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ABSTRACT
Twitter (and similar microblogging services) has become a
central nexus for discussion of the topics of the day. Twit-
ter data contains rich content and structured information
on users’ topics of interest and behavior patterns. Correctly
analyzing and modeling Twitter data enables the prediction
of the user behavior and preference in a variety of practi-
cal applications, such as tweet recommendation and followee
recommendation. Although a number of models have been
developed on Twitter data in prior work, most of these only
model the tweets from users, while neglecting their valuable
retweet information in the data. Models would enhance their
predictive power by incorporating users’ retweet content as
well as their retweet behavior.

In this paper, we propose two novel Bayesian nonpara-
metric models, URM and UCM, on retweet data. Both of
them are able to integrate the analysis of tweet text and
users’ retweet behavior in the same probabilistic framework.
Moreover, they both jointly model users’ interest in tweet
and retweet. As nonparametric models, URM and UCM
can automatically determine the parameters of the models
based on input data, avoiding arbitrary parameter settings.
Extensive experiments on real-world Twitter data show that
both URM and UCM are superior to all the baselines, while
UCM further outperforms URM, con�rming the appropri-
ateness of our models in retweet modeling.

General Terms
Algorithms, Human Factors, Experimentation

1. INTRODUCTION
Microblogging services like Twitter have become impor-

tant platforms for Web users to share interesting stories,
breaking news, and rich media content. Twitter data has
become a valuable resource for user modeling to predict
the user behavior and preference in various applications on
Twitter, such as tweet recommendation and followee recom-
mendation.
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links).

𝑢1

𝑢5

𝑢3

𝑢4

𝑢2

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

retweets

posts

User

Tweet

(b) Retweet network:
This is a bipartite graph
that has two types of nodes
(i.e., users and tweets)
and two types of action
edges (i.e., posting and
retweeting).

Figure 1: Comparison of a follow network and a
retweet network

There are di�erent kinds of information contained in Twit-
ter data. Tweet text in the data plays an important role in
characterizing users’ topical interest in tweeting. A num-
ber of models have been developed on tweet text to identify
and understand users’ personal interest and their tweeting
behavior in prior work [27, 4, 14]. Such tweet analysis meth-
ods faced a challenge of extremely noisy tweet data [36].

To remedy the noisy data problem, a number of studies
complemented noisy tweet text with extra information of
users’ follow relationship, which is an additional signal re-
ecting users’ topical interest, since a user tends to follow
another user with similar interest [19, 11]. There also exists
prior work that developed models on both tweet text and
the follow network [5, 32, 17]. However, most of the existing
work neglected the valuable retweet information contained
in Twitter data. Missing retweet information in a model
can lead to inferior performance, because a large number of
Twitter users retweet messages from others much more fre-
quently than they tweet new messages. A user’s pro�le can
be enriched by properly incorporating the messages he/she
retweeted into his/her own tweets. This strategy remedies
the data sparsity problem for the users with few tweets.

On the other hand, the retweet relationship is a cleaner
signal than the signal of the follow relationship in terms
of specifying users’ topical interest. This is because exist-
ing models essentially make the assumption that the follow
relation from follower A to followee B indicates that A is
interested in every single tweet from B, but this assumption
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is actually not valid in reality. Instead, user A follows user
B typically because a portion of tweets, but not all, from B
interest A. As a result, the performance of the models can
be harmed by the invalid assumption.

By contrast, retweet is a relationship between a user and
a tweet. Figure 1 visualizes the di�erence between a fol-
low network and a retweet network. The fact that user A
retweets tweet T clearly indicates that A is interested in
this particular tweet T . As a result, explicitly utilizing the
retweet relationship enables the model to accurately iden-
tify users’ personal interest, and thus enhances its predictive
power. There have been some existing work on retweet anal-
ysis, but these studies mostly used retweet information by
aggregating retweets in various ways, rather than explicitly
modeling each individual retweet relation. Such aggregative
methods lose the valuable information of binary retweet re-
lations.

In this paper, we propose two novel hierarchical mixture
models, User-Retweet Model (URM) and User-centric Model
(UCM), which jointly exploit tweet text and the retweet re-
lationship for user behavior analysis. Both models are able
to incorporate the analysis of users’ retweet behavior into
that of their tweet text. Furthermore, URM and UCM both
make use of both tweet and retweet to derive the topics of
interest to individual users. To avoid arbitrary parameter
settings (e.g., the number of mixture components) in typi-
cal mixture models, both URM and UCM are designed not
to require the number of topics as an input parameter. In-
stead, they are nonparametric and fully driven by data in
the sense that the best number of topics in the models can
be automatically determined based on the characteristics of
observed data.

In a nutshell, URM uses a three-layer Dirichlet process hi-
erarchy to jointly model tweet text and the retweet relation-
ship. It characterizes each user and each retweet as a unique
mixture model. As another DP hierarchy, on the other hand,
UCM di�ers from URM in that UCM further di�erentiates
the personal interest in tweet and retweet for each user by
introducing two random measures for each user’s tweet inter-
est and retweet interest, respectively. Our empirical study
on real-world Twitter data shows that URM and UCM both
signi�cantly outperform all the baselines while UCM further
improves over URM.

In particular, the major contributions of our work are
summarized as follows:

� We propose two novel Bayesian models, URM and
UCM, on retweet data for user behavior analysis on
Twitter. Such modeling allows the prediction of the
user preference and future behavior in a wide range of
practical applications.

