
On Sampling Nodes in a Network

Flavio Chierichetti

⇤

Sapienza University

Rome, Italy

flavio@di.uniroma1.it

Anirban Dasgupta

†

IIT

Gandhinagar, India

anirbandg@iitgn.ac.in

Ravi Kumar

Google

Mountain View, CA

ravi.k53@gmail.com

Silvio Lattanzi

Google

New York, NY

silviolat@gmail.com

Tamás Sarlós

Google

Mountain View, CA

stamas@gmail.com

ABSTRACT
Random walk is an important tool in many graph mining applica-
tions including estimating graph parameters, sampling portions of
the graph, and extracting dense communities. In this paper we con-
sider the problem of sampling nodes from a large graph according
to a prescribed distribution by using random walk as the basic prim-
itive. Our goal is to obtain algorithms that make a small number of
queries to the graph but output a node that is sampled according
to the prescribed distribution. Focusing on the uniform distribution
case, we study the query complexity of three algorithms and show a
near-tight bound expressed in terms of the parameters of the graph
such as average degree and the mixing time. Both theoretically and
empirically, we show that some algorithms are preferable in prac-
tice than the others. We also extend our study to the problem of
sampling nodes according to some polynomial function of their de-
grees; this has implications for designing efficient algorithms for
applications such as triangle counting.

Keywords. random walks, stationary distribution, mixing time,
uniform sampling, Metropolis–Hastings.

1. INTRODUCTION
Sampling large networks is a fundamental data mining problem.

When the network is huge and it is costly or infeasible to process
the network in its entirety, sampling is often the most realistic op-
tion to infer properties of the network and to obtain estimates about
basic quantities. Sampling has been successfully used for many
network-related measurements, ranging from estimating the size
of the network, the number of edges and the average degree, or
even higher-order properties such as the clustering coefficient, the
number of triangles and small subgraphs, and more. Sampling in
general, and network sampling in particular, has been studied ex-

⇤Supported in part by a Google Focused Research Award, by
the ERC Starting Grant DMAP 680153, and by the SIR Grant
RBSI14Q743.

†Supported in part by a Google Faculty Research Award.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2883045.

tensively in both theoretical and applied research communities, and
there is a rich body of literature on these topics.

By the very nature of the sampling process, the obtained estimate
is approximate and can sometimes be incorrect. A principled way
to sample is thus critical in order to ensure that the obtained esti-
mate has any statistical quality guarantee. Theoretical results on
sampling especially emphasize this aspect: they focus on the num-
ber of samples sufficient to estimate a quantity to within an additive
or multiplicative error and with high probability.
Sampling in networks. One of the basic primitives for sampling
in networks is the problem of generating an independent and uni-
formly distributed network node. This primitive is very powerful
since estimating many key network properties can be expressed in
terms of a statistical estimator based on a uniform node sample. For
example, the fraction of left-leaning members in an online social
network can be estimated by querying a uniform sample of mem-
bers (i.e., nodes) about their political alignments. Likewise, the size
of the network can be estimated by generating several independent
uniform nodes and counting the collisions among them. Efficient
and non-trivial estimators for several other properties such as the
average degree and clustering coefficient can also be expressed as
statistical estimators that are based on uniform samples.

An operational issue in sampling that is unique to networks is
the question of how to access nodes and edges. The following or-
acle model is widely used: given any node, in a unit time, one can
obtain all the neighbors of the node. This access model is realis-
tic given the way large networks are typically accessed in practice.
For instance, by crawling a web page, one can access all the web
pages linked to this web page; similarly, by crawling a social pro-
file, one can access all the (publicly-visible) friends of a user. With
these in mind, an algorithm to generate a uniform node from a net-
work must have the following desirable properties: (i) it has to be
resource-efficient, i.e., it has to query as few nodes of the network
as possible, (ii) it has to be provably good, i.e., the approximation
guarantees must be quantifiable and tunable, (iii) it must be simple
to implement using the oracle query model and efficient to run.

Existing work for uniform node generation are based on a ran-
dom walk in the network: invoke the access oracle to get the neigh-
borhood of the current node and pick a random neighbor to con-
tinue the exploration for a while and output a node as the sample.
Evaluation of these algorithms fall into one of two categories: (i)
propose natural heuristics for the problem and demonstrate empiri-
cally that produce good quality samples or (ii) use some method for
sampling but focus on the eventual quantity that is estimated using
the samples instead of on the quality of the samples themselves. To
the best of our knowledge, the query complexity of uniform node
generation in a network has not been formally addressed.

471

Our contributions. In this paper, we study the uniform node gen-
eration problem. In particular, we ask: is it possible to relate the
query complexity of generating a uniform node in a network to
the structural properties of the underlying network? Intuitively, we
expect the problem to be easier on well-connected networks than
on poorly connected networks. Our work proceeds to formalize
this intuition and quantify the resources required for uniform gen-
eration. However, this is non-obvious since specific measures of
connectivity such as the mixing time could be a weak bound on the
number of queries, and unlike mixing time, the query complexity
of a walk does not immediately relate to any spectral properties.

For the problem of generating a uniform sample in a network, we
study two simple and efficient algorithms, namely, the well-known
rejection sampling and an algorithm based on the maximum degree
of the network. We show that the query complexity of both these
algorithms is the product of the average degree of the network and
the mixing time of the naive random walk. This characterization
is desirable because both the average degree and the mixing time
of the naive random walk are known to be small for real networks.
To prove these bounds we use a variational characterization of the
mixing time; this technique leads us to tighter bounds in compar-
ison with the ones obtainable using conductance-based methods.
We also show that these bounds are asymptotically tight for the
algorithms. While the theoretical upper bounds between the two
algorithms is near-indistinguishable, our empirical analysis on sev-
eral real-world network shows that the maximum degree algorithm
is at least as good as, and is often superior to rejection sampling;
based on this, we advocate the former.

We then study the complexity of an algorithm based on the clas-
sical Metropolis–Hastings method. This is a popular practical algo-
rithm to generate a uniform node in a network. However, we show
that this method is inferior to the other two algorithms, both in the-
ory and in practice—instead of the average degree, the query com-
plexity depends on the maximum degree of the network. We also
show that this dependence is inevitable and the only way to salvage
is for the oracle to provide more information about the neighbor-
hood, specifically, the degrees of each of the neighbors.

We also show that the sum of the average degree and the mixing
time is a lower bound on any sampling algorithm for the uniform
generation problem. We believe that this lower bound is loose and
conjecture that the product dependence between these two quanti-
ties is the asymptotically optimal bound for the problem.

Finally we study a particular version of the non-uniform sam-
pling question: given a parameter ↵, what is the complexity of
generating a node in the network with probability proportional to
the degree of the node raised to the power of ↵? For ↵ = 2, this
question has implications for more efficient algorithms (than ones
using uniform samples) for estimating higher-order properties such
as the clustering coefficient.

2. PRELIMINARIES
We consider undirected connected graphs in this paper. Let G =

(V, E) be an undirected graph where V is the set of nodes and
E ✓

�
V

2

�
is the set of edges. The neighborhood �(u) of a node u

is the set of nodes v such that {u, v} 2 E; the degree of a node
u 2 V is equal to

d(u) := |�(u)| = |{v | {u, v} 2 E}| .

