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ABSTRACT
With the emergence of social networking services, researchers
enjoy the increasing availability of large-scale heterogenous
datasets capturing online user interactions and behaviors.
Traditional analysis of techno-social systems data has fo-
cused mainly on describing either the dynamics of social
interactions, or the attributes and behaviors of the users.
However, overwhelming empirical evidence suggests that the
two dimensions a�ect one another, and therefore they should
be jointly modeled and analyzed in a multi-modal frame-
work. The bene�ts of such an approach include the ability
to build better predictive models, leveraging social network
information as well as user behavioral signals. To this pur-
pose, here we propose the Constrained Latent Space Model
(CLSM), a generalized framework that combines Mixed Mem-
bership Stochastic Blockmodels (MMSB) and Latent Dirich-
let Allocation (LDA) incorporating a constraint that forces
the latent space to concurrently describe the multiple data
modalities. We derive an e�cient inference algorithm based
on Variational Expectation Maximization that has a compu-
tational cost linear in the size of the network, thus making it
feasible to analyze massive social datasets. We validate the
proposed framework on two problems: prediction of social
interactions from user attributes and behaviors, and behav-
ior prediction exploiting network information. We perform
experiments with a variety of multi-modal social systems,
spanning location-based social networks (Gowalla), social
media services (Instagram, Orkut), e-commerce and review
sites (Amazon, Ciao), and �nally citation networks (Cora).
The results indicate signi�cant improvement in prediction
accuracy over state of the art methods, and demonstrate
the exibility of the proposed approach for addressing a va-
riety of di�erent learning problems commonly occurring with
multi-modal social data.
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1. INTRODUCTION
The proliferation of massive-scale social networking ser-

vices produces extensive amounts of data describing vari-
ous forms of user behaviors along with detailed information
about social interactions. Traditionally, studies of online
social systems have focused on analyzing the networks in-
duced by such interactions [1, 42, 15, 30, 38, 43, 54, 21, 19]
and examining the impact of structural features on a vari-
ety of dynamical processes unfolding on the network (e.g.,
information di�usion, cascades, etc.) [10, 39, 11, 26, 5, 6,
23, 44, 13, 24]. However, a number of recent studies makes
it increasingly clear that focusing only on network proper-
ties while discarding rich contextual information limits our
comprehensive understanding of complex social systems dy-
namics [52, 36, 4, 56, 18, 32, 49, 37, 20, 25, 27, 2].

In addition to social network data, we often have infor-
mation about user behaviors such as mobility patterns (e.g.,
Foursquare check-ins), user generated content (e.g., tweets
or Facebook posts), purchase history, and so on. User be-
haviors and social interactions are often closely linked. This
relationship has been extensively studied in social sciences
under the umbrella of homophily theory [41], which states
that users exhibiting similar attributes or activity patterns
are also more likely to be socially linked. When user at-
tributes relevant to forming social links are not directly ob-
servable, this phenomenon is called latent homophily.

From the predictive modeling perspective, homophily (or
its opposite, heterophily) can be used to build more accu-
rate models of user behavior and social interactions based
on multi-modal data. Such an approach can generate a
more comprehensive understanding of users and their pref-
erences [57, 48, 46]. Furthermore, these types of models can
be employed to generate predictions across modalities. For
instance, we can try forecast the social interactions of an in-
dividual based on (partial) knowledge of her/his behaviors.
Conversely, we can predict user behavior based on available
social network information. This type of capability is par-
ticularly important where we have sparse data in one single
modality, yet data across multiple modalities abound. Thus,
there is an overwhelming need for developing a uni�ed com-
putational framework to describe and analyze multi-modal
social data.

Latent space models [29] provide a viable framework to
analyze multi-modal social data. Indeed, models based on
Latent Dirichlet Allocation (LDA) [9] and its extensions have
been recently used to analyze user-generated content [47],
mobility patterns [34], etc. At the same time, latent space
models such as Mixed Membership Stochastic Blockmodels
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(MMSB) have been devised to describe multi-faceted inter-
actions in social networks [3].