� Both URM and UCM are designed to leverage the sig-
nals from tweet text and the retweet relationship in
Twitter data. Both models explicitly exploit individ-
ual retweet relations to identify users’ interest. More-
over, the two models enable tight coupling of the anal-
ysis of text and the network structure based on the
solid probabilistic foundation in Bayesian modeling.

� To avoid manually parameter tuning, URM and UCM
are both able to let the retweet data speak for itself
by automatically �guring out the best number of top-
ics based on the data characteristics. We also pro-
pose Bayesian inference algorithms based on collapsed

Gibbs sampling to learn from the data the optimal val-
ues of various parameters in the models.

� Through extensive experimentation on a real-world data
set collected from Twitter, we demonstrate (a) the sub-
stantial better accuracy achieved by both URM and
UCM than all the baselines in terms of the quality of
distilled topics, model precision and predictive power,
(b) the further improvement of UCM over URM, and
(c) various interesting insights gained from the exper-
iments.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the prior work related to ours. The back-
ground and preliminaries of Bayesian nonparametric mod-
eling are given in Section 3. Section 4 introduces our two
novel Bayesian nonparametric models, URM and UCM. In
Section 5, we present the details of our empirical evaluation
and experimental results. Finally, we conclude the paper in
Section 6.

2. RELATED WORK

2.1 Microblog data analysis
Many research e�orts have been devoted to analyzing and

modeling text content for a variety of microblogging applica-
tions. Cheong et al. [12] discovered trend patterns in tweet
data to identify users who contribute towards the discus-
sions on speci�c trends. A parallel e�ort has been devoted to
studying the emergent topics from tweet text. For instance,
TwitterMonitor [22] identi�es emerging topics on Twitter in
real time and provides meaningful analytics that synthesize
an accurate description of each topic.

On Twitter, tweets are accompanied by the follow net-
work. Given the valuable social information contained in
the follow graph, a number of studies have been conducted
on incorporating the follow network in their models. Topic-
Sensitive PageRank (TSPR) [17] was the �rst attempt to
combine analysis of text content and a network structure.
In the context of Twitter, Weng et al. proposed Twitter-
Rank [32] to �nd topic-level key inuencers on Twitter by
leveraging both tweet text and the follow network. In Twit-
terRank, a set of topics is �rst produced by LDA [8] on
the tweets. Then TwitterRank applies a method similar
to TSPR to compute the per-topic inuence rank. Unlike
TSPR and TwitterRank, the FLDA model [5] was proposed
to integrate both content topic discovery and social inuence
analysis in the same generative model.

Despite utilizing the follow network, all these prior stud-
ies neglect the more valuable signal of the retweet network.
As discussed above, the retweet network is a social struc-
ture which contains a cleaner signal in terms of identifying
users’ topical interest. Therefore, in this work, we propose
new models that jointly exploit tweet text and the retweet
network to analyze users’ topics of interest and behavior on
Twitter.

2.2 Retweet study
There have been many e�orts on studying the di�erent

aspects of retweeting. The research work on this speci�c
topic can be divided into retweeting behavioral analysis and
predicting retweets.

Boyd et al. [9] studied some basic issues about retweet
behavior: how people retweet, why people retweet and what
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people retweet. Bild et al. [6] instead analyzed aggregate
user behavior and the retweet graph with a focus on quan-
titative descriptions, and found that the retweet graph is
small-world and scale-free, like the social graph, but is less
disassortative and has much stronger clustering. Yang et
al. [34] investigated how retweeting behavior was inuenced
by factors like posting time. In [21], Macskassy and Michel-
son studied a set of Twitter users and sought to explain the
individual information di�usion behavior, as represented by
retweets. They found that content-based propagation mod-
els could explain the majority of retweet behavior seen in
their data. Comarela et al. [13] identi�ed factors that in-
uence a users’ response or retweet probability, and found
that previous response to the user, the user’s sending rate,
the freshness of information, the length of tweet could a�ect
the user’s response.

Moving away from retweet behavioral analysis, researchers
have also studied the retweet prediction problem. Hong
et al. [18] proposed a method to predict the popularity of
tweets, and estimated the number of times a tweet would
be retweeted. In their work, content features, temporal
information, as well as metadata of tweets and tweeters
were explored. Zaman et al. [35] used a collaborative �l-
tering approach to predict for a pair of users whether a
tweet posted by one would be retweeted by the other user.
They found that the identity of the source of the tweet and
retweeter were the most important features for predicting
future retweets. In [33], Yang and Counts studied how to
predict the speed, scale, and range of information di�usion
by analyzing how tweets on the same topic spreaded. Artzi
et al. [3] proposed a model for predicting the likelihood of
responding which includes retweeting and replying.

Unlike all these prior retweet studies, we aim to design and
to evaluate descriptive models that probabilistically express
hypotheses about the way in which retweet data may have
been generated. By uncovering the hidden structure inher-
ent in the data, we are able to conduct exploratory analysis
of the retweet network, and to gain valuable insight into the
underlying properties of the retweet data.

2.3 Bayesian nonparametric modeling
Because of the nonparametric nature, our proposed mod-

els can automatically �gure out the optimal values of the
parameters, e.g., the number of topics, based on input data.
There exist a number of studies on Bayesian nonparametric
modeling for a wide range of practical applications. Orbanz
and Teh [24] presented an overview of how Bayesian non-
parametric models work for a variety of machine learning
problems, and provided a few examples where the models
can be employed. [29] reviewed prior research works on the
speci�c topic of hierarchical Bayesian nonparametric mod-
eling, and gave a series of its successful applications ranging
from problems in biology to computational vision to natural
language processing.