Let n = |V | denote the number of nodes and let m = |E| denote
the number of edges in the graph G. Let

d
avg

:=

1

n

X

u

d(u) =
2m
n

,

denote the average degree, and let

d
min

:= min

u

{d(u)}, d
max

:= max

u

{d(u)},

denote the minimum and the maximum degrees in G. For simplicity,
we use E also as an adjacency matrix: E(u, v) = 1 if (u, v) 2 E
and is 0 otherwise.

For a function f : V ! R, let |f | :=

P
u

|f(u)| denote its
one-norm and let kfk

2

:=

pP
u

f(u)2 denote its two-norm.
Random walk basics. Let P = {P (u, v)} be an n ⇥ n transition
matrix of a Markov chain on state space V , where the entry P (u, v)
gives the probability of transitioning from node u to node v. Let ⇡
be the stationary distribution of P , i.e.,

X

u

P (u, v)⇡(u) = ⇡(v), for all v 2 V.

If P is ergodic (i.e., irreducible and aperiodic, see, for e.g., [16]
for formal definitions), then the stationary distribution ⇡ is well-
defined and unique.

The notion of mixing time quantifies how fast a random walk
approaches its limiting distribution. Informally, it is the number
of steps needed before the random walk converges to its stationary
distribution, regardless of the node from which the walk originated.
Formally, let e

u

denote the unit vector with 1 in the uth position,
let P t denote the transition matrix raised to the power t, and let

�(t, u) := |⇡ � e
u

P t|/2,

denote the total variation distance between the stationary distribu-
tion and the distribution after t steps when the walk starts at u. The
mixing time, with respect to a parameter ✏, is then defined as:

t
mix

(✏, u) := min

t

{�(t0, u) ✏, for all t0 � t},

t
mix

(✏) := max

u

{t
mix

(✏, u)},

t
mix

:= t
mix

(1/n2

).

For a transition matrix P , let {�
i

(P)} be the set of eigenvalues
such that |�

1

(P)| � |�
2

(P)| � · · · . It is easy to see that �
1

(P) =

1 and since P is aperiodic, �
2

(P) is real and non-negative. The
second eigenvalue �

2

= �
2

(P), in particular, its gap to the first
(i.e., 1� �

2

) is intimately related to the mixing time of G [22]:

�
2

2(1� �
2

)

log

1

2✏
 t

mix

(✏) 1

1� �
2

✓
log

1

✏ · ⇡
min

◆
, (1)

where ⇡
min

= min

u

⇡(u).
The second eigenvalue also satisfies the following variational

characterization, which will be useful in our analysis:

1� �
2

= inf

f

P
u,v

(f(u)� f(v))2⇡(u)P (u, v)
P

u,v

(f(u)� f(v))2⇡(u)⇡(u)
, (2)

over all non-constant f .
Notation. For the rest of the paper, we use different superscripts to
denote different types of random walks considered in this work for
quantities such as the transition matrix, the stationary distribution,
and the mixing time associated with the walk. For ↵ � 0, let ⇧↵

denote the distribution in which the degrees are raised to the power
of ↵, i.e., ⇧↵

(u) / d(u)↵.
Uniform random walk. Recall the uniform random walk (urw) on
G: at each step of the walk, if the current node is u, pick a node
v uniformly at random from �(u) and move to v. The transition
matrix P urw associated with this random walk on G is given by

P urw
(u, v) =

⇢
1

d(u)

if {u, v} 2 E,
0 otherwise,

(3)

472

Since G is undirected and connected, it follows that the Markov
chain defined by P urw is recurrent; for simplicity, we further as-
sume that it is also aperiodic and hence ergodic. It follows that

⇡urw
(u) =

d(u)
2m

, (4)

for u 2 V . In our notation, this distribution on V is denoted ⇧

1.
The mixing time turw

mix

(✏) will be an important factor in all our algo-
rithms; for simplicity, we abbreviate it as t

mix

(✏) = turw
mix

(✏). Since
⇡urw
min

= ⌦(1/poly(n)), (1) becomes

c�
2

(1� �
2

)

log

1

✏
 t

mix

(✏) 1

1� �
2

✓
log n + log

1

✏

◆
, (5)

for some constant c.
Access model and parameters. We assume the following neigh-
borhood oracle model for accessing the graph: given any node
u 2 V , in unit time, one can obtain the neighborhood �(u) of u.
Our goal is to design algorithms to produce a sample node accord-
ing to a specified distribution on V . Quantitatively, however, we
will settle for an approximation: an algorithm is said to generate an
✏-approximate sample from a distribution if the sample produced
by the algorithm is ✏-close in total variation distance to the desired
distribution. Note that the neighborhood oracle can be used to eas-
ily implement the uniform random walk (urw). This random walk
realizes the distribution ⇧

1 on V given by (4), i.e., a node is output
with probability proportional to its degree. However, the main fo-
cus in our work is on the uniform distribution ⇧

0 on V , i.e., each
node u should be generated with probability (close to) to 1/|V |.
Later we consider more general distributions ⇧↵, ↵ 6= 0, 1.

There are two parameters of interest for an algorithm A oper-
ating in this model, namely, the number of random walks steps,
denoted steps(A), and the number of distinct nodes in the graph
accessed, denoted queries(A), to generate one sample from the
desired distribution. Clearly, queries(A) steps(A). From the
definition of mixing time, t

mix

(✏) steps (and queries) are needed to
generate a node according to ⇡urw by using the uniform random
walk urw. Hence, informally, to generate a node with probabil-
ity proportional to its degree, the algorithm urw doing the uniform
random walk (for a worst case graph) incurs queries(urw) =

⇥(steps(urw)) =⇥(t
mix

(✏)).
We assume that the algorithm knows the approximate values of

n, d
max

, d
avg

, d
min

, and t
mix

of the graph. With this assumption,
it does not have to explicitly identify a stopping condition, which
by itself is non-trivial [18]. We also assume that the algorithm has
access to some arbitrary node in the graph to begin the walk.

3. UNIFORM SAMPLING
In this section we discuss three algorithms for sampling a node

from the graph uniformly at random, i.e., for generating samples
according to ⇧

0. The first algorithm will serve as the baseline: it is
rejection sampling on top of a uniform random walk. The second
algorithm is based on a modification of the uniform random walk,
taking the maximum degree into account. The third algorithm is the
Metropolis–Hastings random walk for generating a sample, using
the uniform random walk as the proposal distribution. For each of
these algorithms, we show bounds on steps(·) and queries(·).

3.1 Rejection sampling
The idea behind rejection sampling (rej) is to do uniform random

walk until it mixes, sample a node, and accept it with probability
inversely proportional to its degree, and continue. Algorithm 1 con-
tains a formal description.

Algorithm 1 Rejection sampling (rej).
Input: Graph G, a starting node u

while no node is output do
for t

mix

(✏) steps do
do a step of the uniform random walk (P urw)

With probability d
min

/d(u), output u and stop

Note that after t
mix

(✏) steps the walk is at node u with probabil-
ity d(u)

2m

± ✏, furthermore u is returned with probability d
min

/d(u).
Hence the probability that u is selected is d

min

2m

± ✏0, with ✏0 < ✏.
Thus the algorithm outputs an almost uniform sample.