Using a latent space model that jointly represents informa-
tion about user behaviors (or attributes) and social interac-
tions is an attractive approach since it provides an explicit
and concrete mechanism to explain the observed correla-
tions between the two. Pairwise Link-LDA [45] combines
LDA [9] and MMSB [3] to describe both the network struc-
ture and user-generated content. Unfortunately, Pairwise
Link-LDA often fails to exploit the synergies between dif-
ferent modalities, as it tends to fragment the latent space
into non-overlapping (or weakly overlapping) regions corre-
sponding exclusively to either user attributes or to the social
network. This fragmentation is due to the weak dependency
between the attributes and links which are connected only
through a common latent topic distribution. To address
this shortcoming, the Relational Topic Model (RTM) [12]
was designed to impose additional constraints on the gener-
ative model that would require stronger correlations between
links and attributes. However, RTM utilizes a signi�cantly
simpli�ed model of link formation that does not account for
truly multi-faceted interactions among the users. A detailed
technical account of these existing methods and their limi-
tations is provided in Section §2.1.

In this paper, we propose an alternative approach to mod-
eling multi-modal social data that combines the bene�ts of
Pairwise Link-LDA and RTM while avoiding their shortcom-
ings. Our proposal, called Constrained Latent Space Model
(CLSM), augments the generative process by introducing a
set of constraints that allows to account for stronger cor-
relations between user attributes and social networks, and
avoid the fragmentation of the joint latent space. In con-
trast to other methods such as RTM, CLSM uses the full
generative process of MMSB to describe the link forma-
tion, which yields a truly multi-faceted modeling of social
interactions. Our experiments in link and behavior pre-
diction reveal that the latter feature is particularly impor-
tant when nodes can interact with each other in multiple
modes/dimensions. Overall, the proposed method achieves
signi�cant improvement in performance over the others in
various learning scenarios.

Our primary contributions can be summarized as follows:

• We propose a general framework called Constrained
Latent Space Model (CLSM) that combines MMSB
and LDA with an added constraint that forces the la-
tent space to jointly describe multiple data modalities.

• We derive an e�cient inference and learning algorithm
based on Variational EM (expectation-maximization),
which makes use of the constraint to signi�cantly re-
duce the computational time to a linear cost in the size
of the network, allowing for large-scale data modeling.

• We perform extensive experiments on datasets that
augment social network information with various data
modalities including texts, purchase reviews, and check-
in data. Our framework improves the state of the art
both in link prediction and in user behavior prediction.

• We analyze two case studies in detail, the citation
network Cora and the location-based social network
Gowalla, discussing the unique insights CLSM yields
over using other multi-modal latent space models.

The rest of the paper is organized as follows: Sec. §2 in-
troduces the background on latent space models and men-
tions methods related to our proposal. Sec. §3 presents the
Constrained Latent Space Model (CLSM), and describes the
Variational Expectation Maximization algorithm. A rigor-
ous experimental evaluation for link and attribute prediction
is provided in Sec. §4, with benchmarks on synthetic data
and analyses of six real-world multi-modal social systems.
Sec. §5 summarizes our contribution and future plans.

2. BACKGROUND
Consider a set ofN nodes that form a network Y : y(n1, n2) =

1 if nodes n1 and n2 are linked, and y(n1, n2) = 0 otherwise.
While the model considered here is quite general, we will fo-
cus on undirected networks where y(n1, n2) = y(n2, n1).

In addition to network information, we also have informa-
tion about node behavior, such as purchasing a certain item,
or visiting a certain location. We assume that the behaviors
are selected from a �nite set, or vocabulary, V = {1, ..., V }.
We characterize the selection v ∈ V by a vector w of size
V , so that all the components of w are zero except the v-th
component, which is equal to wv = 1. Let Mn be the num-
ber of times we have observed node n’s selections. Then the
nodes’s behavior is represented by wn = (w1,w2, ...,wMn).

