed method is that it can merge the queries of closely re-
lated topics to large search tasks (i.e. search missions). To justify
the effectiveness of the proposed model on identifying large search
tasks, we filtered the task annotations such that each remaining task
contains more than 10 queries. This results in a much smaller num-
ber of tasks in both data sets. Precision and recall are calculated
based on the filtered annotations which we denote as “AOL (Large
Tasks)” and “Yahoo (Large Tasks)” in Figure 5.

In Figure 5, we compare the proposed model with alternative
probabilistic models and state-of-the-art search task identification
approaches by F1 score. From Figure 5, we find that GHSMM

4http://miles.isti.cnr.it/~tolomei/?page_id=36
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Figure 5: Performance Comparison of Search Task Identifica-
tion Measured by F1 Score.

achieves comparable performance with LDA-Hawkes, while per-
forms better than the rest approaches. Moreover, on the selected
annotated data subset, GHSMM performs better than all compared
methods, which illustrate the advantage of the proposed model in
identifying large-scale search tasks. HMM performs the worst,
which illustrate that users’ choices of query submission depend
not only on the previous query, but also a group of search factors
like their satisfactory of the returned results and their search habits.
Moreover, GHSMM’s advantage over HSMM illustrates the impor-
tance of various search factors in the influence of user’s query sub-
mission choice other than temporal information only. The advan-
tage of GHSMM over QC-HTC and QC-WCC demonstrates that
appropriate usage of users’ search behaviors observed in query logs
can even better reflect the semantic relationship between queries,
rather than exploiting it in some collaborative knowledge. More-
over, the performance improvement of GHSMM compared with
Reg-Classifier illustrates the effectiveness of our designed behav-
ioral features. The advantage of the performance of GHSMM over
most baselines on Yahoo query log is greater than that on AOL.
One possible reason is that the average length of search tasks in
Yahoo is larger than that in AOL, which favorites the strength of
the proposed model.

Relationship among Topic Transition, Search Factor, and
Search Behavior. In the following, we explain how our utilized
search behaviors are clustered by the proposed model into appro-
priate search factors, which are capable of distinguishing differ-
ent topic transition rules. Based on the search factors and the
corresponding topic transition matrices learned by the proposed
GHSMM model from a real world data set, we analyze the rela-
tionship among topic transition, search factor, and search behav-
ior. The goal of the this analysis is to show that our learned search
factors do have intuitive explanations, based upon their own com-
positions of search behavior features. We also show that the topic
transition rules associated with distinct search factors differ in var-
ious aspects.

Figure 6 shows several detected search factors, and the corre-
sponding topic transition matrices learned by GHSMM from the
Yahoo data set. We intuitively name each search factor based on
the values of features of search behaviors. Notice that to distinguish
instant features and accumulated features based on similar search
actions, we use "Instant: *" to denote instant features, and "Accu-
mulated: *" to denote accumulated features. Moreover, to facili-
tate the presentation of learned search factors, we scale the value
of each feature to the range of [0, 1]. We name the search factor
presented in Figure 6(a) as "Satisfy", since the values in the dimen-
sions of "Instant: Click Number" and "Instant: Time Duration" are
significantly higher than those in the dimensions of "Accumulated:
Click number" and "Accumulated: Time Duration", while the av-
erage click position of the current query is much higher than those
of the previous queries in the same search task. The search fac-
tor shown as in Figure 6(d) may represent "Fail". The value in the
dimension of "Instant: Click Number" is very low, while a great
amount of time has already been spent on the current search task.
The search factor presented in Figure 6(g) is likely to imply the
user status that he/she is not satisfied with the existing results, and
is willing to continue search the same task to satisfy his/her infor-
mation need. We can notice that the values in the dimensions of "In-
stant: Time Duration" and "Instant: Click Number" are relatively
low, while the amount of time the user has spent on the current
search task is still small. Meanwhile, we notice that the topic tran-
sition matrices associated with different search factors significantly
differ from each other. Users with the search factor "Satisfy" are
likely to continue searching similar topics, as a large proportion of
associated topic transition rules with high probabilities are between
similar topics. Compared with "Satisfy", users with the search fac-
tor "Fail" like to search relatively dissimilar topics in the next, since
they tend to loss interest and feel tired in the current topic and may
want to search a completely new topic for refresh. Users with the
search factor "Unsatisfy" have a large chance to continue search
the same topic and similar topics in the next. Such phenomenon il-
lustrates that multiple distinct topic transition rules do exist in real
world query logs, and those transition rules can be distinguished by
diverse search factors. Also this series of experiments demonstrate
that the proposed GHSMM model is capable of detecting those var-
ious search factors with distinct topic transition matrices, and the
learned search factors can be powerful signals for the inference of
a user’s current status in conducting a search task.