THEOREM 1. To generate an ✏-approximate sample from ⇧

0,
with ✏ d

min

4m

, the expected number of steps and queries are

E[queries(rej)] E[steps(rej)] 2 O

✓
t
mix

(✏) · d
avg

d
min

◆
.

PROOF. Since rej performs a uniform random walk for t
mix

(✏)
steps, an equivalent view is that it generates an ✏-approximate sam-
ple u according to ⇧

1, which is then accepted with probability
d
min

/d(u). Let U be the random node at the end of t
mix

(✏) steps.
The combined probability of successfully obtaining an ✏-approximate
sample according to ⇧

0 can be calculated as
X

u2V

Pr[U = u] · d
min

d(u)
=

X

u2V

✓
d(u)
2m

± ✏

◆
· d

min

d(u)

� d
min

X

u2V

1

2m
� ✏n =

d
min

d
avg

� ✏n.

Thus, by repeating this process at most d

avg

d

min

�2✏m

times, in expec-
tation, we can obtain an ✏-approximate sample from ⇧

0.

Even though the sampling algorithm is simple and efficient, it is not
efficient in the number of queries, since a node cannot be rejected
until it is queried and until a node is output as a sample, all the
nodes examined en route are discarded. This seems wasteful. The
goal of the the next two algorithms is to address this issue, where
they try to distinguish between steps(·) and queries(·), with the
goal of reducing the latter, regardless of the former.

3.2 Maximum-degree sampling
In maximum-degree sampling (md), the main idea is to use the

skeleton of the graph and adjust the transition probabilities by us-
ing the maximum degree [1, 2], in order to make the random walk
spend more time at low degree nodes (i.e., have more mass on the
self-loop edges). The intuition being that, since a uniform random
walk on a regular graph converges to the uniform distribution, by
modifying the random walk this way we make the graph regular and
hence a uniform random walk on this modified graph would natu-
rally converge to the uniform distribution. A benefit of this modifi-
cation is that while the mixing time of the new random walk might
be much more than the original walk, since the walk is now forced
to spend more time at a node before transitioning out, the num-
ber of distinct nodes queried can be much lower. In other words,
queries(md) can be much lower than steps(md).

A formal description of md is given by a uniform random walk
on the Markov chain given by the following transition matrix Pmd.

Pmd
(u, v) =

8
<

:

1

d

max

{u, v} 2 E,

1� d(u)

d

max

u = v,
0 otherwise.

(6)

473

LEMMA 2. The random walk md satisfies the following prop-
erties: (i) ⇡md

= ⇧

0, the uniform distribution; (ii) the expected
number of steps spent in self-loop at a node u is d

max

/d(u); and
(iii) the distinct nodes queried in a walk according to md corre-
sponds to a valid walk according to urw.

PROOF. The first two properties follow from the definition of
Pmd. The last property follows from the observation that the re-
peated nodes in a walk corresponding to md arise from the self-
loops and by eliminating the duplicates, a node v following u in a
walk would have been chosen uniformly among �(u), which would
be the behavior of urw.

Now, we proceed to analyzing the mixing time and the number of
queries for this sampling algorithm. Our goal is to express these in
terms of the parameters of G. This turns out to be a delicate task
since the graph itself has been modified.

We first show a lower bound on a useful quantity in terms of the
minimum and average degrees of the graph.

LEMMA 3. Let F denote the set of all real-valued functions on
the nodes V of G. Then,

inf

f2F

P
u,v2V

(f(u)� f(v))2d(u)d(v)
P

u,v2V

(f(u)� f(v))2
� d

min

d
avg

2

.

PROOF. For f 2 F , f : V ! R, let

Q(f) =

P
u,v

(f(u)� f(v))2d(u)d(v)
P

u,v

(f(u)� f(v))2
.

We will show that for any f 2 F , Q(f) � d
min

(d
min

+ d
avg

)/2.
We first note that without loss of generality,

P
u

f(u) = 0. In-
deed, we can define the function f 0 2 F to be f 0

(u) = f(u) �P
u

f(u)/n and it follows from definition that Q(f 0
) = Q(f).

Furthermore, note that for any non-zero f 2 F , it holds that Q(f) =
Q(f/kfk

2

) and hence we can also assume that f has unit norm,
i.e., kfk2

2

=

P
u

f(u)2 = 1.
Now, with these assumptions on f ,

Q(f) =

P
u,v

(f(u)� f(v))2d(u)d(v)
P

u,v

(f(u)� f(v))2

� d
min

·
P

u,v

(f(v)� f(v))2d(u)
P

u,v

(f(u)� f(v))2
. (7)

The denominator in (7) evaluates to
X

u,v

(f(u)� f(v))2 = 2n
X

u

f(u)2 � 2

X

u

f(u)
X

v

f(v)

= 2n
X

u

f(u)2 = 2n,

using the assumptions
P

u

f(u) = 0 and
P

u

f(u)2 = 1. The
numerator in (7) can similarly be simplified as

X

u,v

(f(u)� f(v))2d(u)

= n
X

u

f(u)2d(u) +
X

u

d(u)
X

v

f(v)2

�2

X

u

f(u)d(u)
X

v

f(v)

= n
X

u

f(u)2d(u) +
X

u

d(u).

Hence, (7) evaluates to

Q(f) � d
min

n
P

u

f(u)2d(u) +
P

u

d(u)

2n

= d
min

(

P
u

f(u)2d(u)) + d
avg

2

� d
min

d
min

+ d
avg

2

� d
min

d
avg

2

.

Since this lower bound holds for any f 2 F , the proof follows.

Notice that the bound in Lemma 3 is near-tight: it is achieved by
f(u) = 1 for some node u such that d(u) = d

min

and f(v) = o(1)
for all nodes v 6= u. Using Lemma 3, we can obtain an upper bound
on the number of queries and the mixing time of md.

THEOREM 4. To generate an ✏-approximate sample from ⇧

0,
the number of steps needed by md is given by:

steps(md) = c
1

(n,✏) · d
max

d
min

· t
mix

(✏)

where c
1

(n,✏) = 2c
0

(log n + log(1/✏)) for some constant c
0

.
Furthermore, with probability 1� 1/K, this many steps are taken
if md is run until it does

queries(md) = K(c
1

(n,✏) + 1) · d
avg

d
min

· t
mix

(✏),

many (distinct) queries, for any constant K � 1.
PROOF. Applying the variational characterization (2) to Pmd,

using the definition in (6) and the fact that ⇡md
(u) = 1/n for all u,

we obtain

1� �
2

(Pmd
) = inf

f

P
u,v

(f(u)� f(v))2⇡md
(u)Pmd

(u, v)
P

u,v

(f(u)� f(v))2⇡md
(u)⇡md

(v)

=

n
d
max

· inf
f

P
u,v

(f(u)� f(v))2E(u, v)
P

u,v

(f(u)� f(v))2
. (8)

Similarly, for the simple walk P urw, using ⇡urw
(u) = d(u)/(2m),

we have that

1� �
2

(P urw
) = 2m · inf

f

P
u,v

(f(u)� f(v))2E(u, v)
P

u,v

(f(u)� f(v))2d(u)d(v)
. (9)