We assume that the behavior wn of user n is charac-
terized by a latent topic distribution θn de�ned over a K-
dimensional simplex, where K is the number of topics. In
the context of the present work, a topic can be interpreted
as a behavior type. Each topic itself is a distribution over V
possible selections (locations, purchases, etc.), denoted here
by ωk, k = 1, . . . ,K. In the LDA model used here, the
topics are sampled from a Dirichlet prior, θn ∼ Dir(α). To
generate the m-th component of the attribute vector for user
n, we �rst sample a topic indicator variable from a multi-
nomial distribution, zn,m ∼ Mult(θn)1, and then sample a
selection wn,m given the selected topic and its correspond-
ing multinomial distribution: wn,m ∼ Mult(ωi), where i is
the index of the only non-zero component in zn,m.

The main premise behind the joint latent space modeling
approach is that the same topic distribution also determines
the node’s social interactions, where the topics now can be
interpreted as di�erent groups or communities a node is af-
�liated with. Namely, for a pair of nodes (n1, n2), we sam-
ple two indicator variables zn1!n2 and zn2 n1 , and then
establish a link between those two nodes with probability
f(zn1!n2 , zn1 n2), where f is a link function. For instance,
in Mixed Membership Stochastic Blockmodels, f is param-
eterized via a K × K compatibility matrix B so that Bk1k2

is the probability of establishing a link between nodes from
groups k1 and k2. When the o�-diagonal components in B
are zero, the only allowed interactions are intra-group ones,
which yields strictly assortative Mixed Membership Stochas-
tic Blockmodels (aMMSB) [28]. We distinguish aMMSB
from conventional MMSB [3] by naming the latter model
as full MMSB (fMMSB), to reect the use of a full com-
patibility matrix. Consistent with previous reports [28], we
found that aMMSB outperforms fMMSB for both Pairwise
Link-LDA and our proposed model. Hence, below we always
use aMMSB for network generation.

1zn,m is a size-K vector where all the components are zero
except the component corresponding to the multinomial se-
lection, which equals to 1.
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2.1 Related Work
Before describing the proposed model, we review two re-

lated approaches that are the closest to our model, Pairwise
Link-LDA [45] and RTM [12].

Both approaches use an LDA-based process for generat-
ing behaviors. Speci�cally, for each user n, we sample topic
weights θn from a Dirichlet prior α, and a number of se-
lections Mn from a Poisson distribution. Then, for each
selection m, we sample a topic indicator zn,m, and generate
attributes from the corresponding multinomial distribution,
wn,m ∼ Mult(ωzn,m).

The two approaches di�er in their link formation model.
In Pairwise Link-LDA, the links are generated according to
the Mixed Membership Stochastic Blockmodel [3]. Namely,
given two nodes n1 and n2, we sample indicator variables
from the corresponding topic distributions, zn1!n2 ∼ Mult(θn1),
zn1 n2 ∼ Mult(θn2), and then generate a link according to
a Bernoulli trial, y(n1, n2) ∼ Bernoulli(z>n1!n2

Bzn1 n2),
where B is the K ×K compatibility matrix.

From the joint modeling perspective, Pairwise Link-LDA
imposes correlations between user behavior and social inter-
actions by sampling the corresponding indicator variables
from the same (multinomial) distributions. As we men-
tioned above, this framework fails to properly account for
observed correlations, especially when the number of topics
is large [12]. Instead, the latent space is fragmented into
network-speci�c and behavior-speci�c subspaces. A similar
phenomenon was observed in [8] where the authors used a
shared latent space for describing images and their captions.

The Relational Topic Model (RTM) [12] tried to address
this problem by modifying the link formation mechanism.
Namely, instead of sampling new indicator variables for link
formation, RTM reuses the indicator variables used for gen-
erating behaviors. Let �zn be the mean of the indicator
variables used for generating behaviors, �zn = 1

Mn

∑
zn,m.