Ahmed and Xing [1] introduced the temporal nonparamet-
ric mixture model as a framework for evolutionary cluster-
ing. They provided an intuitive construction of this frame-
work using the recurrent Chinese restaurant process (RCRP)
metaphor, as well as a Gibbs sampling algorithm to carry out
posterior inference in order to determine the optimal clus-
ter evolution. In the context of Twitter modeling, Lim [20]
proposed the Twitter-Network (TN) topic model to jointly
model the tweet text and the follow network in a Bayesian

nonparametric way. The TN model employs the hierarchical
Poisson-Dirichlet processes for text modeling and a Gaussian
process random function model for follow network modeling.
Therefore, TN di�ers from our models in modeling informa-
tion of di�erent nature.

3. PRELIMINARIES
The rich content and structural information contained in a

retweet network presents an exciting opportunity for statis-
tical modeling. Given the dynamic nature of Twitter data,
we choose to build Bayesian nonparametric models, which
allow the representation of data to grow structurally as more
data are observed. As opposed to a parametric model, it is
capable of letting the data speak for itself to automatically
determine the complexity of the nonparametric model.

There are two main constituents of our models: DPM
and HDP. The Dirichlet Process Mixture (DPM) model [2]
is the key building block in Bayesian nonparametric models
for a broad range of applications. The DPM model has been
extended to Hierarchical Dirichlet Processes (HDP) [30] to
cluster grouped data. For the purpose of clarity, in this
section, we describe the two components of our models, and
explain the notations used throughout the paper.

3.1 Dirichlet Process Mixture
There are three di�erent views on the DPM model: (1) a

distribution of a random probability measure, (2) intuitive
Chinese Restaurant Process (CRP), and (3) a limit of a �nite
mixture model. All of these perspectives are equivalent, but
each one provides a di�erent view of the same process, and
some of them might be easier to follow.

A Dirichlet process (DP) is de�ned as a distribution of
a random probability measure G [15]. A DP, denoted by
DP (λ,G0), is parameterized by a concentration parameter
λ, and a base measure G0. G � DP (λ,G0) denotes a draw
of a random probability measure G from the Dirichlet pro-
cess. G is technically a distribution over a given parameter
space θ, so one can draw parameters θ1, . . . , θn from G. Pre-
viously drawn values of θi have strictly positive probability
of being redrawn again, which makes the underlying prob-
ability measure G discrete [7]. Using a DP at the top of
a hierarchical model leads to the Dirichlet Process Mixture
model for Bayesian nonparametric modeling [2].

Sampling from the DPM model is conducted by the fol-
lowing generative process:

G � DP (λ,G0),

θi � G,

wi � F (.jθi) (1)

where F is a given likelihood function parameterized by θ.
The clustering property of a DP prefers to use fewer than
n distinct θ. An equivalent Chinese Restaurant Process
metaphor exhibits the clustering property. In particular,
consider a Chinese restaurant with an unbounded number
of tables. Each θi corresponds to a customer who enters
the restaurant. The i-th customer θi sits at table k that al-
ready has nk customers with probability nk

i−1+λ
, and shares

the dish (parameter) ψk served there, or sits at a new table
with probability λ

i−1+λ
, and orders a new dish sampled from
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G0. This process can be expressed as:

θijθ1, . . . , θi−1, λ,G0 �
i−1∑
k=1

nk
i� 1 + λ

δψk +
λ

i� 1 + λ
G0.

(2)
where δψ is a probability measure concentrated at ψ.

Finally, a DPM model can be derived as the limit of a se-
quence of �nite mixture models, where the number of mix-
ture components is taken to in�nity. Therefore, a DPM can
be used to build an in�nite-dimensional mixture model, and
has the desirable property of extending the number of clus-
ters with the arrival of new data. This exibility enables the
DPM to conduct model selection automatically.

3.2 Hierarchical Dirichlet Processes
The DPM is widely used to build a model with a discrete

random variable of unknown cardinality (i.e., a cluster indi-
cator). The HDP, on the other hand, applies to the problems
in which multiple di�erent groups of data would share the
same settings of partitions. In such applications, the model
for each of the groups incorporates a discrete variable of un-
known cardinality. The HDP model is able to share clusters
across multiple clustering problems.

The key building block of the HDP model is a recursion
where the base measure G0 for a DP: G � DP (λ,G0) is itself
a draw from another DP: G0 � DP (α,H). By this recur-
sive construction, the random measure G are constrained
to place its atoms at the discrete locations determined by
G0. Such a construction is commonly used for conditionally
independent hierarchical models of grouped data.

More formally, in HDP, we model each of the groups as
a DP, which is gathered into an indexed collection of DPs
fGjg. In order to be tied probabilistically, the random mea-
sures share their base measure, which is de�ned to be ran-
dom as well, as follows:

G0 � DP (α,H)

Gj � DP (λ,G0). (3)

This means that we �rst draw G0 from the base measure H.
The random measure G0 is then, in turn, used as a reference
measure to obtain the measures Gj . As a result, each ran-
dom measure Gj inherits its set of atoms from the same G0.
Therefore, this conditionally independent hierarchical model
induces sharing of atoms among these random measures Gj .

