
Distributed Estimation of Graph 4-Profiles

Ethan R. Elenberg
The University of Texas

Austin, Texas, USA
elenberg@utexas.edu

Karthikeyan Shanmugam
The University of Texas

Austin, Texas, USA
karthiksh@utexas.edu

Michael Borokhovich
The University of Texas

Austin, Texas, USA
michaelbor@utexas.edu

Alexandros G. Dimakis
The University of Texas

Austin, Texas, USA
dimakis@austin.utexas.edu

ABSTRACT
We present a novel distributed algorithm for counting all
four-node induced subgraphs in a big graph. These counts,
called the 4-profile, describe a graph’s connectivity proper-
ties and have found several uses ranging from bioinformat-
ics to spam detection. We also study the more complicated
problem of estimating the local 4-profiles centered at each
vertex of the graph. The local 4-profile embeds every vertex
in an 11-dimensional space that characterizes the local ge-
ometry of its neighborhood: vertices that connect different
clusters will have different local 4-profiles compared to those
that are only part of one dense cluster.

Our algorithm is a local, distributed message-passing scheme
on the graph and computes all the local 4-profiles in paral-
lel. We rely on two novel theoretical contributions: we show
that local 4-profiles can be calculated using compressed two-
hop information and also establish novel concentration re-
sults that show that graphs can be substantially sparsified
and still retain good approximation quality for the global
4-profile.

We empirically evaluate our algorithm using a distributed
GraphLab implementation that we scaled up to 640 cores.
We show that our algorithm can compute global and local
4-profiles of graphs with millions of edges in a few minutes,
significantly improving upon the previous state of the art.

1. INTRODUCTION
Graph k-profiles are local statistics that count the number

of small subgraphs in a big graph. k-profiles are a natural
generalization of triangle counting and are increasingly pop-
ular for several problems in big graph analytics. Globally,
they form a concise graph description that has found several
applications for the web [4, 21] as well as social and biological
networks [29, 22]. Furthermore, as we explain, the local pro-
file of a vertex is an embedding in a low-dimensional feature
space that reveals local structural information. Mathemat-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2883082.

ically, k-profiles are of significant recent interest since they
are connected to the emerging theory of graph homomor-
phisms, graph limits and graphons [5, 29, 19].

There are 4 possible graphs on 3 vertices, labeledH0; : : : ; H3

in Figure 1a. The (global) 3-profile of a graph G(V;E) is a
vector having one coordinate for each distinct Hi that counts
how many times that Hi appears as an induced subgraph of
G. For example, the graph G = K4 (the complete graph
on 4 vertices) has the 3-profile [0; 0; 0; 4] since it contains 4
triangles and no other (induced) subgraphs. The graph C5

(the cycle on 5 vertices, i.e. a pentagon) has the 3-profile

[0; 5; 5; 0]. Note that the sum of the k-profile is always
(|V |
k

)
,

the total number of subgraphs. Estimating 3-profiles of big
graphs is a topic that has received attention from several
communities recently (e.g. see [29, 31, 13, 7] and references
therein).

In this paper we are interested in the significantly more
challenging problem of estimating 4-profiles. Figure 1b shows
the 11 possible graphs on 4 vertices,1 labeled as Fi, i =
0; : : : ; 10. Given a big graph G(V;E) we are interested in
estimating the global 4-profile, i.e. count how many times
each Fi appears as an induced subgraph of G. In addi-
tion to global graph statistics, we are interested in local
4-profiles: given a specific vertex v0, the local 4-profile of v0

is an 11-dimensional vector, with each coordinate i counting
how many induced Fi’s contain v0. In Figure 2 we show an
example of the local 4-profile of a vertex.

The local 4-profile of a vertex can be seen as an embed-
ding in an 11-dimensional space that characterizes the local
geometry of its neighborhood: vertices that connect differ-
ent clusters will have different local 4-profiles compared to
those that are only part of one dense cluster. A very naive
estimation of 4-profiles requires examining

(
n
4

)
possible sub-

graphs. Furthermore, for estimating each local 4-profile in-
dependently, this computation has to be repeated n times,
once for each vertex. Note that the local 4-profiles may be
rescaled and added together to obtain the global 4-profile.
Since some of the 4-profile subgraphs are disconnected (like
F0; F1; F5), local 4-profiles contain information beyond the
local neighborhood of a vertex. Therefore, in a distributed
setting, it seems that global communication is required.

1Actually there are 17 local subgraphs when considering ver-
tex automorphisms. This is discussed in Section 2 in detail.
For the purpose of initial exposition, we will ignore vertex
automorphisms.

483

H0 H1 H2 H3

(a)

F0 F1 F2 F3 F4 F5

F6 F7 F8 F9 F10

(b)

Figure 1: (a) The 4 possible non-isomorphic graphs
on 3 vertices used to calculate the 3-profile of a graph
G. The 3-profile counts how many times each Hi
appears in G. (b) The 11 non-isomorphic graphs on
4 vertices used to calculate the 4-profile of a graph.

1.1 Our Contributions
Surprisingly, we show that very limited global informa-

tion is sufficient to calculate all local 4-profiles and that it
can be re-used to calculate all the local 4-profiles in par-
allel. Specifically, we introduce a distributed algorithm to
estimate all the local 4-profiles and the global profile of a
big graph. This restrictive setting does not allow commu-
nication between nonadjacent vertices, a key component of
previous centralized, shared-memory approaches. Our algo-
rithm relies on two novel theoretical results:
Two-hop histograms are sufficient: Our algorithm op-
erates by having each vertex first perform local message-
passing to its neighbors and then solve a novel system of
equations for the local 4-profile. Focusing on a vertex v0,
the first easy step is to calculate its local 3-profile. It can be
shown that the local 3-profile combined with the full two-hop
connectivity information is sufficient to estimate the local 4-
profile for each vertex v0. This is not immediately obvious,
since naively counting the 3-path (an automorphism of F4)
would require 3-hop connectivity information.

However, we show that less information needs to be com-
municated. Specifically, we prove that the triangle list com-
bined with what we call the two-hop histogram is sufficient:
for each vertex vi that is 2-hops from v0, we only need the
number of distinct paths connecting it to v0, not the full two
hop neighborhood. If the two-hop neighborhood is a tree,
this amounts to no compression. However, for real graphs
the two-hop histogram saves a factor of 3x to 5x in com-
munication in our experiments. This enables (Section 4) an
even more significant running time speedup of 5− 10 times
on several distributed experiments using 12 − 20 compute
nodes.
Profile Sparsification: One idea that originated from tri-
angle counting [27, 28] is to first perform random subsam-
pling of edges to create a sparse graph called a triangle spar-
sifier. Then count the number of triangles in the sparse
graph and rescale appropriately to estimate the number in
the original graph. The main challenge is proving that the
randomly sparsified graph has a number of triangles suffi-

v1

v0 v2 v4

v3

Figure 2: An example for local profiles. The
global 3-profile is [0; 3; 6; 1]. The global 4-profile is
[0; 0; 0; 0; 2; 0; 0; 1; 2; 0; 0]. The local 4-profile of v0 is
[0; 0; 0; 0; 1; 0; 0; 1; 2; 0; 0]. The first 1 in the profile cor-
responds to the subgraph F4. Notice that v0 partic-
ipates in only one F4, jointly with vertices v2; v3; v4.