Then, given a pair of nodes (n1, n2), a link is sampled via
y(n1, n2) ∼ Bernoulli(fRTM (�zn1 ◦�zn2)), where ◦ denotes the
Hadamard (element-wise) product, and fRTM (·) is a param-
eterized link function, e.g., sigmoidal or exponential [12].

While RTM is superior to Pairwise Link-LDA for describ-
ing correlations between user attributes and interactions, its
simpli�ed link formation mechanism does not have the exi-
bility of MMSB, and is not adequate for capturing truly het-
erogenous and multi-faceted interactions between the users.
Indeed, as illustrated in Section 4.1, RTM is not able to ac-
curately model scenarios where the nodes have well-mixed
memberships. We next formulate our proposed generative
model that addresses the shortcomings of both methods.

3. CONSTRAINED LATENT SPACE MODEL
This section describes our proposal, the Constrained La-

tent Space Model (CLSM). The plate diagram of the gen-
erative process is illustrated in Figure 1, which for sake of
comparison also depicts the generative process for Pairwise
Link-LDA. Both approaches use the same scheme to gener-
ate the social network. Where the approaches di�er, how-
ever, is the generative process for the user behaviors (at-
tributes). Namely, when generating behaviors for user n,
we reuse the indicator variables that were used to generate
links for the same user. In this regard, our approach shares
some similarity with RTM, in that it also uses the same set
of indicator variables for both attribute and link generation.

In contrast to RTM, however, we �rst generate a set of indi-
cator variables by sampling the links, and then use this set
to generate attributes. Remarkably, our experiments show
that the order of sampling is not important, and we ob-
tain the same results by �rst sampling attributes, as done in
RTM. However, sampling the links �rst is computationally
more e�cient when the network is relatively sparse, which
is the case for the vast majority of datasets reecting real-
world techno-social systems. In the opposite case of dense
networks and sparse attributes, one can sample the other
way around for e�ciency.

Following the language of MMSB, let N be the total num-
ber of nodes and K be the total number of network commu-
nities (that is, topics). The generative process is as follows:

• Network Generation:

1. For each community k, sample the community
strength βk ∼ Beta(η1, η0), where βk := B(k, k)

2. For each node n, sample the K × 1 membership
vector θn ∼ Dirichlet(α).

3. For each node n, initialize an empty multiset of
indicator variables, Zn = ∅.

4. For each pair (n1, n2)

(a) Draw membership indicator vectors
zn1!n2 ∼ Mult(θn1)
zn1 n2 ∼ Mult(θn2).

(b) Sample the pair interaction
y(n1, n2) ∼ Bernoulli(z>n1!n2

Bzn1 n2),
where B = diag(β1, β2, ..., βK) + ε(1− I),
and ε is a small regularization parameter.

(c) Augment the corresponding indicator multi-
sets (allowing repetitions).
Zn1 → Zn1 ∪ {zn1!n2}
Zn2 → Zn2 ∪ {zn1 n2}

• Behavior Generation:

Let Mn be the total number of selections2 of user n
from a (behavior) set V = {1, ..., V }.

1. For each topic k, sample the attribute distribution
ωk ∼ Dirichlet(κ), where κ is a hyperparameter.

2. For each selection wn,m of user n, where m ∈
{1, ...,Mn},
(a) Sample an integer cn

m ∼ Unif({1, ..., size(Zn)}),
and let ẑ be the topic indicator vector corre-
sponding to cn

m.

(b) Sample a selection wn,m ∼ Mult(ωi), where
i is the index of ẑ’s non-zero component.