Integrating out all random measures, we obtain the equiv-
alent Chinese Restaurant Franchise processes (CRF) [30]. In
the CRF, the metaphor of a Chinese restaurant is extended
to a set of restaurants which share a set of dishes. The
customers in the j-th restaurant sit at tables in the same
manner as the CRP, and this is done independently in the
restaurants. The coupling among restaurants is achieved via
a franchise-wise menu. The �rst customer to sit at a table
in a restaurant chooses a dish from the menu and all sub-
sequent customers who sit at that table inherit that dish.
Dishes are chosen with probability proportional to the num-
ber of tables (franchise-wide) which have previously served
that dish.

HDP is a building block of our proposed models speci�-
cally designed for retweet modeling, which will be described
later. Also, it serves as a baseline for the evaluation of the
quality of models in our experiments.

4. RETWEET MODELING
In this section, we present two di�erent Bayesian non-

parametric models on retweet data. Both of them are able
to integrate the analysis of tweet text and users’ retweet be-
havior in the same probabilistic framework. Moreover, they
both jointly model users’ interest in tweet and retweet.

4.1 User-Retweet Model (URM)
Identifying users’ interest in tweet and retweet is key for

user modeling to predict the user behavior and preference
in various applications on Twitter, such as tweet recommen-
dation and followee recommendation. Therefore, a Bayesian
model, which properly captures the great diversity of user
interests on Twitter, is clearly needed. We refer to the �rst
model as User-Retweet Model (URM).

Twitter has become a central nexus for discussion of the
topics of the day. On Twitter, users from all over the world
tweet a variety of topics of interest. Naturally, each user
has distinct preference and topical interest. To characterize
the heterogeneity among all users, we model each user as a
unique mixture of a set of topics, where the mixing propor-
tion governs his or her personal interest. In detail, each user
possesses a distinct probability distribution over the top-
ics, indicating the probability that he or she is interested in
tweeting each individual topic. For example, consider a mini
set of two topics: politics and food. One user may tweet the
politics topic with a higher probability than the food topic,
while another may be more interested in tweeting food than
tweeting politics. Given a set of topics, a Twitter user gen-
erates each word in their tweets from one of the topics based
on the distribution speci�c to this topic.

In addition to tweets, retweets convey useful clues about
the users’ interest and preference. If multiple users retweet
a certain message, they are likely to have common topical
interest reected by this message. In order to capture the
diversity of topics exhibited by retweets, we further model
each retweet as a mixture of a set of topics. Speci�cally, each
retweet is represented as a probability distribution over the
topics, quantifying the probability of covering each individ-
ual topic.

In a typical mixture model, the number of mixture com-
ponents is usually manually speci�ed and empirically tuned
to determine the granularity of the model. However, given
the dynamic nature and large scale of retweet data, it is in-
feasible to manually exhaust the optimal number of topics
in a retweet model. To address this limitation, we resort to
a fully data-driven approach, i.e., imposing Dirichlet process
priors over the mixture components [15], which allows the
number of topics to be automatically determined based on
the data characteristics.

4.1.1 Generative Process for URM
The problem of retweet modeling is to specify a probabilis-

tic process by which the observed data, i.e., all the words in
tweets, denoted by w, and all the words in retweets, denoted
by x, may have been generated. In URM, we assume that in
tweeting, to choose a word, a user would �rst select a topic
of interest according to his or her unique topic distribution,
from which he or she would then pick a word w based on its
generative probability in this selected topic. This stochastic
process repeats for every word in the tweets of every user.

On the other hand, unlike a tweet created by one single
user, a retweet may be forwarded by multiple users, and thus
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the retweet should exhibit the topics of interest to these
forwarders. Therefore, to generate a word in a retweet, a
topic would be �rst picked based on the topic distributions
of all the users who forwarded this retweet. A word x would
then be chosen from the word distribution speci�c to this
picked topic.

Let us formally describe the URM model. Let y index
each topic exhibited by words in tweets w. As a result, there
is a word distribution, denoted by φy, for each tweet topic
y. To avoid manually setting the number of tweet topics,
we assume φy itself to be a random variable drawn from
a Dirichlet process. As discussed before, draws from a DP
often share common values and thus naturally form clusters.
Instead of being pre-speci�ed, the number of clusters, which
is often smaller than the total number of draws, varies with
respect to data.

As a result, the global probability of generating tweets
p(w) is distributed as a DP, which can be expressed with a
stick-breaking representation [28]:

p(w) =

∞∑
k=1

βkδφk , (4)

where φk follows the prior H over multinomial distributions:
φk � H; δφ is a probability measure concentrated at φ; and
β = (βk)∞k=1 � GEM(α) is an in�nite sequence de�ned as:

β′k � Beta(1, α), βk = β′k

k−1∏
l=1

(1� β′l)

The global distribution de�ned in Equation (4) captures
the homogeneity for the tweet behavior of users for the global
population, but it does not reect each individual user’s
behavior. As stated earlier, to capture the heterogeneity
among all users, we characterize each user by a mixture
model. These mixture models of all users are linked to-
gether via the global distribution de�ned in Equation (4).
Linking these mixture models is signi�cant and useful in
that it allows the tweet topics to be shared among all users.
For instance, consider a user who is interested in the food
topic and the politics topic, and another user who likes the
food topic and the technology topic. It would be helpful for
a model to relate the food topic discovered in the analysis
of the former user to that detected from the latter user.

Speci�cally, the probability of generating user u’s tweets
can be written as:

p(wu) =

∞∑
k=1

πukδφk , (5)

where the mixing proportionπu = (πuk)∞k=1 � DP(λ, β). In
this way, we introduce another layer of DP for the mixture
of tweet topics in each user.