ciently concentrated around its expectation. Recently this
idea was generalized to 3-profile sparsifiers in [7], with con-
centration results for estimating the full 3-profile. These pa-
pers rely on Kim-Vu polynomial concentration techniques [16]
that scale well in theory, but typically the estimated errors
are orders of magnitude larger than the measured quantities
for reasonable graph sizes. In this paper, we introduce novel
concentration bounds for global k-profile sparsifiers that use
a novel information theoretic technique called read-k func-
tions [11]. Our read-k bounds allow usable concentration
inequalities for sparsification factors of approximately 0:4 or
higher (Section 4.1). Note that removing half the edges of
the graph does not accelerate the running time by a factor
of 2, but rather by a factor of nearly 8, as shown in our
experiments.
System implementation and evaluation: We imple-
mented our algorithm using GraphLab PowerGraph [12] and
tested it in multicore and distributed systems scaling up to
640 cores. The benefits of two-hop histogram compression
and sparsification allowed us to compute the global and lo-
cal 4-profiles of very large graphs. For example, for a graph
with 5 million vertices and 40 million edges we estimated
the global 4-profile in less than 10 seconds. For computing
all local 4-profiles on this graph, the previous state of the
art [13] required 1200 seconds while our distributed algo-
rithm required less than 100 seconds.

1.2 Related Work
The problem of counting triangles in a graph has been

addressed in distributed [24] and streaming [4] settings, and
this is a standard analytics task for graph engines [23]. The
Doulion algorithm [27] estimates a graph’s triangle count via
simple edge subsampling. Other recent work analyzes more
complex sampling schemes [25, 6] and extends to approx-
imately counting certain 4-subgraphs [1, 15]. Mapreduce
algorithms for clique counting were introduced by Finocchi
et al. [10]. Our approach is similar to that of [7], which
calculates all 3-subgraphs and a subset of 4-subgraphs dis-
tributedly using edge pivots. In this work we introduce the
2-hop histogram to compute all 4-subgraphs.

Concentration inequalities for the number of triangles in a
random graph have been studied extensively. The standard
method of martingale bounded differences (McDiarmid’s in-
equality) is known to yield weak concentrations around the
mean for this problem. The breakthrough work of Kim
and Vu [16] provides superior asymptotic bounds by ana-
lyzing the concentration of multivariate polynomials. This

484

was later improved and generalized in [14], and applied to
subsampled triangle counting in [28]. Our analysis uses a dif-
ferent technique called read-k functions [11] that produces
sharper concentration results for practical problem sizes.2

Previous systems of equations relating clique counts to
other 4-subgraphs appear in [17], [31], [13], and [2]. How-
ever, these are applied in a centralized setting and depend
on information collected from nonadjacent vertices. In this
work, we use additional equations to solve the same sys-
tem by sharing only local information over adjacent vertices.
The connected 4-subgraphs, or graphlets [22], have found
applications in fields such as bioinformatics [26] and com-
putational neuroscience [9]. In [30], authors use all global
4-subgraphs to analyze neuronal networks. We evaluate our
algorithm against Orca [13], a centralized 4-graphlet count-
ing algorithm, as well as its GPU implementation [20]. No-
tice that while Orca calculates only connected 4-subgraphs,
our algorithm calculates all the connected and the discon-
nected 4-subgraphs for each vertex.

Concurrent with the writing of this paper, a parallel algo-
rithm for 4-subgraph counting was introduced in [2]. Our al-
gorithm differs by working within GraphLab PowerGraph’s
Gather-Apply-Scatter framework instead of the native, mul-
tithreaded C++ implementation of [2]. In terms of empirical
performance, both our work and [2] show similar running
time improvements of one order of magnitude over Orca.
A more detailed comparison would depend on the hardware
and datasets used. More importantly, our work focuses on
a distributed (as opposed to multicore parallel) framework,
and for our setting minimizing communication is critical.

Our theoretical results are significantly different from [2]
and may be useful in improving that system also. Specif-
ically, [2] explicitly counts the number of 4-cycles (F7 in
Figure 1b) whereas our results show that it is possible to
use only two-hop histograms instead. This results in less
communication overhead, but this benefit is perhaps not as
significant for shared-memory multicore platforms. Our sec-
ond theoretical result, the novel sparsification concentration
bounds, can be used for any subgraph estimation algorithm
and quantify a provable tradeoff between speed and accu-
racy.

2. DISTRIBUTED ALGORITHM
In this section, we describe 4-Prof-Dist, our algorithm

for computing the exact 4-profiles in a distributed manner.
To the best of our knowledge, this is the first distributed
algorithm for calculating 4-profiles. The key insight is to
cast existing and novel equations into the GraphLab Power-
Graph framework [12] to get implicit connectivity informa-
tion about vertices outside the 1-hop neighborhood. Specif-
ically, we construct the local 4-profile from local 3-profile,
local 4-clique count, and additional histogram information
which describes the number of paths to all 2-hop neighbors.

Theorem 1. There is a distributed algorithm that com-
putes the exact local 4-profile of a graph given each vertex has
stored its local 3-profile, triangle list, and 2-hop histogram.

Note that the local 4-profiles at each vertex can be added
and appropriately rescaled (using the symmetries of each

2Even though concentrations using Kim-Vu become tighter
asymptotically, this happens for graphs with well over 1013

edges (see also Figure 5).

H0(v) He
1 (v) Hd

1 (v) Hc
2(v) He

2 (v) H3(v)

(a)

F3(v)

F

F4(v) F6(v) F8(v) F9(v)

F
′

F
′′

(b)

Figure 3: Unique (a) 3-subgraphs and (b) 4-
subgraphs from the perspective of the white vertex
v. F8 is the only subgraph with a third vertex au-

tomorphism F
′′
8 because no other subgraph contains

vertices with 3 different degrees.

subgraph, also called automorphism orbits [22]) to obtain
the global 4-profile.

4-Prof-Dist is implemented in the Gather-Apply-Scatter
(GAS) framework [12]. A distributed algorithm in this frame-
work has 3 main phases: Gather, Apply and Scatter. Every
vertex and edge has stored data which is acted upon. During
the Gather phase, a vertex can access all its adjacent edges
and neighbors and gather data they possess, e.g., neighbor
ID, using a custom reduce operation ⊕ (e.g., addition, con-
catenation). The accumulated information is available for
a vertex at the next phase, Apply, in which it can change
its own data. In the final Scatter phase, every edge sees the
data of its (incident) vertices and operates on it to modify
the edge data. All nodes start each phase simultaneously,
and if needed, the whole GAS cycle is repeated until the
algorithm’s completion.

4-Prof-Dist solves a slightly larger problem of keeping
track of counts of 17 unique subgraphs up to vertex auto-
morphism (see Figure 3). We will describe a full rank system
of equations which is sufficient to calculate the local 4-profile
at every v ∈ V . The following subsections each explain a
component of 4-Prof-Dist. These separate routines are
combined efficiently in Algorithm 1 to calculate the local
4-profile in a small number of GAS cycles.