Exact inference with the above generative model is not fea-
sible due to the presence of latent variables [29, 7]. In the
following, we describe an approximate method for learn-
ing and inference based on Variational Expectation Maxi-
mization (EM). We will use it to estimate the parameters
{β}, {ω} and infer the posterior distributions of the model’s
latent variables. The computational cost of the this infer-
ence method is linear in the size of the network (see section
§3.1), which makes CLSM a feasible tool for analyzing large-
scale multi-modal social data.
2For the purposes of data generation Mn can be sampled
from, say, a Poisson distribution. This is not relevant for
inference, however, where Mn is speci�ed in the data.
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Figure 1: Plate Diagram comparison of Pairwise Link-LDA (a) and CLSM (b). Shaded nodes represent the observable variable.
(a) Pairwise Link-LDA focusing on a pair: attributes and links are generated from the same latent variable, but a dependency
between the latent factors zn!n′ and zn lacks. (b) CLSM: we focus on node n and the behaviors of other nodes are omitted.
Dot represents all possible nodes interacting with node n. zn now has high dependency on the set of zn!�.

3.1 Variational Inference
Given the observation of the interaction network Y and

user behaviors w1:N = {wk}Nk=1, we are interested in infer-
ring the posterior distributions of the model’s latent vari-
ables, p(θ1:N ,Z1:N ,C|Y,w1:N ) (where C is the collection of
all cm of all nodes), as well as estimating the hyperparame-
ters η,α,κ. A number of approximate inference algorithms
have been proposed in literature. In this paper, we rely
on variational method [33] that approximates the posterior
by a computationally tractable variational distribution with
some free variational parameters. Those parameters are se-
lected to minimize the Kullback-Leibler divergence between
the variational distribution and the true posterior.

Here we suggest a factorized variational distribution over
the latent variables q(θ1:N ,Z1:N ,C):

q(θ1:N ,Z1:N ,C) =

N∏
n=1

qdir(θn|γn)

Mn∏
m=1

qmul(c
n
m|λn

m)

N∏
n1,n2

qmul(zn1!n2 |φn1!n2
)qmul(zn1 n2 |φn1 n2

). (1)

where {γ}, {λ}, and {φ} are the variational parameters.
Similarly, for the distributions over the model’s parame-
ters, we also use factorized q(·) distributions, which are
qbeta(βk|τk1, τk0) and qdir(ωi|ρi).

Given the factorized variational distribution q(·), we next
bound the log likelihood of the observed data using Jensen’s
inequality. Speci�cally, we consider the so called evidence
lower bound (ELBO) de�ned as follows:

log p(Y,w1:N |η,α,κ) ≥ L(φ,γ,λ)

, Eq[log p(Y,w1:N ,θ1:N ,Z1:N ,B,C,
|η,α,κ)]

−Eq[log q(θ1:N ,Z1:N ,B,C,
)], (2)

where we de�ned 
 as a collection of ω.

The ELBO in Equation 2 is expanded as follows:

L =
∑
n1,n2

Eq[log p(y(n1, n2)|zn1!n2 , zn1 n2 ,B]

+
∑
n1,n2

Eq[log p(zn1!n2 |θn1) + log p(zn1 n2 |θn2)]

+
∑
n

∑
m=1:Mn

Eq[log p(wn,m)|cn
m),
]

+
∑
n

∑
m=1:Mn

Eq[log p(cn
m|zn!�, z� n)]

+
∑
n

Eq[log p(θn|α)]

+
∑
k

Eq[log p(βk|η)] +
∑
k

Eq[log p(ωk|κ)]

−
∑
n1,n2

Eq[log q(zn1!n2 |φn1!n2
) + log q(zn1 n2 |φn1 n2

)]

−
∑
n

∑
m=1:Mn

Eq[log q(cn
m|λn

m)]

−
∑
n

Eq[log q(θn|γn)]. (3)

The lower bound can be maximized using the coordinate
ascent algorithm. Toward that goal, we take the (partial)
derivatives of L(φ,γ,λ) with respect to the variational pa-
rameters and set them to zero. As a result, we obtain a set
of iterative update equations for the parameters, whose �xed
points correspond to local optima of the objective function.