Moreover, as discussed before, each retweet is modeled as
a mixture of a set of topics as well. Letzindex each topic

exhibited by words in retweetsx.σz denotes the word distri-
bution for retweet topicz.Rj denotes the set of all the users

who forwarded thej-th retweet message. The probability of
generating thej-th retweet is thus given as:

p(xj) =

∞∑
k=1

ηjkδσk . (6)

where ηj = (ηjk)∞k=1 � DP(µ,1 |Rj |
∑
u∈Rj

πu). As a result,

the generation of a retweet is attributable to the topics of
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Figure 2: Graphical models for URM

interest to all of its forwarders. The stick-breaking repre-
sentation of the URM model is depicted in Figure 2(a).

4.1.2 URM as a Three-layer DP Hierarchy
In a way, URM generalizes HDP by using a three-layer

Dirichlet process hierarchy for retweet modeling. The URM
model de�nes a set of random probability measures in each
layer of the DP hierarchy. In particular, �rst we draw a
global probability measureG0 from a DP with base measure

H and concentration parameterαinuencing the sparsity of
the global topic distribution:G0 � DP(α,H). (7)To characterize personal topical interest in tweeting, we then

draw a topic distribution Ĝu from the global probability
measure over the topic spaceG0 for each user:Ĝu � DP(λ,G0) (8)with concentration parameterλ.

To model the generation of retweets, since a single mes-
sage can be retweeted by multiple users, for each tweet we

draw a probability measure G̃j from a set of multiple topic

probability measures,fĜuju2Rjg, corresponding to all the
forwarders of this tweet,Rj .

Here we introduce a novel notion of drawing a probability
measure from a set of probability measures. An equivalent
representation of the set of probability measuresfĜuju2

Rjg is given by a DP with base measure 1

|Rj |
∑
u∈Rj

Ĝu

which averages the probability measures in this set. We
show that a DP with an average of multiple probability mea-
sures as its base measure is equivalent to a standard DP in
the following. Supposeσ1, . . . , σi−1 are observed samples

from G̃j . The probability of the i-th drawσi to be sam-

pled from G̃j can then be given by integrating out G̃j us-
ing the properties of the Dirichlet distributed partitions [23]
and replacing the base measure with the average of multiple
probability measures:

σijσ1, . . . , σi−1, µ, G̃j �
1

i�1 +µ

i−1∑
k=1

δσk

+
µ

jRj j(i�1 +µ)

∑
u∈Rj

Ĝu, (9)
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which gives a standard Dirichlet process. The URM model
as a DP hierarchy is illustrated in Figure 2(b).

4.1.3 Bayesian Inference for URM
To estimate the latent topic structures in URM, we per-

form posterior inference to \invert" the generative process
described above. In particular, we develop an e�cient Markov
chain Monte Carlo (MCMC) algorithm [26], or more pre-
cisely a Gibbs sampler, to approximate the posterior for
URM. In a Gibbs sampler, each latent variable is iteratively
sampled conditioned on the observations and all the other
latent variables, so the key to Gibbs sampling is to derive a
full conditional distribution for each latent variable, which
is given in the following.

Sampling y:
Let wua denote the a-th word in user u’s tweets. Given the
current values of the remainder of the variables, denoted by

�, the probability of word wua assigned to an existing topic
k can be derived as:

p(yua = kj�) / (c
−(ua)
uk + λβk)

e
−(ua)
kwua

+ τwua

e
−(ua)
k∗ + τ∗

, (10)

whereas the probability that the topic assignment yua takes
on a new value knew is given by:

p(yua = knewj�) / λβknew
V

, (11)

where c
−(ua)
uk denotes the number of words in user u’s tweets

assigned to topic k, excluding the current assignment yua.

e
−(ua)
kw denotes the number of times word w is assigned to

topic k across all tweets, excluding the current assignment.
V is the total number of unique words in the vocabulary.

During the sampling process, if a topic assignment takes
on a new value knew, we include this new topic φknew into
the set of tweet topics, for which we draw a new global pro-
portion βknew . On the other hand, if, as a result of updating
topic assignments, none of words is assigned to some topic,
we delete this unallocated topic from the set of tweet topics,
and update the global proportions β accordingly.

Sampling z:
Gibbs sampling for retweet topics z is similar to that for
tweet topics y. Let xjb denote the b-th word in the j-th
retweet. The probability of word xjb assigned to a previously
used topic k can then be given by:

p(zjb = kj�) / (d
−(jb)
jk +

∑
u∈Rj

µπuk)
g
−(jb)
kxjb

+ εxjb

g
−(jb)
k∗ + ε∗

, (12)

while the probability that the topic assignment zjb takes on
a new value knew is as follows:

p(zjb = knewj�) /
∑
u∈Rj

µπuknew

V
, (13)

where d
−(jb)
jk denotes the number of words in the j-th retweet

assigned to topic k, excluding the current assignment zjb.

g
−(jb)
kx denotes the number of times word x is assigned to

topic k across all retweets, excluding the current assignment.
Rj denotes the set of all the users who forwarded the j-th
retweet.

Sampling β:
Following the simulation of new tables in the CRF intro-
duced in [25], the prior global proportions β can be sampled

w
U

Tu

!

!

z

x
Ru

!

y

! !

!

!
!

!
!

! !

!

!

(a) Stick-breaking represen-
tation of UCM

w
U

Tu

Gu

G0

H

öGt

!

x
Ru

!Gr

!

! !

!

!