2.1 Edge Pivot Equations
The majority of our equations relate the local 4-profile

to neighboring local 3-profiles with edge pivots [7]. At each
vertex v, each combinatorial equation relates a linear com-
bination of the local 4-subgraph counts to the count of a
pair of 3-subgraphs sharing an edge va. Some of these equa-
tions appear in a centralized setting in previous literature
([17], [31], [13], [2]). In our algorithm, the 3-subgraph pair
count accumulates at v as all incident edges va pivot over it.
The edges fixed by a specific 3-subgraph pair correspond to
common edges among a subset of 4-subgraphs. Before that,
in an initial GAS round, each vertex v must gather the ID
of each vertex in its neighborhood, i.e. a ∈ Γ(v), and the

485

following quantities must be stored at each edge va during
the Scatter phase:

ne1,va = |V | − (|Γ(v)|+ |Γ(a)| − |Γ(v) ∩ Γ(a)|);
nc2,va = |Γ(v)\{Γ(a) ∪ a}| = |Γ(v)| − |Γ(v) ∩ Γ(a)| − 1;

ne2,va = nc2,av; n3,va = |Γ(v) ∩ Γ(a)|:
(1)

Gather: The above quantities are summed at each vertex
v to calculate the local 3-profile at v. For example, n3,v =
1
2

∑
a n3,va. In addition, we gather the sum of functions of

pairs of these quantities forming 13 edge pivot equations:

∑
a∈Γ(v)

(
ne1,va

2

)
= F1(v) + F2(v);

∑
a∈Γ(v)

(
nc2,va

2

)
= 3F

′
6(v) + F

′
8(v);

∑
a∈Γ(v)

(
n3,va

2

)
= F

′
9(v) + 3F10(v);

∑
a∈Γ(v)

ne1,van
c
2,va = 2F

′
3(v) + F

′
4(v);

∑
a∈Γ(v)

ne1,van3,va = 2F5(v) + F
′′
8 (v);

∑
a∈Γ(v)

nc2,van
e
2,va = F

′
4(v) + 2F7(v);

∑
a∈Γ(v)

nc2,van3,va = 2F
′
8(v) + 2F

′
9(v);

nd1,v|Γ(v)| = F2(v) + F4(v) + F8(v):

(2)

The primed notation differentiates between subgraphs of dif-
ferent automorphism orbits, as in Figure 3. By accumu-
lating pairs of 3-profile structures as in (2), we receive ag-
gregate connectivity information about vertices more than
1 hop away. Consider the sixth equation as an example.
The product between n2,va and ne2,va subgraphs along edge
va forms 4-node graphs with the following structural con-
straints: three vertex pairs are connected, two vertex pairs
are disjoint, and one pair may be either connected or dis-

joint. F
′
4(v) and F7(v) satisfy these constraints and differ on

the unconstrained edge. Thus, as shown in Figure 4, they
both contribute to the sum of nc2,van

e
2,va.

The following edge pivot equations are linearly indepen-
dent when solving for the local 4-profile only. Note the last
2 equations require calculating the local 3-profile:

∑
a∈Γ(v)

(
ne2,va

2

)
= F6(v) + F8(v);

∑
a∈Γ(v)

ne1,van
e
2,va = F3(v) + F4(v);

∑
a∈Γ(v)

ne2,van3,va = F
′′
8 (v) + 2F9(v); (3)

∑
a∈Γ(v)

n3,a − n3,va = F8(v) + 2F9(v) + 3F10(v);

∑
a∈Γ(v)

ne2,a − nc2,va = F4(v) + 2F7(v) + F
′′
8 (v) + 2F

′
9(v):

Apply: Store the left hand sides of all 13 equations at v.

v a

∑
a∈Γ(v) n

c
2,van

e
2,va F

′
4(v) 2F7(v)

= +

Figure 4: Edge pivot equation for vertex v counting
triangles as edges va pivot about their common ver-

tex v. The subgraphs F
′
4(v) and F7(v) differ by one

edge.

2.2 Clique Counting
The aim of this subtask is to count 4-cliques that contain

the vertex v. For this, we accumulate a list of triangles at
each vertex v. Then, at the Scatter stage for every va, it is
possible to check if neighbors common to v and a have an
edge between them. This implies a 4-clique.
Scatter: In addition to the intersection size |Γ(v)∩Γ(a)| at
each edge va as before, we now require the intersection list
{b : b ∈ Γ(v); b ∈ Γ(a)} as a starting point.
Gather, Apply: The intersection list is gathered at each
vertex v. This produces all pairs of neighbors in Γ(v) which
are adjacent, i.e. all triangles containing v. It is stored as
∆(v) during the Apply stage at v.
Gather, Apply: Each edge va computes the number of 4-
cliques by counting how many pairs in ∆(a) contain exactly
two neighbors of v. We use a similar equation to calculate
F8(v) concurrently:∑

a∈Γ(v)

|(b; c) ∈ ∆(a) : b ∈ Γ(v); c ∈ Γ(v)| = 3F10(v);

∑
a∈Γ(v)

|(b; c) ∈ ∆(a) : b =∈ Γ(v); c =∈ Γ(v)| = F8(v):
(4)

At the Apply stage, store the left hand sides as vertex data.

2.3 Histogram 2-hop Information
Instead of calculating the number of cycles F7(v) directly,

we can simply construct another linearly independent equa-
tion and add it to our system. Let each vertex a have a
vector of (vertex ID, count) pairs (p; ca[p]) for each of its
adjacent vertices p. Initially, ca[p] = 1 and this histogram
contains the same information as Γ(a). For any a ∈ Γ(v)
and p =∈ Γ(v), ca[p] = 1 ⇔ vap forms a 2-path. Thus, v
can collect these vectors to determine the total number of
2-paths from v to p. This lets us calculate a linear combina-
tion involving cycle subgraph counts with an equation that
is linearly independent from the others in our system.
Gather: At each v, take a union of histograms from each
neighbor a, resolving duplicate entries with the reduce op-
eration (p; ca1)⊕ (p; ca2) = (p; ca1 + ca2).
Apply: Given the gathered histogram vector,
{⊕a∈Γ(v) ca[p]}p/∈Γ(v), calculate the number of non-induced
4-cycles involving p and two neighbors:

∑
p/∈Γ(v)

(
⊕a∈Γ(v) ca[p]

2

)
= F7(v) + F9(v): (5)

Next, we upper bound savings from our 2-hop histogram
by analyzing the improvement when the only information

486

Algorithm 1 4-Prof-Dist

1: Input: Graph G(V;E) with |V | vertices, |E| edges.
2: Gather: For each vertex v union over edges of the

‘other’ vertex in the edge, ∪a∈Γ(v)a = Γ(v).
3: Apply: Store the gather as vertex data v.nb, size au-

tomatically stored.
4: Scatter: For each edge eva, compute and store scalars

in (1).
5: Gather: For each edge eva, sum edge scalar data of

neighbors in (2) - (3) and combine two-hop histograms.
6: Apply: For each vertex v, sum over p =∈ Γ(v) in (5),

store other data in array v.u. No Scatter.
7: Gather: For each vertex v collect pairs of connected

neighbors in ∆(v).
8: Apply: Store connected neighbor (triangle) list as ver-

tex data v.conn. No Scatter.
9: Gather: For each vertex v sum (4).