For γn, the update equations are as follows:

γn,k ← αk +
∑
n′ 6=n

φn!n′,k +
∑
n′ 6=n

φn′ n,k. (4)

Similar reasoning leads to update equations for the param-
eters {φ} and {λ}, with additional constraints that each
component of those vectors sum to 1. As we mentioned
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above, here we are interested in undirected social interac-
tions, which reduces the number of parameters due to the
equalities φn n′ = φn′!n. Thus, we consider only the up-
date equations for φn!n′ .

After adding the appropriate Lagrange multipliers to en-
sure the normalization of the components,

∑
n′ φn!n′ =

1, we isolate the terms that contain φn!n′ , and set their
derivatives with respect to φn!n′ to zero. The correspond-
ing update equations are as follows:

φn!n′,k ∝ exp(Eq[log p(θn,k)]

+Eq[log p(y(n, n0))] + Eq[log

Mn∏
m=1

p(wn,m)
cn
m,n′ ]), (5)

λn
m,n′ ∝ exp(Eq[log p(wn,m|cn

m,n′ = 1)]), (6)

where the term n0 appearing in cn
m,n′ and λn

m,n′ denotes the
index of φn!n′ in Zn. As with the indicator vector zn!n′ ,
cn
m should have only one component equal to 1 setting all

others to 0.
Note that the number of the parameters φn!n′ , and thus

the computational complexity of the update equations for
Eq. 5, is quadratic in the number of nodes, even when the
network is sparse. This is because the parameters are de-
�ned both for links and non-links. To avoid this computa-
tional bottleneck, we adopt an approximation technique [28],
by assuming that the parameters φn!� for non-links can
be replaced by a single mean-�eld parameter. Namely, let
{φn!�}+ and {φn!�}� be the set of parameters for links and
non-links, respectively, and let �φn!� be the average over the
set {φn!�}+. Within the above mean �eld approximation,
each element of {φn!�}� is replaced by �φn!�. Thus, the
time complexity of algorithm becomes linear in the number
of existing links in the network.

Further gains in computational e�ciency is achieved by
limiting the number of components in set Zn to the num-
ber of edges incident on node n, rather than having all the
relations in the set. This corresponds to reusing indicator
variables only when they have generated a link. Note also
that now Equation 4 does not require all the parameters
{φ}, as the parameters correspodning to non-links are re-
placed by �φn!�.

Finally, the update Equation 5 can be further simpli�ed by
making the best use of the assortative property in aMMSB,
where only diagonal components of the block matrix are
being considered. Instead of updating K ×K combinations
of φn1!n2

and φn2!n1
for a link between node n1 and n2,

we can update only K parameters of by disregarding the
inter-community links. For our aMMSB model, we use the
following update equation:

φn1!n2,k
∝ exp(Eq[log p(θn1,k)] + Eq[log p(θn2,k)]

+Eq[βk] + Eq[log

Mn1∏
m=1

p(wn1,m)c
n1
m,n2 ]), (7)

where we further use Eq[log p(θn,k)] = ψ(γn,k)−ψ(
∑

r γn,r),
Eq[βk] = ψ(ηk,1)− ψ(ηk,2) employing the exponential fam-
ily distribution property. As for the last term in Equation 7,

we use the following equation:

Eq[log

Mn1∏
m=1

p(wn1,m)c
n1
m,n2 ]

=

Mn1∑
m=1

λm,n2(ψ(
∑
r

1(wn1,m = i)ρk,r)− ψ(
∑
i

ρk,i)).

(8)

Let us now focus on variational distributions over the
model parameters βk and ωk, k = 1, ..,K. We had pre-
viously de�ned a Beta distribution qbeta(βk|τk1, τk0) with
variational parameter τ 1, τ 0, and a Dirichlet distribution
qdir(ωi|ρi) with variational parameter ρk. Here we omit the
derivation details and only present the �nal update equa-
tions for these parameters:

τ k,1 ← η1 +
∑

(n1,n2)2link

φn1!n2,k
, (9)

τ k,2 ← η2 +
∑

(n1,n2)2non-link

φn1!n2,k
φn2!n1,k

,

ρij ← κj +

N∑
n=1

Mn∑
m=1

1(wn,m = j)
∑

n′2link

φnn′,iλm,n′ .