(b) UCM as a DP hierarchy

Figure 3: Graphical models for UCM

by simulating how new topics are created for cuk draws from
the DP with precision λβk (dishes in the CRF), which is a
sequence of Bernoulli trials for each u and k:

p(mukr = 1) =
λβk

λβk + r � 1
8r 2 [1, cuk]. (14)

A posterior sample of β is then obtained by:

β � Dirichlet(m1, . . . ,mK , α), (15)

where mk =
∑
u

∑
rmukr, and K is the number of active

topics with which there exist words associated. β has di-
mension K + 1 because the mass for α in the Dirichlet dis-
tribution corresponds to generating a new topic out of an
in�nite set of empty topics. If a topic has lost all its words,
it is merged with the unknown topics in the mass associ-
ated with α. Iterative sampling based on Equations (14)
and (15) gives the posterior samples of β, which are needed
by sampling tweet topics y.

Sampling π:
Similarly, Equations (12) and (13) for sampling retweet top-
ics z require the posterior samples of π. The posterior pro-
portion πu for user u is given by:

πu � Dirichlet(n1u, . . . , nKu, λ), (16)

where nku =
∑
j

∑
r njkur. The auxiliary Bernoulli variable

njkur for retweet j, topic k and user u is de�ned as:

p(njkur = 1) =
µπuk

µπuk + r � 1
8r 2 [1, djk]. (17)

All the above posterior distributions create a Markov chain
for Gibbs sampling. The Gibbs sampler for URM iteratively
samples y, z, β, and π as described above in turn.

4.2 User-centric Model (UCM)

4.2.1 Generative Process for UCM
The User-Retweet Model characterizes each user and each

retweet as a unique mixture model. In other words, it con-
structs a separate mixture model for each retweet in addition
to user modeling. Given that users’ behavior of both tweet
and retweet reects their distinct preference and topical in-
terest, an alternative to user modeling would be introducing
a random measure speci�c to each user that captures his or

464



her unique interest. There often exist di�erences between
the tweet interest and the retweet interest of a user. For
instance, a user may be interested in retweeting jokes, but
he or she could never tweet anything joking. To di�erentiate
a user’s interest in tweet and retweet, we should introduce
two random measures which capture his or her tweet interest
and retweet interest, respectively. This alternative model is
referred to as User-centric Model (UCM).

Formally, in the UCM model, we introduce a probability
measure �Gu speci�c to any user u, which is distributed as a
DP:

�Gu � DP (ρ,G0), (18)

where G0 � DP (α,H). Equation (18) can be represented
with a stick-breaking process as:

�Gu =

∞∑
k=1

γukδφk , (19)

where γu = (γuk)∞k=1 � DP (ρ, β). The mixing proportion
γu quanti�es the user u’s common interest in each di�erent
topic, which reects the homogeneity of u’s behavior of tweet
and retweet. To separate the modeling of tweet interest
and that of retweet interest, we draw from �Gu a probability
measure Ĝt for tweet generation and a probability measure
~Gr for retweet generation:

Ĝt � DP (ν, �Gu), (20)

~Gr � DP (ζ, �Gu). (21)

Using the stick-breaking representation, Equations (20) and
(21) can be expressed as:

Ĝt =

∞∑
k=1

κukδφk , (22)

~Gr =

∞∑
k=1

ξukδσk , (23)

where κuk = (κuk)∞k=1 � DP (ν, γ), which measures the user
u’s topical interest in tweet, and ξuk = (ξuk)∞k=1 � DP (ζ, γ),
which quanti�es u’s retweet interest over the topics. The
stick-breaking representation of UCM is illustrated in Figure
3(a). Figure 3(b) depicts the graphical model for UCM as a
DP hierarchy.

4.2.2 Bayesian Inference for UCM
We develop a Gibbs sampler speci�cally for Bayesian in-

ference for UCM, which is similar to the sampler for URM.
In this section, we describe the posterior distributions for
topic assignments y and z, conditioned on the values of all
the other variables.

Sampling y:
The Gibbs sampling equation for topic assignment yua of
the a-th word in user u’s tweets is:

p(yua = kj�) / (c
−(ua)
uk + νγuk)

e
−(ua)
kwua

+ τwua

e
−(ua)
k∗ + τ∗

, (24)

whereas a new value knew is sampled for yua based on the
following probability:

p(yua = knewj�) / νγuknew
V

, (25)

where c
−(ua)
uk denotes the number of words in user u’s tweets

assigned to topic k, excluding the current assignment yua,

and e
−(ua)
kw denotes the number of times word w is assigned to

topic k across all tweets, excluding the current assignment.
Sampling z:

For the b-th word in user u’s retweets, a previously seen
topic k is sampled from the distribution given by:

p(zub = kj�) / (f
−(ub)
uk + ζγuk)

g
−(ub)
kxub

+ εxub

g
−(ub)
k∗ + ε∗

, (26)

whereas the probability that the topic assignment zub takes
on a new value knew is:

p(zub = knewj�) / ζγuknew
V

(27)

where f
−(ub)
uk denotes the number of words in user u’s retweets

assigned to topic k, excluding the current assignment zub,

and g
−(ub)
kx denotes the number of times word x is assigned

to topic k across all retweets, excluding the current assign-
ment.

5. EMPIRICAL EVALUATION
To evaluate the quality of our proposed models, URM and

UCM, we conducted experiments on a real-world dataset
crawled from Twitter. First, we demonstrate the latent top-
ics discovered by both models, which qualitatively reect the
e�ectiveness of the models. Then, we quantitatively mea-
sure the quality of the topics discovered by our proposed
models and baselines. Finally, we assess and compare the
predictive power and generalizability of these models to ob-
jectively evaluate their e�ectiveness.