10: Apply: Append data to array v.u. Multiply v.u by a
matrix to solve system of equations.

11: return [v: v.N0 v.N1 v.N2 ... v.N10]

transmitted across the network to a vertex v is each non-
neighboring vertex and its final count ⊕a∈Γ(v)c[p]. Let

hv = |Γ(Γ(v)) \ {Γ(v) ∪ v}|:

For each v, the difference between full and histogram in-
formation is at most

∑
a∈Γ(v)(|Γ(a)| − 1) − 2hv. The exact

benefit of (5) depends on the internal implementation of the
reduce operation ⊕ as pairs of neighbors are gathered.

Counting the number of distinct pairs of 2-paths to each
2-hop neighbor, i.e. 1

2
(c[p]2 − c[p]), requires counting the

second moment of c taken over hv terms. Due to a result by
Alon ([3], Proposition 3.7), the memory required to count
this value exactly (moreover, to approximate it determinis-
tically) is Ω(hv). Thus, up to implementation details, our
memory use is optimal.

2.4 Normalization and Symmetry
Our final local equation comes from summing the local

4-profile across all 17 automorphisms:

17∑
i

Fi(v) =

(
|V | − 1

3

)
: (6)

To calculate the global 4-profile, we utilize global symme-
try and scaling equations. Let Fi =

∑
v∈V Fi(v). Globally,

each subgraph count is in exact proportion with the same
subgraph counted from a different vertex automorphism.
The ratio depends on the subgraph’s degree distribution:

F3 = 2F
′
3 ; F4 = F

′
4 ; F6 = 3F

′
6 ;

F8 = F
′
8 ; F

′′
8 = 2F8; F9 = F

′
9 :

(7)

Global symmetry makes the equation for F8 and the sys-
tem (3) linearly dependent. We sum across vertices, invert-
ing a single 11× 11 system to yield the final global 4-profile

[N0; : : : N
T
10] by scaling appropriately:

N0 =
F0

4
; N1 =

F1

2
; N2 =

F2

4
; N3 = F

′
3 ;

N4 =
F

′
4

2
; N5 =

F5

3
; N6 = F

′
6 ; N7 =

F7

4
;

N8 = F8; N9 =
F9

2
; N10 =

F10

4
:

(8)

3. SPARSIFIER AND CONCENTRATION
In this section, we describe the process for approximating

the exact number of subgraphs in a graph G. Denote the ex-
act counts by [N0 : : : N10]T and the estimates by [X0 : : : X10]T .

We are sparsifying the orignal graph G by keeping each
edge independently with probability p. Denote the ran-
dom subsampled graph by G̃ and its global 4-profile by
[Y0 : : : Y10]T . Clearly each triangle survives with probability
p3 and each 4-clique survives with p6. Therefore, in expec-
tation, E[Y10] = p6N10 and X10 = 1

p6
Y10 is unbiased.

This simple correspondence does not hold for other sub-
graphs: each triangle in G̃ can only be a triangle in G that
survived edge removals, but other subgraphs of G̃ could be
originating from multiple subgraphs of G depending on the
random sparsification process. We can, however, relate the
original 4-profile vector to the expected subsampled 4-profile
vector by a matrix multiplication. Let F (abcd) and F̃ (abcd)
represent the induced 4-subgaph on the vertices abcd be-
fore and after subsampling, respectively. Then define H by
Hij = P(F̃ (abcd) = Fi | F (abcd) = Fj). Thus, we form
an unbiased estimator, i.e. E[Xi] = Ni; i = 1; : : : ; 10, by
inverting the edge sampling matrix.

For 3-profiles, this process is described by the following
system of equations:

E[Y0]
E[Y1]
E[Y2]
E[Y3]

 =

1 1− p (1− p)2 (1− p)3

0 p 2p(1− p) 3p(1− p)2

0 0 p2 3p2(1− p)
0 0 0 p3

n0

n1

n2

n3

 : (9)

For 4-profiles, the vectors are 11 dimensional and a sim-
ilar linear system can be explicitly computed – we include
the equations in the Appendix. This matrix turns out to
be invertible and we can therefore calculate the 4-profile
exactly if we have access to the expected values of the spar-
sified 4-profile. Of course, we can only obtain one sample
random graph and calculate that 4-profile, which will be an
accurate estimate if the 4-profile quantities are sufficiently
concentrated around their expectation.

3.1 Graph k-profile Concentration
Previous work used this idea of graph sparsification for tri-

angle counting [28] and 3-profiles [7]. The main concentation
tool used was the Kim and Vu polynomial concentration [16,
28] which unfortunately gives very loose bounds for practical
graph sizes. Figure 5 compares the accuracy bound derived
in this section to the bound predicted by [16]. Clearly the
Kim-Vu concentration does not provide meaningful bounds
for the experiments in Section 4.1. However, our results
match observed sparsifier accuracy much more closely.

Our novel concentration results exploit the fact that par-
tial derivatives of the desired quantities are sparse in the
number of edge variables. This allows us to use a novel
information theoretic concentration technique called read-k

487

functions [11]. For simplicity, we only explain the concen-
tration of 4-cliques (F10 subgraphs) here. We establish the
general result for all 11 4-profile variables in the Appendix.
Additional details can be found in the extended version of
this paper [8]. Our main concentration result is as follows:

Theorem 2. Let G be a graph with N10 4-cliques, and
let k10 be the maximum number of 4-cliques sharing a com-
mon edge. Let X10 be the 4-clique estimate obtained from
subsampling each edge with probability 0 < p ≤ 1, choose
0 < � < 1, and choose �RK > 0. If

p ≥
(

log(2=�)k10

2�2RKN10

)1/12

;

then |N10 −X10| ≤ �RKN10 with probability at least 1− �.

Proof. Our proof relies on read-k function families [11],
a recent characterization of dependencies among functions of
random variables. Rather than Lipschitz bounding the value
of each partial derivative, as in [16, 28, 7], this technical
tool benefits from the fact that each first partial derivative
is sparse in the number of edge variables.

Definition 1 (read-k families). Let X1; : : : ; Xm be
independent random variables. For j ∈ [r], let Pj ⊆ [m] and
let fj be a Boolean function of {Xi}i∈Pj . Assume that
|{j|i ∈ Pj}| ≤ k for every i ∈ [m]. Then the random vari-
ables Zj = fj({Xi}i∈Pj) are called a read-k family.

Each variable only affects k of the r Boolean functions.
Let G be a graph with N10 4-cliques and a maximum of
k10 4-cliques sharing a common edge. The corresponding 4-
clique estimator X10 follows this exact structure. Each edge
sampling variable appears in at most k10 of the N10 terms.
We now state the main result required for our analysis. Note
that when applied to estimating the number of 4-cliques, the
bound is independent of the number of edges. Therefore, it is
much stronger than arguments involving Lipschitz bounded
functions such as McDiarmid’s inequality.