(10)

Once the variational parameters are found, we can use
them to estimate the model parameters themselves. We note
that as an alternative approach, one can also derive explicit
update equations for the parameter ωi directly, without us-
ing the variational parameter ρi in Equation 10. ωi can be
optimized by introducing a Lagrange multiplier where we
have the update equation as follows:

ωij ∝
N∑

n=1

Mn∑
m=1

1(wn,m = j)
∑

n′2link

φnn′,iλm,n′ . (11)

However, for this case, extra caution is needed that guaran-
tees non-zero entities in any ωi. This can be easily achieved
by using smoothing techniques such as Laplace smoothing
or pseudo-count smoothing [35]. Our experimental results
reect the latter smoothing technique.

4. EXPERIMENTS
In this section we perform an extensive experimental eval-

uation of the Constrained Latent Space Model (CLSM).
We �rst discuss some experiments performed with synthetic
data, designed to better understand the main di�erences be-
tween our method and the Relational Topic Model (RTM).
Then, we carry out an extensive experimental analysis us-
ing a number of real-world datasets from various techno-
social systems. After describing the characteristics of these
datasets, we present two problems, link and behavior pre-
diction, and demonstrate the superiority of the proposed
model over existing methods. We conclude discussing two
case studies and the unique insights yielded by CLSM’s use.

4.1 Experiments with Synthetic Data
The main advantage of CLSM over RTM is that our model

uses the aMMSB whereas RTM employs a simpli�ed mech-
anism for the link generation process. We thus expect that
CLSM will prove e�ective in presence of nodes with well-
mixed memberships (or topics). By incorporating aMMSB,
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our model can better infer mixed topics while relying less
on attribute information, if compared to RTM which heav-
ily relies on users’ attributes for accurate inference. In fact,
in MMSB each interaction is captured to describe the topic
distribution of a given node, while RTM simply posits a sin-
gle distribution and tries to describe every interaction of a
given node with that single distribution.

Figure 2 summarizes the experiments that con�rm this in-
tuition. Let us consider nodes with two topics where some of
the nodes are exclusively assigned to one topic (or commu-
nity) and others are well mixed between the two.3 In real
social systems, two distinct communities can exhibit simi-
lar or very di�erent behaviors. To reect this, we perform
two experiments: in the former the two communities are
well separated (Figure 2a, left panel), while in the latter we
impose some arbitrarily-tuned degree of similarity between
them (Figure 2a, right panel). The community-to-behavior
distribution (equivalent to the per-topic word distribution)
for the two cases has been controlled as in Figure 2a.

To measure the performance of CLSM and RTM, in Fig-
ure 2b we plot the mean absolute error (MAE) [31] of re-
construction against the gap between the two distribution
peaks (the larger, the less similar are the two distributions).
In the experiments, we generated synthetic data for 2,500
nodes and 1,500 behaviors (words) with two communities
(topics) using the generative process of RTM. Figure 2b
shows that, as the gap between the two per-topic word dis-
tributions tend to close, the performance of RTM starts to
degrade, whereas the performance of our model remains sub-
stantially unchanged.

Further inspection revealed that, when the two topic dis-
tributions become similar one other, RTM tends to assign
every node to the two extreme topics (i.e., pure topic1 or
pure topic2), even when the nodes actually exhibit a clear
mixture of the two topics. This causes the RTM’s higher
MAE when the two word distributions get similar, whereas
CLSM consistently infers topics in line with the ground truth
for all nodes including those exhibiting well-mixed topics.

4.2 Experiments with Real-World Data
In the following we present experiments with various real-

world datasets. Our aim is twofold: �rst and foremost, we
want to illustrate the exibility of our framework to adapt
and perform well within various learning tasks commonly oc-
curring when analyzing multi-modal techno-social systems;
second, we want to prove that CLSM outperforms the state
of the art. We will use data from diverse types of social
systems, spanning various social networks, review sites, pur-
chasing platforms, etc. The datasets are presented in §4.2.2.