Hence, (8) leads to

1��
2

(Pmd
) =

n
d
max

· inf
f

P
u,v

(f(u)� f(v))2E(u, v)

2 Tf
007
8.
())_135664 0 0 8.9664 415.279 264.308 Tm
($)Tj
/T1_10 1 Tf
3
8.31 TfT1_9776 0 0 5.9776 425.006 254.843 Tm
(u,v)Tj
/T1_5 T1_551 Tf
8.9664 0 0 8.9664 436.131 257.583 Tm
(()Tj
/T1_8 1 Tf
0.4 0 Td
(f)Tj
/T1_5 1 Tf
0.608 0 Td
(()Tj
/T1_8 1 Tf
0.4 0 Td
(u)Tj
/T1_5 1 Tf
())Tj
/T1_14 1 Tf
1.22 0 Td
(&)Tj
/T1_8 1 Tf
1.028 0 Td
(f)Tj
/T1_5 1 Tf
0.608 0 Td
(()Tj
/T1_8 1 Tf
0.4 0 Td
(v)Tj
/T1_5 1 Tf
0.0007 Tc 0.535 0 Td
()))Tj
/T1_751 T221 Tf68.
(� 0 0 5.9776 333.963 249.118 Tm
(2)Tj
/T 2.)Tj22f
116� 0 8.9664 357.683 2 5..97)=dmax·

f

$

u,v (f(u) � f(v))2E (u, v2

Now, using (5), it then follows

tmd
mix

(✏) 1

1� �
2

(Pmd
)

✓
log n + log

1

✏

◆

 2

d
max

d
min

· 1

1� �
2

(P urw
)

✓
log n + log

1

✏

◆

Now note that, when �
2

(P urw
) 1

2

, 1

1��

2

(P

urw
)

 2, and when

�
2

(P urw
) > 1

2

, 1

1��

2

(P

urw
)

 t

mix

(✏)

c�

2

log

1

✏
 2t

mix

(✏)

c log

1

✏
. Since t

mix

(✏) �
1, we bound both the cases using c

0

t
mix

(✏) for some appropriate
constant c

0

� 2.
Hence, tmd

mix

(✏) 2

d

max

d

min

· t
mix

(✏)c
0

�
log n + log

1

✏

�
=

d

max

d

min

·
t
mix

(✏) · c
1

(n,✏). Thus, the mixing time of md could be more than
that of urw. However, as we mentioned earlier, our focus is on
queries(md). To bound this, we use the observations in Lemma 2.
If we let md run until it makes (c

1

(n,✏) + 1) · d
avg

/d
min

· t
mix

(✏)
queries, then by Lemma 2(ii), the expected number of steps is at
least c

1

(n,✏) · d
max

/d
min

· t
mix

(✏). Using Markov inequality, by
accruing K times those many queries, with probability at least 1�
1

K

we have taken the necessary number of steps.

3.3 Metropolis–Hastings sampling
The Metropolis-Hastings algorithm is used to compute samples

from any distribution ⇧ starting from an arbitrary transition matrix
Q. The only condition needed on Q is symmetry, i.e., Q(u, v) =

Q(v, u). The algorithm [7, 17, 19, 23] works in rounds and in
each round does the following: if the current state is u, it generates
a candidate v 2 V with probability proportional to Q(u, v), and
accepts and moves to v with probability min(1,⇧(v)/⇧(u)). The
stationary distribution of this process can be shown to be ⇧. For
more details on the Metropolis–Hastings algorithm, see [10].

In our case, ⇧ = ⇧

0. Ideally, we would like to define Q using
P urw. Unfortunately, this is not easy to do since P urw is not nec-
essarily symmetric (due to normalization by the degree of a node).
Therefore, we define the following transition matrix PMH by using
the adjacency matrix E of the graph.

PMH
(u, v) =

8
>><

>>:

1

max(d(u),d(v))

{u, v} 2 E,

1�
X

w2�(u)

1

max(d(u),d(w))

u = v,

0 otherwise.
(10)

It is easy to see that ⇡MH
= ⇧

0, the uniform distribution. It
also easy to see that the first case of (10) is equivalent to 1/d(u)
·min(1, d(u)/d(v)), which is the way MH is typically written.

THEOREM 5. To generate an ✏-approximate sample from ⇧

0,
the number of steps and queries needed are given by

steps(MH) = c
3

(n,✏) · d
max

d
min

· t
mix

(✏),

where c
3

(n,✏) = c
2

(log n + log(1/✏)) for some constant c
2

.
PROOF SKETCH. The proof proceeds along similar as that of

Theorem 4. We only provide the differences. As before, using the
variational characterization in (2), ⇡MH

(u) = 1/n for all u, and the
definition of PMH in (10), we obtain

1� �
2

(PMH
) = n · inf

f

P
u,v

(f(u)� f(v))2 E(u,v)

max(d(u),d(v))P
u,v

(f(u)� f(v))2

� n
d
max

inf

f

P
u,v

(f(u)� f(v))2E(u, v)
P

u,v

(f(u)� f(v))2
,

and the rest of the proof continues as in Theorem 4.

Note that the number of steps is also an upper bound on the num-
ber of queries.

4. LOWER BOUNDS
In this section we will prove an ⌦(d

avg

+ t
mix

) query lower
bound for algorithms that try to generate a uniform at random node
from a graph. Then, we will also show that the bounds we obtain
for md algorithm is tight. For the lower bounds, we will assume
the neighborhood oracle model for accessing the graph. The gen-
eral flavor of our lower bound methodology is to create families of
(random) graphs where we use combinatorial arguments and sim-
ple properties of random walks to establish the desired bounds.

While we are currently unable to show, we conjecture that ⌦(d
avg

·
t
mix

) is the lower bound on the number of queries for generating a
uniform node in a graph for which only the average degree and the
mixing time are known.

4.1 An ⌦ (d
avg

) lower bound
To show an ⌦(d

avg

) query lower bound, let d be large enough
and let n < eo(

p
d); thus, d = !(log2 n). We generate a random

graph G according to the following process. Let H ⇠ G
�
n, d

n

�
be

an Erdős–Rényi random graph and let c be a fair two-sided coin. If
c = head, then G = H . If c = tail, then we add more nodes and
edges to H in the following way to create G: consider each node v
in G independently, and with probability 1/d, add d new nodes and
connect all of them to v. Those v’s that acquire these new nodes
are considered changed and the rest, unchanged. Let s 2 V be a
uniform unchanged node.

LEMMA 6. With high probability, G will have the following
properties: (i) d

avg

= (1± o(1)) · d; (ii) if c = head, then G has
no degree 1 nodes and |V | = n; (iii) if c = tail, then the number
of degree 1 nodes in G is (1 ± o(1)) · n, and |V | = (2 ± o(1))n;
and (iv) t

mix

 O
⇣

logn

log d

⌘
.

PROOF. (i) and (iii) follow from a simple application of the
Chernoff bound and (ii) follows from the construction. For (iv),
the mixing time can be upper bounded by O

⇣
logn

log d

⌘
, using known

results on mixing time on simple random graphs (see, for exam-
ple, [11]) and an application of the Chernoff bound.