5.1 Dataset and Experiment Settings
Our experiments were conducted on a Twitter dataset col-

lected between October 2009 and January 2010. We crawled
the dataset based on the follow network in a breadth-�rst
search manner. The crawler began with an initial seed set of
the top 1000 users in twitterholic.com, and traversed the
follow links in a forward direction. Users’ tweet content and
retweet activities were collected during the crawling pro-
cess. The dataset includes over 1.1 million Twitter users,
with more than 273 million follow links and over 2.9 million
retweet links. An in-depth analysis of this dataset can be
found in [31].

We used the tokenizer from the TweetNLP project [16]
in order to improve the accuracy of the recognized terms in
the noisy text. Furthermore, we reduced the inherent noise
of tweets, by removing terms that appear in less than 20
tweets.

URM and UCM require a set of hyper-parameters to be
determined a priori. In our experiments, we set the hyper-
parameters: α = 1, λ = 0.5, µ = 0.5, τ = 0.1, ε = 0.1, ρ =
0.5, ν = 0.5, ζ = 0.5. We ran the Gibbs sampling algorithms
for 1000 iterations. Since the nearly samples from a Markov
chain are usually correlated with each other, we only kept
the samples from every 5 iterations to collect independent
samples. Moreover, we discarded the samples in the burn-in
period (the �rst 20% of samples).

5.2 Topics Produced by URM and UCM
Given URM and UCM as Bayesian nonparametric mod-

els, both models are able to automatically determine the
optimal number of latent topics based on the data. To es-
timate the posterior over the number of topics, during the
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(c) Histogram of the number
of tweet topics for UCM
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(d) Histogram of the number
of retweet topics for UCM

Figure 4: Histogram of the number of latent topics
produced during the Gibbs sampling process

Gibbs sampling process we collected posterior samples af-
ter the Markov chain had converged. The plots in Figure 4
depict the histograms of the number of tweet/retweet top-
ics produced by URM and UCM. From the histograms, it
is seen that both models discovered 100 � 120 topics from
tweets/retweets. Since the uncovered latent topics reect
the e�ectiveness of URM and UCM, and provide insights
about users’ interest on Twitter, we will illustrate a sample
of distilled latent topics later in this section.

A latent topic can be represented as a distribution over
a �xed set of words in the vocabulary. For a tweet topic k,
the posterior distribution of words can be calculated as:

φkw = p(wjy = k) =
ekw + τw∑V

w=1(ekw + τw)
, (28)

where the counter ekw gives the number of times word w is
assigned to topic k across all tweets. Similarly, the posterior
distribution of words for a retweet topic k can be computed
as:

σkx = p(xjz = k) =
gkx + εx∑V

x=1(gkx + εx)
, (29)

where the counter gkx gives the number of times word x is
assigned to topic k across all retweets. Since the number of
latent topics might vary during the Gibbs sampling process,
we collected samples when the Markov chain had converged
to a stationary distribution.

Table 1 shows a sample of latent topics produced by URM
and UCM in some run of Gibbs sampling. Every topic is rep-
resented by the set of top �ve most probable words under
this topic. Intuitively, it is clear that both models distilled
meaningful topics from tweets and retweets. For example,
the �rst row in this table, which lists words music, album,

Table 1: A sample of latent topics produced by
URM and UCM
Model Topic Top-5 words

URM

Tweet
music, album, band, play, show
love, kids, mom, fun, baby
real, estate, property, read, home

Retweet
travel, hotel, flight, new, italy
social, media, twitter, facebook, marketing
book, read, amazon, writing, author

UCM

Tweet
god, jesus, lord, church, his
video, music, live, album, show
green, car, energy, hybrid, carbon

Retweet
google, iphone, apple, ipad, app
film, movie, avatar, tv, trailer
bowl, super, nfl, football, sports

band, play, and show, indicates a music-related topic, and
the topic given in the �rst row for UCM, which is repre-
sented by god, jesus, lord, church, and his, is clearly relevant
to Christianity. Naturally, such anecdotal evidence is very
hard to generalize. In the next section, we will present a
quantitative measure to evaluate the quality of the distilled
topics.

5.3 Topic Quality
We followed the word intrusion approach introduced in

[10] to quantify the topic quality. Eight human experts par-
ticipated in our word intrusion task. To evaluate the quality
of a topic, the human experts were presented with six ran-
domly order words, which consisted of the �ve words with
the highest probability under the topic and a word from an-
other topic from the same model. The human experts were
then asked to �nd the word which was out of place or did not
belong with the others, i.e., the intruder. In case of seman-
tically coherent topic words, the intruder should be easily
found. To further test the interaction between latent topics,
the intruder was chosen from a set of words which had a low
probability (out of the top 25 words) in the evaluated topic
and a high probability (top 5 of the remaining words) in
another topic. For each model, every human expert judged
an average of 106 instances.

Let jmk denote the index of the intruder among the words
generated from topic k distilled by model m. Further let
imks denote the intruder selected by human expert s on the
set of words generated from topic k distilled by model m,
and let S denote the number of human experts (S = 8 in
our experiments). According to [10], the model precision
on topic k is de�ned by the fraction of human experts that
agree with the model on the topic:

MPmk =

S∑
s=1

1(imks = jmk )/S. (30)

The precision of model m computes the average of MPmk
over all K topics: MPm =

∑K
k=1 MPmk /K.