Proposition 1 (Read-k Concentration [11]). Let
Z1; : : : ; Zr be a family of read-k indicator variables with
P(Zi = 1) = pi, and let p be the average of p1; : : : ; pr. Then
for any � > 0,

P

(
r∑
i=1

Zi ≥ (p+ �)r

)
≤ exp

(
−D(p+ � ‖ p) r

k

)
P

(
r∑
i=1

Zi ≤ (p− �)r

)
≤ exp

(
−D(p− � ‖ p) r

k

)
;

where D(x ‖ y) = x log
(
x
y

)
+ (1 − x) log

(
1−x
1−y

)
is the

Kullback-Leibler divergence of x and y. Both bounds are
less than exp(−2�2r=k).

Let Y10 =
∑

�(a,b,c,d)∈H10
tabtbctcdtdatactbd. Then

P
(
|Y10 − p6N10| ≥ �RKN10

)
≤ 2 exp

(
−2�2RKN10

k10

)
⇒ P (|X10 −N10| ≥ �RKN10) ≤ 2 exp

(
−2p12�2RKN10

k10

)
:

The claim follows by setting the right hand side less than �
and solving for p.

Next, we state conditions under which our method out-
performs the Kim and Vu concentration results [16].

Corollary 1. Let G be a graph with m edges. If p =
Ω(1= logm) and � = Ω(1=m), then read-k provides better
triangle sparsifier accuracy than Kim-Vu. If additionally

k10 ≤ N
5/6
10 , then read-k provides better 4-clique sparsifier

accuracy than Kim-Vu.

Proof. We prove this result for the case of 4-cliques only
because the case for triangles is similar. First we must derive
a similar 4-clique concentration bound using the techniques
in [16, 28].

Lemma 1. Let G be a graph with m edges and N10 cliques,
and k10 be the maximum number of 4-cliques sharing a com-
mon edge. Let a6 = 86

√
6!, 0 < p ≤ 1, and �KV > 0. Let

X10 be the 4-clique estimate obtained from subsampling each
edge with probability p. If

p

max
{

6
√

1=N10; 3
√
k10=N10

} ≥ a2
6 log12(m5+γ)

�2KV
;

then |N10 −X10| ≤ �KVN10 with probability at least 1− 1
mγ

.

The proof of this lemma is a straightforward application of
the main result in [16]. It can be found in the extended
version of this paper [8].

Now we are ready to prove the corollary by comparing
Theorem 2 and Lemma 1. Fix p; �;> 0 and > 1 such that
p = Ω(1= logm) and � = m−γ = Ω(1=m). Now we analyze
the bounds �KV and �RK . For any graph and a6 defined in
Lemma 1,

1

a2
6

≤ 1;

(5 +)12
≤ 1;

log(21/γm) ≤ 2 logm;

(
k10

N10

)2/3

≤ 1:

(10)

We further require k10 ≤ N
5/6
10 . Then the condition on p

with (10) implies

p11 ≥ 1= log11(m)

≥ log(21/γm)

2a2
6(5 +)12 log12(m)

min
{
k10=N

5/6
10 ; (k10=N10)2/3

}
:

Rearranging terms,

�2KV =
a2

6 log12(m5+γ) max
{

6
√

1=N10; 3
√
k10=N10

}
p

≥ �2RK =
log(2mγ)k10=N10

2p12
:

We note that the asymptotic condition on p in Corollary
1 includes a constant term much less than 1. This is due to
the looseness of inequalities in (10) and implies that Theo-
rem 2 is superior to Lemma 1 over all p values of practical
interest. While these bounds contain the quantities we wish
to estimate, they provide guidelines for the performance of
sampling heuristics. We also investigate this in Section 4.1
for some realistic graphs.

488

4. EXPERIMENTS
Let us now describe the implementation and experimen-

tal results of our algorithm. We implement 4-Prof-Dist
on GraphLab v2.2 (PowerGraph) [12] and measure its run-
ning time and accuracy on large input graphs.3 First, we
show that edge sampling yields very good approximation
results for global 4-profile counts and achieves substantial
execution speedups and network traffic savings when multi-
ple machines are in use. Due to its distributed nature, we
can show 4-Prof-Dist runs substantially faster when using
multiple CPU cores and/or machines. Notice that multi-
core and multiple machines can not speed up some central-
ized algorithms, e.g., Orca [13], which we use as a base-
line for our results. Note also that Orca produces only a
partial 4-subgraph count, i.e. it calculates only connected
4-subgraphs, while 4-Prof-Dist calculates all 17 per vertex.

0.0 0.2 0.4 0.6 0.8 1.0
Edge sampling probability

100

103

106

109

1012

1015

1018

1021

1024

1027

1030

A
cc

ur
ac

y:
|e

xa
ct

-a
pp

ro
x|

LiveJournal, Sparsifier Accuracy

Kim-Vu
Read-k
4-cliques
Measured

Figure 5: Comparison of 4-clique sparsifier concen-
tration bounds with accuracy measured in edge sam-
pling experiments on the LiveJournal graph.

The systems: We perform the experiments on two systems.
The first system is a single powerful server, further referred
to as Asterix. The server is equipped with 256 GB of RAM
and two Intel Xeon E5-2699 v3 CPUs, 18 cores each. Since
each core has two hardware threads, up to 72 logical cores
are available to the GraphLab engine. The second system
is an EC2 cluster on AWS.4 The cluster is comprised of 20
c3.8xlarge machines, each having 60 GB RAM and 32 virtual
CPUs.
The data: In our experiments we use two real graphs rep-
resenting different datasets: social networks (LiveJournal:
4,846,609 vertices, 42,851,237 edges) and a WWW graph
of Notre Dame (WEB-NOTRE: 325,729 vertices, 1,090,108
edges) [18]. Notice that the above graphs are originally di-
rected, but since our work deals with undirected graphs, all
duplicate edges (i.e., bi-directional) were removed and di-
rectionality is ignored.

4.1 Results
Accuracy: The first result is that our edge sampling ap-
proach greatly improves running time while maintaining a
very good approximation of the global 4-profile. In Figure
6a we can see that the running time decreases drastically