Let A be an algorithm that aims to return a uniform node from
G with queries(A) = o(d). We strengthen A by assuming that
it knows the process that generated G (but that does not know G
itself) and starts exploring G from s. Our plan would be to see
if A can reasonably guess the coin c with o(d) queries since the
uniform distribution on G when c = head is far away from that
when c = tail.

THEOREM 7. Algorithm A can distinguish whether the coin
c = head or c = tail with probability at most 1

2

+ o(1). Thus,
the total variation distance between the distribution of the output
of A and ⇧

0 is at least 1

2

�o(1), with probability at least 1

2

�o(1).
PROOF. By definition, an unchanged node has exactly the same

neighborhood regardless of the outcome of c. Since the probability
of the process changing a node is at most 1/d, if queries(A) =

o(d), then it will query zero changed nodes with probability at least
1�o(1). Indeed, since the changes are independent, the probability
that any given set S ✓ V of size |S| o(d) nodes will contain at
least one changed node is at most

1�
✓
1� 1

d

◆|S|

 1�
✓
1� 1

d

◆
o(d)

 1� e�o(1)

= o(1).

475

Thus, regardless of the outcome of c, with probability 1 � o(1),
none of the nodes queried by A is changed; in other words, the
view of the algorithm is oblivious to the outcome of c. However,
the total variation distance between ⇧

0 conditioned on c = head
and ⇧

0 conditioned on c = tail is at least 1

2

� o(1), since the
fraction of changed nodes is at least 1

2

� o(1) if c = tail. The
proof is complete.

4.2 An ⌦ (t
mix

) lower bound
Let k be large enough and let t k⇥(1). Let H ⇠ G

⇣
k, log

2

k

k

⌘
,

be an Erdős–Rényi random graph. Replace each edge e = {u, v}
of H by two new edges {u, w

e

} and {v, w
e

}, and attach t new
degree-one nodes to w

e

. Let G be the resulting graph. Note that al-
though the graph is bipartite, we can add self-loops with probability
1/2 to make the walk aperiodic. The following are easy properties
of G (we omit the proof in this version).

LEMMA 8. With high probability, |V | = tk log

2 k and t
mix

=

⇥

⇣
t · log k

log log k

⌘
.

Let s be a uniformly chosen node of H . Let A be an algorithm
that aims to return a uniform node from G with queries(A) =

o(t
mix

). We strengthen A by assuming that it knows the process
that generated G (but that does not know G itself) and starts ex-
ploring G from s. The main idea is to show that since most nodes
of G are far from any starting point (in H), the algorithm A will be
unable to obtain a uniform node of G.

THEOREM 9. The total variation distance between the distri-
bution output by A and ⇧

0 is at least 1� o(1).

PROOF. Observe that if edge e = {u, v} is incident on node
v in H , and if algorithm A knows v and w

e

but not u (i.e., the
other end point of e in H), then it will require ⌦(t) queries in ex-
pectation to know which of the neighbors of w

e

in G is u. Since
queries(A) = o

⇣
t · log k

log log k

⌘
, by the Chernoff bound, A will

query at most o
⇣

log k

log log k

⌘
nodes of H with high probability.

Hence, with probability 1 � o(1), none of the nodes that are at
distance more than ⌦

⇣
log k

log log k

⌘
from s will be reached. Since the

number of these nodes is a 1� o(1) fraction of the total number of
nodes of H , the proof follows.

4.3 A tight example for rej

Let D = D(n) be such that !(log n) < D(n) < o
⇣
2

log

1�✏
n

⌘
.

Sample H ⇠ G(n, D/n), then add to it a new node v, and con-
nect it to a single node of H; let G be the resulting graph. Observe
that each node of H will have degree ⇥(D) with high probability;
hence d

max

, d
avg

= ⇥ (D), d
min

= 1 and t
mix

= ⇥

⇣
logn

logD

⌘
.

The following lemma prove that our analysis of rej (with ✏ =

o(n�2

)) is tight.

LEMMA 10. On G, queries(rej) � ⌦ (d
avg

· t
mix

) with high
probability.

PROOF SKETCH. If rej rejects r < O(d
avg

) nodes in total,
since d

avg

· t
mix

= o(n), we will have that a constant fraction
of the nodes visited by rej will result in unique queries. Hence,
rej will query at least ⌦ (r · t

mix

) nodes. Now, observe that the
probability that r < o(d

avg

) = o(D) is at most

O
⇣ r

Dn

⌘
+

✓
1�

✓
1� 1

⇥(D)

◆
r

◆
= O

⇣ r
Dn

⌘
+O

⇣ r
D

⌘
= o(1).

The proof follows.

4.4 A tight example for md

We now give an example showing the tightness of our analysis
of the md sampling of Section 3.2. Let k be a parameter and let
D > k be large enough. Consider the following graph G = G

D,k

:
a clique of D nodes, and each of the clique’s nodes attached to a
distinct path of k nodes. Let ✏ > 0 be a fixed constant.

LEMMA 11. G has the following properties: (i) |V | = D ·
(k + 1); (ii) d

avg

= ⇥ (D/k), d
max

= D, and d
min

= 1; and
t
mix

(✏) = ⇥ (k2

).

PROOF SKETCH. The first two properties are easy to see. For
the mixing time, we first start with the lower bound. If we begin
a walk from one of the nodes of degree 1, i.e., one of the furthest
nodes from the clique, in o(k2

) steps, the probability that we will
reach the clique is o(1). This follows from mixing time bounds
on the a uniform random walk on the line. Thus, t

mix

(1/3) �
⌦(k2

). For the upper bound, we can show that 1� �
2

� ⌦(1/k2

)

(this follows from Cheeger’s inequality [4] and the fact that the
conductance of G is at least ⌦(1/k); we omit the details in this
version). Thus, using (1), we have t

mix

(✏) O(k2

).

We now show that one cannot decrease the bound on steps(md)
given by Theorem 4 below ⌦(t

mix

(✏) · d
max

/d
min

).

LEMMA 12. On G, to get to within a total variation distance
o(1) from uniformity, one needs to have steps(md) � ⌦(t

mix

(1/3)·
d
max

).

PROOF SKETCH. Observe that if we do only o(k2

) steps of the
Pmd walk towards nodes of degree 2 in G

D,k

(i.e., towards the
nodes in the paths), the probability that we will ever reach a node
that is at distance � k/2 from the clique in G

D,k

is o(1). This
follows from the standard analysis of the uniform random walk on
a line. Furthermore, observe that the number of nodes that are at
distance � k/2 from the clique is a constant fraction of |V |.

Thus, for the total variation distance of the sample to be o(1)
from uniformity, we need to make at least ⌦(k2

) steps towards
nodes of degree 2 in G. The expected number of self-loop steps
of Pmd that we do when on a node of degree 2 is ⌦(D) (derived
by calculating the expectation of a geometric random variable).
Therefore, the number of steps of Pmd that we need to make to
be within total variation distance o(1) from uniformity is at least
⌦(k2

) · ⌦(D) = ⌦ (k2D). Since t
mix

(✏) · d
max

= ⇥ (k2D), the
claim follows.