We compared the results of URM and UCM with those
of Hierarchical Dirichlet Processes (HDP), which is a di�er-
ent Bayesian nonparametric model. In HDP, the words of
each user are generated from a unique probability measure,
which is drawn from a DP. The probability measures for all
users share the same base measure, which is a draw from
another DP. More details of HDP can be found in Section
3. In our experiments, we built three independent HDPs as
baselines based on di�erent pieces of the data. One of the
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Table 2: Comparison of model precisions
HDP-t HDP-r HDP-tr URM UCM

0.643 0.628 0.654 0.688 0.751

Table 3: Model precisions of URM and UCM over
tweet/retweet topics

Topic URM UCM
Tweet topic 0.718 0.769

Retweet topic 0.640 0.731

HDPs, which we refer to as HDP-t, was run on the top of
tweet text, while neglecting the information of the retweet
structure. In other words, HDP-t considers the words in
each users’ tweets only to be generated from a user-speci�c
probability measure. In contrast, another HDP, referred to
as HDP-r, did the opposite by running on words in users’
retweets without taking their tweets into account. The last
HDP, which we refer to as HDP-tr, integrated information
of tweets and retweets by aggregating the words from both
tweets and retweets of each user, which were considered to
be generated from a user-speci�c probability measure.

We computed overall model precisions for the three base-
lines HDP-t, HDP-r and HDP-tr, as well as our models URM
and UCM. As shown in Table 2, HDP-tr performed bet-
ter than both HDP-t and HDP-r, suggesting that integrat-
ing the content of tweets and retweets in a model produces
higher-quality topics than separate modeling of tweets and
retweets. Our models URM and UCM outperformed all the
three baselines, which clearly demonstrates the capability
of the proposed models to distill high-quality latent topics.
Speci�cally, UCM gave a higher model precision than URM.
To track the cause of the performance di�erence, we com-
puted model precisions of URM and UCM over tweet topics
and retweet topics separately. From Table 3, it is observed
that UCM is superior to URM in terms of quality of both
tweet topics and retweet topics. Moreover, UCM gave a
much higher model precision than URM over retweet top-
ics, which implies that it should be more appropriate to have
one ~Gr for each user than having one ~Gj for each retweet,
since the user-speci�c ~Gr should have su�cient content from
the user to characterize his or her retweet interest. The dif-
ference in modeling the retweet structure also improves the
tweet topic quality of UCM over that of URM.

5.4 Predictive Power Analysis
As generative models, URM, UCM and HDP are all able

to generate and predict unseen new data. We evaluated
the predictive power and generalizability of these models
using the standard perplexity metric [8]. The perplexity is
monotonically decreasing in the likelihood of the held-out
test data. Hence, a lower perplexity score indicates stronger
predictive power. Formally, the perplexity is de�ned as:

perplexity(Dtest) = exp

{
�
∑
u∈Dtest

log p(wu)∑
u∈Dtest

jwuj

}
, (31)

where Dtest denotes the test set of all Twitter users’ words in
tweets/retweets. To calculate the word perplexity, we held
out 20% of the data Dtest for test purposes and trained the
models on the remaining 80%.

Figure 5: Comparison of word perplexity for HDP,
URM and UCM (lower is better)

Figure 5 compares the word perplexity for HDP, URM
and UCM. For our models URM and UCM, we calculated
perplexity on the words in tweets as well as perplexity on
the words in retweets. Since HDP-t and HDP-r applied to
tweets and retweets, respectively, we calculated perplexity
for HDP-t on the words in tweets and perplexity for HDP-r
on the words in retweets. From this �gure, we see that UCM
gave the lowest perplexity on both tweets and retweets, con-
�rming its strongest predictive power and the best gener-
alizability. Although URM is inferior to UCM, the URM
model outperformed the two HDP models in generating and
predicting the words in both tweets and retweets. We also
calculated overall perplexity on both tweets and retweets
for HDP-tr, URM and UCM. As a result, UCM gave the
lowest overall perplexity of 1540.6. The second-best URM
had overall perplexity of 1723.1, which outperformed HDP-
tr with overall perplexity of 1779.3. The experimental re-
sults are consistent with the results of the evaluation of topic
quality. It validates the hypothesis that proper modeling
of the retweet structure enhances the e�ectiveness of the
model.

6. CONCLUSION
This paper presents two novel Bayesian nonparametric

models, URM and UCM, for user behavior analysis on Twit-
ter. The two models are able to leverage the signals from
both tweet text and the retweet relationship. Furthermore,
both models enable tight coupling of the analysis of text
and the retweet network in the same Bayesian framework.
As nonparametric models, URM and UCM can automati-
cally �gure out the optimal values of their parameters based
on input data.

In particular, both URM and UCM have a probability
measure Gu speci�c to each user, which characterizes his
or her unique topical interest. Individual users’ tweets are
generated by drawing from the user-speci�c Gu. The di�er-
ence between URM and UCM lies in modeling of the retweet
structure. URM has one Ĝj for each retweet, while UCM has

one Ĝr for each user. We conducted thorough experiments
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on real-world Twitter data to compare URM, UCM and the
baselines. Experimental results show that both URM and
UCM signi�cantly outperform all the baselines in terms of
the quality of distilled topics, model precision, and predic-
tive power. We also demonstrate the further improvement of
UCM over URM, due to UCM’s more appropriate modeling
of the retweet structure.
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