Case Study of Identified Search Tasks. In this part, we show a
few search task examples identified by GHSMM in Yahoo query
log, in order to illustrate effectiveness of the proposed model in
recognizing and distinguishing search goals and missions among
identified search tasks. From Figure 7, we can find that the pro-
posed model successfully detected related topics that are likely to
serve the same information need. Although the word distribution
in the topics "travel" and "job market" and very different, the tran-
sition probability between those two topics under certain rules are
large, which can be learned since those two topics occurs a lot in
the query sequences of some users. Similar transitions can be de-
tected between the topic “job market” and “insurance”, under the
circumstance that the user is planning for travel. In the presented
case, separate search goals “travel”, “job market”, and “insurance”
together form the search mission “travel plan”, where “travel” is
mainly about travel destination information, “job market” looks for
the information of travel associated work opportunities, and “in-
surance” is for safety issues during travel. Those above three goals
serve the same information need when the user is working on travel
plans. On the other hands, the transition probability between the
topic “insurance” and “electronics” under the selected transition
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Figure 6: Relationship among Topic Transition, Search Factor, and Search Behavior. The left column presents search factors. Indices
of selected features in search factors including not only instant features: 1-’Time Duration’, 2-’Dwell Time’, 3-’Click Number’,
4-’Click Position’, 5-’Scanned Pages’, but also accumulated features: 6-’CNPQ’, 7-’Query Number’, 8-’Click Number’, 9-’Click
Position’, 10-’Time Duration’. The middle column presents the corresponding topic transition matrices. Both X and Y axes are topic
indices. The right column presents the average topic similarity of topic transition rules with different probabilities. The bar of c%
shows the average similarity of topic transition rules with probabilities in the range of [(c-10)%, c%]
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Figure 7: Case Study: Purple arrow line denotes that between
two consecutive queries, the transition happens within the same
topic, black arrow line denotes the transition between different
topics. Search tasks are formed by sequences of queries linked
by arrow lines. Rounded rectangle denotes the identified search
tasks, rectangle denotes detected topics.

rule is very small, the reason may be that users rarely search them
in sequence. Thus we may conclude that search behavior based
topic transition learning can be very effective in clarifying search
task hierarchy, which can benefit search task identification.

6. RELATED WORK
There are three research areas of related work: 1) search task

and session identification, 2) modeling topic transition in query se-
quences, and 3) analyzing search behavior in the query logs.

There has been a large body of work focused on the problem
of identifying search tasks or sessions from sequences of queries.
Many of early works use the idea of a “timeout” cutoff between
queries, where two consecutive queries are considered as two dif-
ferent sessions or tasks if the time interval between them exceeds
a certain threshold [13, 14, 22]. Often a 30-minute timeout is used
to segment sessions [9, 22, 28]. Beyond that, there have been at-
tempts to extract search tasks [26, 18, 23, 19, 1, 28] from query
sequences based on classification and clustering methods. Jones
and Klinkner [18] proposed to learn a binary classifier to detect
whether two queries belong to the same task or not, which or-
ganized and segmented query sequences into hierarchical units.
Kotov et al. [19] and Agichtein et al. [1] studied the problem of
cross-session task extraction via binary same-task classification,
and found different types of tasks demonstrate different life spans.
Cao et al. [9] proposed a clustering algorithm for summarizing
queries into concepts throughout a click-through bipartite graph
built from a search log. In addition, Wang et al. [28] proposed
a semi-supervised clustering method for identifying cross-session
tasks. Li et al. [20] casted search task identification into the prob-
lem of identify semantic influence in observed query sequences,
and proposed a probabilistic model by combining LDA model with
Hawkes processes to address the problem using both temporal and
textual information. Different from these existing methods, this pa-
per studies query sequences progress through search tasks from the
perspective of search topic transitions. The proposed unsupervised
model identifies search tasks via both topic membership and topic

transition probabilities. Moreover, the proposed method is able to
distinguish whether the queries belong to the same search goal or a
broader search mission.

Topic transition in query logs has been extensively studied to
understand web users’ search intents. A number of works [25,
24] have been proposed to learn topic transition rules underlying
observed query sequences. For instance, the method proposed in
[34] modeled the task of finding the topic transition probabilities
as a multiple output linear regression problem. Other probabilistic
graphical models, as in [17], attempted to model time-varying de-
pendency in topic transition. One category of probabilistic graphi-
cal models that naturally learn topic transition rules is Markov pro-
cesses, which is a class of stochastic processes that model state
transitions. In modeling topic transitions in observed query se-
quences, Markov models [21] usually view a state as a sequence
of queries that belong to the same topic. However, a normal hidden
Markov model determines the next state based on the current state
only. Hidden semi-Markov models [6, 33], went a further step by
assuming the state transition probability is jointly determined by
the present state and its duration. However, those models only take
into account one search behavior: time duration of the present state,
thus the transition probabilities are difficult to directly estimate due
to the huge space of time duration. Our model attempts to fully
utilize observed search behaviors on each query by assuming that
the state change depends not only on the current state, but also on
users’ search behaviors on that state.

There have been several studies of web search behavior [11, 12,
32, 31] and its influence on search applications such as predict-
ing next topics [29], query suggestion [9, 15] and personalized
search [30]. Some of the search behavior features are also inves-
tigated in the previous works [29, 9, 30]. Our paper is the first
one to model how these web search behaviors have an influence
on topic transitions for search task identification and search intent
understanding.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel method of search task

identification based on a generative model for behavior driven
search topic transition. The underlying assumption is that several
latent search factors exist in query logs, each associated with a dis-
tinct topic transition rule, and these search factors can be impli-
cated by users’ search behaviors. Given observed query sequences
and search behaviors, we proposed a variational inference algo-
rithm to simultaneously estimate the topic membership of each
query as well as those remarkable search factors and the corre-
sponding topic transition matrices. Experiments on both synthetic
and real world data demonstrate that the proposed method better
models query log data compared with alternative Markov models
and is comparable with the state-of-the-art method on real-world
data sets. The case study on a real-world data set shows that the
new method is able to identify search task of different scales and
also detects interesting latent search factors in search logs.

In future work, we plan to develop more advanced models which
explore the dependency of search behaviors within a user’s next
query on both the topic and search behaviors associated with the
current query. Moreover, it would be interesting to consider addi-
tional search behaviors, e.g., contents of clicked URLs, into this
framework, and investigate the performance of GSHMM model in
other domains.
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