We then show that the bound on queries(md) given by Theorem 4
is also near-tight. We use a different family of graphs for showing
this lower bound. Note that this bound is purely a function of the
definition of Pmd and does not really use the fact that we are aiming
to sample according to ⇧

0.

LEMMA 13. Suppose md runs for ⌦(t
mix

(✏)d
max

) steps. Then,
there are graphs for which queries(md) � ⌦(t

mix

(✏)d
avg

).

PROOF. Pick a large enough n, pick !(log n) < T < o(
p

n),
and !(log n) < D < o(

p
n). Let H ⇠ G(n, D/n) be an Erdős–

Rényi random graph. We choose as G the graph obtained by a copy
of H connected via a single edge to a clique of ⇥(

p
T) nodes.

The graph G will have ⇥(n) nodes, average and maximum degree
d
avg

, d
max

= ⇥ (D) , and mixing time t
mix

(✏) � ⌦(T) (indeed,
if the walk starts in the clique, one will have to wait ⌦(T) steps, in
expectation, to leave the clique).

Now, suppose that we run md on G, starting, for simplicity, from
a uniform at random node in H . Recall that T D O(t

mix

d
max

),
and consider the first ⇥(T D) steps of the walk. The probability

476

that the walk will cross the edge connecting H to the clique is o(1).
By the Chernoff bound, with high probability, the maximum abso-
lute difference between the degree of a node in H from D will be
o(D). Therefore, the expected number of times that the walk will
pass through a self-loop in the first ⇥(T D) steps of the walk can be
upper bounded by o(T D). Therefore this prefix of the walk can be
coupled with a simple random walk that crosses ⇥(T D) edges of
H . Since ⇥(T D) = o(n), this implies that the number of distinct
visited nodes is ⌦(T D) = ⌦ (t

mix

(✏) · d
avg

).

4.5 A lower bound for MH

We finally give a lower bound for MH. We will show that, in
some graphs having constant average degree (i.e., d

avg

= O(1)),

MH requires a number of queries larger than ⌦

✓
t
mix

· d
1

2

�✏

max

◆
, for

any choice of d
max

= ⇥ (nc

), with 0 < c < 2

3

.
To prove the lower bound, construct the following graph G =

G
D

on n nodes, for any D = bncc for any 0 < c < 2

3

. Start from
a constant degree graph having constant conductance on node set
V with |V | = n (e.g., a random 3-regular graph on n nodes). Add
d =

jp
D
k

nodes w
1

, . . . , w
d

. Then, for each i = 1, . . . , d, select
independently a random subset S

i

✓ V of cardinality |S| = D�1

and for each v
j

2 S
i

, add the edge {w
i

, v
j

} to the graph. Finally,
add a final node u, and add the edge {u, w

i

} for each i = 1, . . . , d.
We now show the following (proof omitted in this version).

LEMMA 14. G
D

has the following properties: (i) |V | = ⇥ (n);
(ii) d

avg

= ⇥(1), d
max

= D, and d
min

= ⇥(1); and t
mix

(✏) =

⇥(log n).

The upper bound on t
mix

follows from Cheeger’s inequality [4],
and the fact that the conductance of G

D

is a constant. We now
prove the lower bound:

LEMMA 15. MH will query at least ⌦
⇣p

D
⌘

nodes before mak-
ing a single step, if it starts the walk on the node u of G

D

. Hence,
there exists graphs of constant average degree and polynomial max-

imum degree on which MH queries ⌦
✓

t
mix

· d
1

2

�✏

max

◆
nodes.

PROOF. Let the walk start at u. Each neighbor of u has degree
D, while u has degree ⇥

⇣p
D
⌘

. Therefore, for each neighbor of
u, the probability that MH will move from u to that neighbor is at
most ⇥

⇣
D�1/2

⌘
. By a standard coupon collector’s argument, MH

will then have to query ⇥(

p
D) neighbors of u before finishing the

first step. Since for this graph, t
mix

· d
1

2

�✏

max

= o(
p

D), the claim
follows.

5. OTHER EXTENSIONS
In this section we analyze the complexity of sampling nodes for a

more general family of distributions. We focus on sampling nodes
according to ⇧

↵, i.e., with probability proportional to d(u)↵, for
constant ↵ > 0. Besides it being a natural question, this has some
practical applications, for example it can be used to obtain efficient
estimators [12, 21] for the clustering coefficient or for the number
of triangle (when ↵ = 2). In the remaining of this section we
present extensions of rejection sampling, md sampling and MH
sampling for this setting.

Let

S
↵

=

X

u

d(u)↵.

5.1 Rejection sampling
To sample a node u with probability proportional to d(u)↵ we

modify the rejection sampling algorithm as in Algorithm 2.

Algorithm 2 Generalization of rejection sampling (rej
↵

).
Input: Graph G, a starting node u, ↵

while no node is output do
for t

mix

(✏) steps do
do a step of the uniform random walk (P urw)

With probability d(u)

↵

C↵d(u)

, where C
↵

= max(d↵�1

min

, d↵�1

max

),
output u and stop

THEOREM 16. To generate an ✏-approximate sample from ⇧

↵,
the expected number of steps and queries are given by

steps(rej
↵

) = queries(rej
↵

) = O

✓
t
mix

(✏) · 2mC
↵

S
↵

◆
.

PROOF. The proof follows the same line of the one of Theo-
rem 1. In this case the probability of returning a sample can be
bounded by:

X

x2V

Pr[X = x]
d(u)↵

C
↵

d(u)
=

X

x2V

✓
d(u)
2m

± ✏

◆
d(u)↵

C
↵

d(u)

�

PROOF. Applying the variational characterization (2) to Pmd
↵

,
and using its definition, we obtain

1��
2

(Pmd↵
) = inf

f

P
u,v

(f(u)� f(v))2⇡md↵
(u)Pmd↵

(u, v)
P

u,v

(f(u)� f(v))2⇡md↵
(u)⇡md↵

(v)

=

S
↵

max(1, d1�↵

max

)

· inf
f

P
u,v

(f(u)� f(v))2E(u, v)
P

u,v

(f(u)� f(v))2d(u)↵d(v)↵
.

Hence,

1� �
2

(Pmd
) � S

↵

max(1, d1�↵

min

)

2mmax(1, d1�↵

max

)max(1, d↵�1

max

)

(1� �
2

(P urw
))

� S
↵

2mC
↵

max(1, d1�↵

max

)

(1� �
2

(P urw
))

Now, it then follows

tmd↵
mix

(✏) 1

1� �
2

(Pmd↵
)

✓
log n + log

1

✏

◆

 2mC
↵

max(1, d1�↵

max

)

S
↵

· 1

1� �
2

(P urw
)

✓
log n + log

1

✏

◆

 2mC
↵

max(1, d1�↵

max

)

S
↵

· t
mix

(✏) · c
5

(n,✏).

Note that in expectation after the underline urw is mixed we makeP
u

P [X = u]d(u)↵�1

max(1, d1�↵

max

) =

S↵
2m

max(1, d1�↵

max

) steps

for every query in expectation. So we have that if we run
⇣

2m

S↵

⌘
2

C
↵

·
t
mix

(✏) · (c
5

(n,✏) + 1) queries the expected number of steps is at
least
2m

S↵
C

↵

max(1, d1�↵

max

) · t
mix

(✏) · c
5

(n,✏). So by Markov inequality
by running K times those many queries with probability at least
1� 1

K

we have taken enough steps.