3Available at http://github.com/eelenberg/4-profiles
4Amazon Web Services - http://aws.amazon.com

when the sampling probability decreases. At the same time,
Figure 6b shows that the mean ratio of true to estimated
global 4-profiles is within ±2:5%. Similar to [15], which
uses a more complex sampling scheme to count connected
4-subgraphs, this ratio is usually much less than 1%. We
show here only profiles F7 − F10 since their counts are the
smallest and were observed to have the lowest accuracy. In
Figure 5 we compare theoretical concentration bounds on a
logarithmic scale and show the benefit of Theorem 2. While
the guarantees provided by Kim-Vu [16] bounds are very
loose (the additive error is bounded by numbers which are
orders of magnitude larger than the true value), the read-k
approach is much closer to the measured values. We can see
that for large sampling probabilities (p ≥ 0:5), the measured
error is at most 2 orders of magnitude smaller than the value
predicted by Theorem 2.
2-hop histogram: Now we compare two methods of calcu-
lating the left hand side of (5) from Section 2.3. We show
that a simple implementation in which a vertex gathers its
full 2-hop neighborhood (i.e., IDs of its neighbors’ neigh-
bors) is much less efficient than the two-hop histogram ap-
proach used in 4-Prof-Dist (see Section 2.3). In Figures 7
and 9 we can see that the histogram approach is an order
of magnitude faster for various numbers of machines, and
that its network requirements are up to 5x less than that of
the simple implementation. Moreover, our algorithm could
handle much larger graphs while the simple implementation
ran out of memory.
Running time: Finally, we show that 4-Prof-Dist can
run much faster than the current state of the art graphlet
counting implementations. The algorithm and the GraphLab
platform on which it runs are both distributed in nature.
The latter allows 4-Prof-Dist to exploit multiple cores on
a single machine as well as a cluster of machines. Figure 6c
shows running time as a function of CPU cores. We com-
pare this result to the running time of a single core, C++

implementation of Orca [13]. Our 4-Prof-Dist algorithm
becomes faster after only 25 cores and is 2x faster using
60 cores. Moreover, 4-Prof-Dist allows scaling to a large
number of machines. In Figure 8 we can see how the running
time for the LiveJournal graph decreases when the number of
machines increases. Since Orca cannot benefit from multi-
ple machines, we see that 4-Prof-Dist runs up to 12x faster
than Orca. This gap widens as the cluster grows larger. In
[20], the authors implemented a GPU version of Orca using
CUDA. However, the reported speedup is about 2x which is
much less than we show here on the AWS cluster (see Figure
8 for p = 1). We also note a substantial running time benefit
of the sampling approach for global 4-profiles. In Figures 8
and 10, we see that with p = 0:1 we can achieve order of
magnitude improvements in both speed and network traffic.
This sampling probability maintains very good accuracy, as
shown in Figure 6b.

5. CONCLUSIONS
We introduced a novel distributed algorithm for estimat-

ing 4-profiles of large graphs. We relied on two theoretical
results that can be of independent interest: that 4-profiles
can be estimated with limited 2-hop information and that
randomly erasing edges gives sharper approximation com-
pared to previous analysis. We showed that our scheme
outperforms the previous state of the art and can exploit
cloud infrastructure to scale.

489

p=1 p=0.9 p=0.8 p=0.7 p=0.6 p=0.5 p=0.4 p=0.3 p=0.2 p=0.1
0

100

200

300

400

500

600

R
un

ni
ng

tim
e

[s
ec

]

LiveJournal, Asterix

(a)

p=0.9 p=0.7 p=0.4 p=0.3 p=0.1
0.90

0.95

1.00

1.05

1.10

A
cc

ur
ac

y:
ex

ac
t/a

pp
ro

x

LiveJournal, Accuracy, 4-profiles
F10
F9

F8
F7

(b)

10 cores 20 cores 30 cores 40 cores 50 cores 60 cores
0

500

1000

1500

2000

2500

R
un

ni
ng

tim
e

[s
ec

]

Orca: 1288 sec

LiveJournal, Asterix

(c)

Figure 6: LiveJournal graph, Asterix system. All the results are averaged over 10 iterations. (a) – Running
time as a function of sampling probability. (b) – Accuracy of the F7 −F10 global counts, measured as ratio of
the exact count to the estimated count. (c) – Comparison of running times of Orca and our exact 4-Prof-Dist
algorithm. Clearly, 4-Prof-Dist benefits from the use of multiple cores.

12 nodes 14 nodes 16 nodes 18 nodes 20 nodes
0

10

20

30

40

50

R
un

ni
ng

tim
e

[s
ec

]

WEB-NOTRE, AWS
2-hop 2-hop histogram

Figure 7: AWS cluster of up to 20 machines (nodes),
results averaged over 10 iterations. Running time
comparing naive 2-hop implementation and 2-hop
histogram approach on the Notre Dame web graph.

8 nodes 12 nodes 16 nodes 20 nodes
0

50

100

150

200

R
un

ni
ng

tim
e

[s
ec

]

LiveJournal, AWS
p=1
p=0.7

p=0.4
p=0.1

Figure 8: Running time of 4-Prof-Dist for various
number of compute nodes and sampling probability
p, on the LiveJournal graph.

Acknowledgements: We would like to thank the anony-
mous reviewers for their useful comments. This research
has been supported by NSF Grants CCF 1344179, 1344364,
1407278, 1422549 and ARO YIP W911NF-14-1-0258.

12 nodes 14 nodes 16 nodes 18 nodes 20 nodes
0.0

0.5

1.0

1.5

2.0

N
et

w
or

k
se

nt
[b

yt
es

]

×1010 WEB-NOTRE, AWS
2-hop 2-hop histogram

Figure 9: Network usage comparing naive 2-hop im-
plementation and 2-hop histogram approach on the
Notre Dame web graph.

8 nodes 12 nodes 16 nodes 20 nodes
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
et

w
or

k
se

nt
[b

yt
es

]

×1011 LiveJournal, AWS
p=1
p=0.7

p=0.4
p=0.1

Figure 10: Network usage of 4-Prof-Dist for various
number of compute nodes and sampling probability
p, on the LiveJournal graph.

6. REFERENCES

[1] N. K. Ahmed, N. Duffield, J. Neville, and
R. Kompella. Graph Sample and Hold: A Framework
for Big-Graph Analytics. In KDD, 2014.

490

[2] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield.
Efficient Graphlet Counting for Large Networks. In
IEEE International Conference on Data Mining, 2015.

[3] N. Alon, Y. Matias, and M. Szegedy. The Space
Complexity of Approximating the Frequency
Moments. In STOC, pages 20–29, 1996.

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis.
Efficient Semi-Streaming Algorithms for Local
Triangle Counting in Massive Graphs. In KDD, 2008.

[5] C. Borgs, J. Chayes, and K. Vesztergombi. Counting
Graph Homomorphisms. Topics in Discrete
Mathematics, pages 315–371, 2006.

[6] T. Eden, A. Levi, D. Ron, and C. Seshadhri.
Approximately Counting Triangles in Sublinear Time.
In FOCS, pages 614–633, 2015.

[7] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and
A. G. Dimakis. Beyond Triangles: A Distributed
Framework for Estimating 3-profiles of Large Graphs.
In KDD, pages 229–238, 2015.

[8] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and
A. G. Dimakis. Distributed Estimation of Graph
4-profiles. http://arxiv.org/abs/1510.02215, 2015.

[9] F. Fei, B. Jie, and D. Zhang. Frequent and
Discriminative Subnetwork Mining for Mild Cognitive
Impairment Classification. Brain Connectivity,
4(5):347–360, June 2014.

[10] I. Finocchi, M. Finocchi, and E. G. Fusco. Clique
Counting in MapReduce: Algorithms and
Experiments. ACM Journal of Experimental
Algorithmics, 20(1), 2015.

[11] D. Gavinsky, S. Lovett, M. Saks, and S. Srinivasan. A
Tail Bound for Read-k Families of Functions. Random
Structures & Algorithms, 47(1):99–108, 2015.