5.3 Metropolis–Hastings sampling
To sample a node u with probability proportional to d(u)↵ us-

ing Metropolis–Hastings, we define a new random walk PMH↵ as
follows:

PMH↵
(u, v) =

8
>>><

>>>:

min

⇣
1

d(v)

, d(v)

↵

d(u)

↵+1

⌘
{u, v},2 E

1�
X

v2�(u)

PMH↵
(u, v) u = v,

0 otherwise.

(12)

Now we can upper bound the number of steps and the number of
queries for MH

↵

. We state the following theorem without proof.

THEOREM 19. To generate an ✏-approximate sample from ⇧

0,
the number of steps and queries needed are given by

steps(MH) = c
7

(n,✏) · 2mC
↵

d
max

S
↵

d↵

min

· t
mix

(✏),

where c
7

(n,✏) = c
6

(log n+log(1/✏)) for an appropriate constant
c
6

.

6. EXPERIMENTS
In order to study the query complexity empirically, we formu-

lated the following set of questions:
• How does the mixing rate of the three algorithms depend on

the number of queries performed by the walk?

• How do the algorithms perform in terms of estimating basic
network statistic, e.g., graph size, average degree, and clus-
tering coefficient?

6.1 Datasets
We use the following publicly available datasets, all collected

from snap.stanford.edu. Enron and Gnutella are undi-
rected network generated from email-exchanges and peering re-
lation in the p2p network. DBLP results from co-authorship of
papers, while web-ND is the undirected version of the web graph
of an university. Table 6.1 describes the basic statistics of these
networks.

Dataset Nodes Edges
Enron 34K 180K
Gnutella 62K 148K
DBLP 317K 1049K
web-ND 325K 1117K

Table 1: Network statistics.

6.2 Algorithms
For each of these networks, we run random walks to try to sam-

ple from the target distribution ⇧

0 and ⇧

2. We run the random
walks for rej and md for the two target distributions in the same
manner as described in Algorithm 1 and (6) respectively. For each
of the walks, we calculate the number of distinct query nodes touched,
assuming that a node visited before could have been cached by the
algorithm. For MH, we run two variants of the walk. The naive
variant, denoted in figures as MH, penalizes all self-loops of MH
as queries, since in order to reject a transition, the walk has to visit
the proposed candidate in order to obtain its degree. The optimistic
variant, denoted in figures as MH+, assumes that neighbor degrees
are stored in each node, and so rejecting proposed candidates does
not result in additional queries.

For each network, we run 200 random walks of each type, and
for at most 1 million steps. Each walk (for each type) starts at
the same node, but is otherwise independent. Note that since we
want to examine empirical convergence rate, the results could pos-
sibly depend on the starting point, however, after examining 100

randomly chosen starting points, we did not observe any effective
change in the plots and hence report the plots with only one arbi-
trary starting vertex.

Note that there are a number of heuristic convergence statistics
that are often used in practice in order the judge whether a Markov
chain has converged. These techniques, however, are useful mostly
when the actual stationary distribution is not accessible.

6.3 Results
Figure 1 shows the `

1

difference between ⇧

0 and the empiri-
cal frequency distributions of each of the walks, when the number
of queries is as denoted by the x-axis. MH typically performs
worse than the other alternatives, which are more or less similar
to each other, with md being slightly better than rej in most cases.
However, augmenting MH with the neighbor degree information
(MH+) makes it converge faster than all the other alternatives.

Figure 1 shows the similar plot for the target ⇧2. Note that in
this case, even the naive MH often performs better than rej, in spite
of the lower bound in Theorem 15. This leaves an open question of
whether the lower bound can be refined in terms of a specific graph
statistic which, although could be bad in the worst case, does have
a “reasonable” value for real networks.

The `
1

difference between distributions is an extremely strong
criteria, and as we see in the above plots, it takes a significant num-
ber of steps for this difference to be sufficiently less than 1. Hence,

478

Figure 1: L1 difference from ⇧

0 for each of the four datasets 1) Enron 2) Gnutella 3) web-ND and 4) DBLP . X-axis is number of
queries used.

Figure 2: L1 difference from ⇧

2 for each of the four datasets 1) Enron 2) Gnutella 3) web-ND and 4) DBLP . X-axis is number of
queries used.

Figure 3: Relative error in estimating |V | for each of the four datasets 1) Enron 2) Gnutella 3) web-ND and 4) DBLP . X-axis is
number of queries used, sampled from the walks at a gap of 1000. Note that Y-axis are differently sized.

Figure 4: Relative error in estimating average degree for each of the four datasets 1) Enron 2) Gnutella 3) web-ND and 4) DBLP .
X-axis is number of queries used. Note that Y-axis are differently sized.

Figure 5: Global clustering coefficient estimate for each of the four datasets 1) Enron 2) Gnutella 3) web-ND and 4)DBLP . X-axis is
number of queries used. The walk used was for ⇧

2. Note that Y-axis are differently sized.

479

we next compare the performance of the random walks in terms
of the quality of samples that they provide after a fixed number of
steps. In order to create these samples, we first discard an initial
part of each walk. We then take samples after every 1000 queries
have been performed by each walk.

In order to estimate the total size of the network, we use the es-
tablished birthday paradox method. If in a (repeated) sample of size
s, we get C collisions, then we estimate n = |V | as n̂ =

s

2

2C

. Note
that there are two types of errors in the random walk sampling—
due to the walks not having converged, and due to the correlation
in the samples. Since we discard an initial prefix, we mostly see
the effect of the latter. Figure 3 shows the relative error (|n� ˆ

n|
n

for
estimate n̂) for sampling by each walk. Again, the behavior of rej
and md are mostly same, with MH occasionally performing much
worse than the others.

Estimating average degree is also easy once we have uniform
sampling of nodes. Figure 4 plots the relative error incurred by
the different walks. Other than the fact all the algorithms perform
badly on web-ND , there is little to distinguish them in this metric.

The global clustering coefficient is defined as the ratio of the
number of triangles to the number of length 2 paths. In order to
estimate the global clustering coefficient, we use walks designed
for ⇧2 and use the same sampling method described above. Each
such node then chooses a pair of neighbors and checks whether
it is a triangle, (1/6th of) the fraction that forms a triangle is then
returned. The y-axis in Figure 5 plots the absolute estimates rather
than the errors. For the two smaller networks we do reach close
the number of triangles. For the larger networks, there is a gap
indicating that we need more samples for good relative error bound.
Again, the performances of the different walks are more or less
similar.

7. RELATED WORK
Generating a uniform node in a network has been studied in a

number of papers. Most of the work, unfortunately, has been em-
pirical and are not focused on the query complexity aspects. Gjoka
et al. [7] modified the simple random walk to induce the uniform
distribution on nodes as the stationary distribution; their main idea
is to use a version of the Metropolis–Hastings algorithm for unbi-
asing. See also the work of Stutzbach et al. [23]. Bar-Yossef et
al. [1, 2] proposed the md algorithm in order to unbias the distri-
bution induced by the uniform random walk. However, they did
not give theoretical bounds on the performance of md. Subsequent
work such as that of Li et al. [17] obtained practical algorithms that
perform better than MH and md, but once again did not analyze the
performance of these algorithms in terms of their query complexity.
Very recently, Nazi et al. [19] proposed to combine random walk
with a proactive estimation step in order to reduce the long burn-in
period typical with random walks.

Sampling in the context of network parameter estimation has
been extensively studied in several papers. In particular, for the
problem of estimating the size of the networks, sampling and col-
lision counting are classical methods; see the work of Katzir et
al. [14] and Hardiman and Katzir [9]. Another problem that has
attracted a lot of attention is that of estimating clustering coeffi-
cients [9]. All of these works are based on simple uniform random
walks on the network. Ye and Wu [24] also consider the social
network size estimation problem; while they assume the ability to
uniformly sample a node, it is easy to argue that this is an unrealis-
tic assumption. Cooper, Radzik, and Siantos [5] also used random
walk methods for estimating network parameters, but they go be-
yond collisions by actually using the return times for estimation.

Ribeiro and Towsley [20] used multidimensional random walks
for the sampling and estimation problems. Leskovec and Falout-
sos [15] posed the problem of obtaining a representative sample of
the network to approximate various properties of the original net-
work such as average shortest path, centrality, etc.

Non-uniform sampling has also been used to estimate certain
network parameters. The main reason is that they are sometimes
provably more powerful than uniform sampling. Katzir et al. [13]
gave a method to estimate the size of networks and size of subpop-
ulations using degree-biased sampling (i.e., according to ⇧

1) and
counting collisions in the samples collected. Dasgupta et al. [6]
used degree-biased sampling to estimate the average degree of a
graph. They showed that degree-biased sampling can improve the
query complexity of estimating the average degree almost exponen-
tially. In a recent work, Seshadri et al. [21] showed that sampling
nodes with probability proportional to the square of the degree (i.e.,
⇧

2) is a provably better way for estimating the number of triangles
in a network; see also [12].

Zhou et al. [25] modify the simple random walk in order to re-
duce the mixing time of the walk. Boyd et al. [3] considered the
problem of modifying edge probabilities to achieve the fastest mix-
ing time; this turns out to be a semi-definite program. Even though
both these works try to reduce the mixing time, it is unclear if they
can of any help in improving the query complexity of sampling.

An excellent bibliography of sampling in networks can be found
in www.utdallas.edu/~emrah.cem/links.html. A com-
prehensive survey on techniques to bound the mixing time of a
Markov Chain is [8].

8. CONCLUSIONS
In this paper we studied the query complexity of sampling in

a graph. Focusing on the uniform sampling question, we proved
near-tight bounds for three popular random-walk based algorithms.
The techniques we use to show the query complexity bound, via the
variational inequality, might be of independent interest since typi-
cal analysis in random walks focuses more on the number of steps
than on the number of queries. Our work poses a natural intrigu-
ing open problem: is the query complexity of sampling a uniform at
random node ⌦(d

avg

·t
mix

)? An affirmative answer will essentially
mean that one has to either make additional assumption on the input
graph or resort to heuristics to get any improvements. A negative
answer, which seems less plausible, would be very surprising!
Acknowledgments. We thank the reviewers for many useful sug-
gestions.

9. REFERENCES
[1] Z. Bar-Yossef, A. C. Berg, S. Chien, J. Fakcharoenphol, and

D. Weitz. Approximating aggregate queries about Web pages
via random walks. In VLDB, pages 535–544, 2000.

[2] Z. Bar-Yossef and M. Gurevich. Random sampling from a
search engine’s index. J. ACM, 55(5), 2008.

[3] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov
chain on a graph. SIAM Review, 46(4):667–689, 2004.

[4] J. Cheeger. A lower bound for the smallest eigenvalue of the
Laplacian. In R. C. Gunning, editor, Problems in Analysis
(Papers dedicated to Salomon Bochner), pages 195–199.
Princeton Univ. Press, 1970.

[5] C. Cooper, T. Radzik, and Y. Siantos. Estimating network
parameters using random walks. In CASoN, pages 33–40,
2012.

[6] A. Dasgupta, R. Kumar, and T. Sarlós. On estimating the
average degree. In WWW, pages 795–806, 2014.

480

[7] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou.
Walking in Facebook: A case study of unbiased sampling of
OSNs. In INFOCOM, pages 1–9, 2010.

[8] V. Guruswami. Rapidly mixing Markov chains: A
comparison of techniques. A Survey, 2000.

[9] S. J. Hardiman and L. Katzir. Estimating clustering
coefficients and size of social networks via random walk. In
WWW, pages 539–550, 2013.

[10] W. K. Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika,
57(1):97–109, 1970.

[11] M. Hildebrand. Random walks on random simple graphs.
Random Structures & Algorithms, 8(4):301–318, 1996.

[12] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A fast
and provable method for estimating 4-vertex subgraph
counts. In WWW, pages 495–505, 2015.

[13] L. Katzir, E. Liberty, and O. Somekh. Estimating sizes of
social networks via biased sampling. In WWW, pages
597–606, 2011.

[14] L. Katzir, E. Liberty, and O. Somekh. Framework and
algorithms for network bucket testing. In WWW, pages
1029–1036, 2012.

[15] J. Leskovec and C. Faloutsos. Sampling from large graphs.
In KDD, pages 631–636, 2006.

[16] D. Levin, Y. Peres, and E. Wilmer. Markov Chains and
Mixing Times. American Mathematical Society, 2009.

[17] R.-H. Li, J. X. Yu, L. Qin, R. Mao, and T. Jin. On random
walk based graph sampling. In ICDE, pages 927–938, 2015.

[18] L. Lovász and P. Winkler. Efficient stopping rules for
Markov chains. In STOC, pages 76–82, 1995.

[19] A. Nazi, Z. Zhou, S. Thirumuruganathan, N. Zhang, and
G. Das. Walk, not wait: Faster sampling over online social
networks. PVLDB, 8(6):678–689, 2015.

[20] B. Ribeiro and D. Towsley. Estimating and sampling graphs
with multidimensional random walks. In IMC, pages
390–403, 2010.

[21] C. Seshadhri, A. Pinar, and T. G. Kolda. Wedge sampling for
computing clustering coefficients and triangle counts on
large graphs. Statistical Analysis and Data Mining,
7(4):294–307, 2014.

[22] A. Sinclair. Improved bounds for mixing rates of Markov
chains and multicommodity flow. Combinatorics,
Probability, & Computing 1, pages 351–370, 1992.

[23] D. Stutzbach, R. Rejaie, N. G. Duffield, S. Sen, and
W. Willinger. On unbiased sampling for unstructured
peer-to-peer networks. IEEE/ACM Trans. Netw.,
17(2):377–390, 2009.

[24] S. Ye and F. Wu. Estimating the size of online social
networks. In SocialCom, pages 169–176, 2010.

[25] Z. Zhou, N. Zhang, Z. Gong, and G. Das. Faster random
walks by rewiring online social networks on-the-fly. In
ICDE, pages 769–780, 2013.

481