[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs. In 10th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 17–30, 2012.

[13] T. Hočevar and J. Demšar. A Combinatorial
Approach to Graphlet Counting. Bioinformatics,
30(4):559–65, Feb. 2014.

[14] S. Janson, K. Oleszkiewicz, and A. Ruciński. Upper
Tails for Subgraph Counts in Random Graphs. Israel
Journal of Mathematics, 142(1):61–92, 2004.

[15] M. Jha, C. Seshadhri, and A. Pinar. Path Sampling:
A Fast and Provable Method for Estimating 4-Vertex
Subgraph Counts. In WWW, pages 495–505, 2015.

[16] J. H. Kim and V. H. Vu. Concentration of
Multivariate Polynomials and Its Applications.
Combinatorica, 20(3):417–434, 2000.

[17] M. Kowaluk, A. Lingas, and E.-M. Lundell. Counting
and Detecting Small Subgraphs via Equations. SIAM
Journal of Discrete Mathematics, 27(2):892–909, 2013.

[18] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
Large Network Dataset Collection.
http://snap.stanford.edu/data, June 2014.

[19] L. Lovász. Large Networks and Graph Limits,
volume 60. American Mathematical Soc., 2012.

[20] A. Milinković, S. Milinković, and L. Lazić. A
Contribution to Acceleration of Graphlet Counting. In
Infoteh Jahorina Symposium, volume 14, pages
741–745, 2015.

[21] D. O’Callaghan, M. Harrigan, J. Carthy, and
P. Cunningham. Identifying Discriminating Network
Motifs in YouTube Spam. Feb. 2012.

[22] N. Przulj. Biological Network Comparison Using
Graphlet Degree Distribution. Bioinformatics,
23(2):177–183, 2007.

[23] N. Satish, N. Sundaram, M. A. Patwary, J. Seo,
J. Park, M. A. Hassaan, S. Sengupta, Z. Yin, and
P. Dubey. Navigating the Maze of Graph Analytics
Frameworks using Massive Graph Datasets. In
SIGMOD, pages 979–990, 2014.

[24] T. Schank. Algorithmic Aspects of Triangle-Based
Network Analysis. PhD thesis, 2007.

[25] C. Seshadhri, A. Pinar, and T. G. Kolda. Triadic
Measures on Graphs: The Power of Wedge Sampling.
In Proceedings of the SIAM Conference on Data
Mining, pages 10–18, 2013.

[26] N. Shervashidze, K. Mehlhorn, and T. H. Petri.
Efficient Graphlet Kernels for Large Graph
Comparison. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics,
pages 488–495, 2009.

[27] C. E. Tsourakakis, U. Kang, G. L. Miller, and
C. Faloutsos. DOULION: Counting Triangles in
Massive Graphs with a Coin. In SIGKDD, 2009.

[28] C. E. Tsourakakis, M. Kolountzakis, and G. L. Miller.
Triangle Sparsifiers. Journal of Graph Theory and
Applications, 15(6):703–726, 2011.

[29] J. Ugander, L. Backstrom, M. Park, and J. Kleinberg.
Subgraph Frequencies: Mapping the Empirical and
Extremal Geography of Large Graph Collections. In
WWW, pages 1307–1318, 2013.

[30] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall,
and D. B. Chklovskii. Structural Properties of the
Caenorhabditis elegans Neuronal Network. 7(2), 2011.

[31] V. V. Williams, J. Wang, R. Williams, and H. Yu.
Finding Four-Node Subgraphs in Triangle Time.
SODA, pages 1671–1680, 2014.

491

APPENDIX
A. IMPLEMENTATION DETAILS

To improve the practical performance of 4-Prof-Dist
(see Algorithm 1 for pseudocode), we handle low and high
degree vertices differently. As in GraphLab PowerGraph’s
standard triangle counting, cuckoo hash tables are used if
the vertex degree is above a threshold. Now, we also thresh-
old vertices to determine whether the 2-hop histogram in
Section 2.3 will be either a vector or an unordered map.
This is because sorting and merging operations on a vec-
tor scale poorly with increasing degree size, while an un-
ordered map has constant lookup time. We found that this
approach successfully trades off processing time and memory
consumption.

B. EXTENSION TO GLOBAL 4-PROFILE
SPARSIFIER

Another advantage to read-k function families is that they
are simpler to extend to more complex subgraphs. We now
state concentration results for the full 4-profile sparsifier
evaluated experimentally in Section 4. Using the notation
in Section 3, the edge sampling matrix H is defined by the
relations E[Y0]

...
E[Y10]

 = H

N0

...
N10

 ⇒

X0

...
X10

 = H−1

 Y0

...
Y10

 :
Let t = p−1

p
. Then the inverse sampling matrix is given

by

H−1 =

[
S11 S12

04×7 S22

]
; where

S11 =

1 t t2 t2 t3 t3 t3

0 1
p

2t
p

2t
p

3t2

p
3t2

p
3t2

p

0 0 1
p2

0 t
p2

0 0

0 0 0 1
p2

2t
p2

3t
p2

3t
p2

0 0 0 0 1
p3

0 0

0 0 0 0 0 1
p3

0

0 0 0 0 0 0 1
p3

;

S12 =

t4 t4 t5 t6

4t3

p
4t3

p
5t4

p
6t5

p
2t2

p2
t2

p2
2t3

p2
3t4

p2

4t2

p2
5t2

p2
8t3

p2
12t4

p2

4t
p3

2t
p3

6t2

p3
12t3

p3

0 t
p3

2t2

p3
4t3

p3

0 t
p3

2t2

p3
4t3

p3

;

S22 =

1
p4

0 t
p4

3t2

p4

0 1
p4

4t
p4

12t2

p4

0 0 1
p5

6t
p5

0 0 0 1
p6

 ;
and 04×7 is a 4× 7 matrix of zeros.

The binomial coefficients in these matrices influence our
concentration bounds. A more detailed proof of the follow-
ing result may be found in the extended version of this paper
[8].

Theorem 3 (4-profile sparsifier). Consider the sam-
pling process described above and in Section 3. Let Xi; 0 ≤
i ≤ 10 (and X be a vector of these estimates), be the actual
estimates of 4-profiles. Let ki be the maximum number of
subgraphs Fi sharing a common edge. Let Yi; 0 ≤ i ≤ 10,
be the 4 profile counts of the sparsified graph. Then let
Ni; 0 ≤ i ≤ 10, be the actual counts. Choose 0 < � < 1
and � > 0. Let C = (192)2=2 and

kα = k2 + k3; kβ = k4 + k5 + k6; kγ = k7 + k8;

Nα = N2 +N3; Nβ = N4 +N5 +N6; Nγ = N7 +N8:

If

p ≥
(
C log(2=�)k10

�2N10

)1/12

; p ≥
(
C log(2=�)(k9 + 6k10)

�2(N9 + 6N10)

)1/10

p ≥
(
C log(2=�)(k8 + 4k9 + 12k10)

�2(N8 + 4N9 + 12N10)

)1/8

p ≥
(
C log(2=�)(k7 + k9 + 3k10)

�2(N7 +N9 + 3N10)

)1/8

p ≥
(
C log(2=�)(k6 + k8 + 2k9 + 4k10)

�2(N6 +N8 + 2N9 + 4N10)

)1/6

p ≥
(
C log(2=�)(k5 + k8 + 2k9 + 4k10)

�2(N5 +N8 + 2N9 + 4N10)

)1/6

p ≥
(
C log(2=�)(k4 + 4k7 + 2k8 + 6k9 + 12k10)

�2(N4 + 4N7 + 2N8 + 6N9 + 12N10)

)1/6

p ≥
(
C log(2=�)

�2

)1/4

×(
k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10

N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10

)1/4

p ≥
(
C log(2=�)(k2 + k4 + 2k7 + k8 + 2k9 + 3k10)

�2(N2 +N4 + 2N7 +N8 + 2N9 + 3N10)

)1/4

p ≥
(
C log(2=�)(k1 + 2kα + 3kβ + 4kγ + 5k9 + 6k10)

�2(N1 + 2Nα + 3Nβ + 4Nγ + 5N9 + 6N10)

)1/2

n0 ≤ |V |2
(
|V |2 − C log(2=�)

�2

)
;

then ‖�X‖∞ ≤ �
(|V |

4

)
with probabilty at least 1− �.

Proof. We apply Proposition 1 a total of 11 times to the
sampling-estimator system defined above by H and H−1.
In our context, each sampled subgraph count Yi is a sum of
functions in a read-kYi family, where kYi ≤ min{|V |−2; Ni}.
Let ki,e be the maximum number of subgraphs Fi sharing a
common edge e, and let ki = maxe ki,e, for i = 0; : : : ; 10.

492

The Yi’s have the following parameters:

rY0 =

(
|V |
4

)
; kY0 = |V |

rY1 = N1 + 2N2 + 2N3 + 3N4 + 3N5 + 3N6 + 4N7+

4N8 + 5N9 + 6N10

kY1 = k1 + 2k2 + 2k3 + 3k4 + 3k5 + 3k6 + 4k7 + 4k8+

5k9 + 6k10

rY2 = N2 +N4 + 2N7 +N8 + 2N9 + 3N10

kY2 = k2 + k4 + 2k7 + k8 + 2k9 + 3k10

rY3 = N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10

kY3 = k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10

rY4 = N4 + 4N7 + 2N8 + 6N9 + 12N10

kY4 = k4 + 4k7 + 2k8 + 6k9 + 12k10

rY5 = N5 +N8 + 2N9 + 4N10; kY5 = k5 + k8 + 2k9 + 4k10

rY6 = N6 +N8 + 2N9 + 4N10; kY6 = k6 + k8 + 2k9 + 4k10

rY7 = N7 +N9 + 3N10; kY7 = k7 + k9 + 3k10

rY8 = N8 + 4N9 + 12N10; kY8 = k8 + 4k9 + 12k10

rY9 = N9 + 6N10; kY9 = k9 + 6k10

rY10 = N10; kY10 = k10

We apply Proposition 1 to each estimator. This is shown
in the proof of Theorem 2 for Y10 and in the extended paper
[8] for the other estimators. Rearranging to solve for p,

p ≥
(

log(2=�)k10

2�2N10

)1/12

; p ≥
(

log(2=�)(k9 + 6k10)

2�2(N9 + 6N10)

)1/10

p ≥
(

log(2=�)(k8 + 4k9 + 12k10)

2�2(N8 + 4N9 + 12N10)

)1/8

p ≥
(

log(2=�)(k7 + k9 + 3k10)

2�2(N7 +N9 + 3N10)

)1/8

p ≥
(

log(2=�)(k6 + k7 + 2k9 + 4k10)

2�2(N6 +N8 + 2N9 + 4N10)

)1/6

p ≥
(

log(2=�)(k5 + k7 + 2k9 + 4k10)

2�2(N5 +N8 + 2N9 + 4N10)

)1/6

p ≥
(

log(2=�)(k4 + 4k7 + 2k8 + 6k9 + 12k10)

2�2(N4 + 4N7 + 2N8 + 6N9 + 12N10)

)1/6

p ≥
(

log(2=�)

2�2

)1/4

×(
k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10

N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10

)1/4

p ≥
(

log(2=�)(k2 + k4 + 2k7 + k8 + 2k9 + 3k10)

2�2(N2 +N4 + 2N7 +N8 + 2N9 + 3N10)

)1/4

p ≥
(

log(2=�)(k1 + 2kα + 3kβ + 4kγ + 5k9 + 6k10)

2�2(N1 + 2Nα + 3Nβ + 4Nγ + 5N9 + 6N10)

)1/2

;

where

kα = k2 + k3; kβ = k4 + k5 + k6; kγ = k7 + k8;

Nα = N2 +N3; Nβ = N4 +N5 +N6; Nγ = N7 +N8:

The final condition comes from the result for Y0:

n0 ≤

(
|V |
4

)
− log(2=�)|V |2

2�2
≤ |V |2

(
|V |2 − log(2=�)

2�2

)
:

Plugging into our estimators (given by H−1), we get the
following error bounds:

�X0 ≤ �(n1 + n2 + n3) + �(n1 + 2n2 + 3n3 + n2 + 3n3 + n3)

≤ �(2n1 + 4n2 + 8n3) ≤ 8�

(
|V |
3

)

�X1 ≤ �(N1 + : : :+ 192N10) ≤ 192�

(
|V |
4

)

�X2 ≤ �(N2 + : : :+ 48N10) ≤ 48�

(
|V |
4

)

�X3 ≤ �(N3 + 4N4 + 6N5 + : : :+ 192N10) ≤ 192�

(
|V |
4

)

�X4 ≤ �(N4 + : : :+ 96N10) ≤ 96�

(
|V |
4

)

�X5 ≤ �(N5 + : : :+ 32N10) ≤ 32�

(
|V |
4

)

�X6 ≤ �(N6 + : : :+ 32N10) ≤ 32�

(
|V |
4

)

�X7 ≤ �(N7 + 2N9 + 12N10) ≤ 12�

(
|V |
4

)
�X8 ≤ �(N8 + 4N9 + 12N10) + 4�(N9 + 6N10) + 12�(N10)

≤ �(N8 + 8N9 + 48N10) ≤ 48�

(
|V |
4

)
�X9 ≤ �(N9 + 6N10) + 6�(N10)

≤ �(N9 + 12N10) ≤ 12�

(
|V |
4

)
�X10 ≤ �N10:

Thus the maximum deviation in any estimator is less than
192�

(|V |
4

)
. Substituting �̃2 = �2=(192)2 = �2=2C completes

the proof.

493

	Introduction
	Our Contributions
	Related Work

	Distributed Algorithm
	Edge Pivot Equations
	Clique Counting
	Histogram 2-hop Information
	Normalization and Symmetry

	Sparsifier and Concentration
	Graph k-profile Concentration

	Experiments
	Results

	Conclusions
	References
	Implementation details
	Extension to global 4-profile sparsifier