4.2.1 Setting the Performance Evaluation
In our experiments, we evaluate our model against RTM

and Pairwise Link-LDA on two tasks: link prediction (§4.2.3),
and attributes prediction (§4.2.4). We set Pairwise Link-
LDA to use aMMSB (rather than fMMSB as in the original
paper [45]) as this yields better accuracy, especially in the
link prediction task. Through this fair comparison, we show
that the improved performance of our method is not only
the result of using aMMSB for mixed memberships, which
consistently outperforms the original fMMSB.

For both prediction tasks, we follow the settings in [12]
and employ a 5-fold cross validation approach: we use the

3We set Dirichlet prior α = [.3 .3]>
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Figure 2: (a) Representation of two topics as distribution
over the words: the left and right panels indicate weakly-
overlapping and strongly-overlapping topics, respectively.
The di�erence between the topics can be measured by the
distance between their respective peaks. (b) Mean absolute
error of inference as a function of topic overlap (measured
by the distance between the peaks).

4/5 of the data to train our models and then test their per-
formance using the other 1/5. For link prediction, we hide
all the links attached to the nodes in the test set, and com-
pute the probability of a link from all the nodes in the test
set to all the nodes in the training set. Similarly, for at-
tribute prediction, we hide all the attributes of nodes in the
test set, and compute the probability of each attribute. For
the experiments below, we set the precision of the Dirichlet
prior α to 1, ε as low as 1e-30, and run the Variational EM
algorithm until its convergence. For the convergence crite-
rion, the algorithm stops when the proportional change in
the likelihood bound is less than 1e-8.

4.2.2 Description of the Datasets
We here present the various datasets employed for per-

formance evaluation. Some descriptive statistics are sum-
marized in Table 1. All datasets provide a social network
dimension. As for the attributes, Gowalla contains value
counts, since the system allows for repeated behaviors (check-
ins) on the same attribute (venue). All the other datasets
have binary representations over the attributes, which cap-
ture their presence (0 or 1). It’s worth noting that, although
the sheer size of these datasets is not massive due to the chal-
lenge of �nding multi-modal social datasets for which both
social network and user behaviors are available for large sets
of users, we stress again how the low computational cost of
CLSM makes it very suitable for large scale analysis.

Location-Based Social Network. Gowalla is a location-
based social network which allows users to check-in their cur-
rent location using their mobile devices and share that with
their friends. Cho et al. [14] collected the Gowalla check-in
and social network data from Feb. 2009 to Oct. 2010. Each
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Table 1: Summary statistics of the six multi-modal social datasets adopted for analysis and performance evaluation.

Dataset # of Nodes Size of Attributes # of Behaviors # of Links

Gowalla (San Francisco) 931 users 1,909 venues 63,543 check-ins 3,429 friendships
Cora 2,708 documents 1,433 terms 49,216 word counts 5,278 citations
Ciao 1,442 users 2,238 products 46,732 reviews 29,040 user-trusts
Amazon 2,942 products 1,810 labels 29,669 descriptions 18,814 co-purchases
Orkut 3,201 users 2,573 groups 26,658 affiliations 47,871 friendships
Instagram 1,818 users 500 media 91,246 tags 36,342 friendships

check-in datapoint consists of user ID, venue ID, timestamp,
and location (latitude/longitude coordinates). In our exper-
iments, we focused on the most represented US city: San
Francisco. We consider users as nodes, friendships as links,
and the number of check-ins on a given venue as attributes.
Note that we discard any temporal information about the
check-ins, and we focus on the top active 20% users, which
yield over 80% of the total check-in records.

Citation Network. The Cora dataset [40, 51] was the
largest citation network used to benchmark RTM’s perfor-
mance [12]. It contains the abstracts from the Cora research
paper search engine, where the documents in this repository
cite each other. We consider documents as nodes, citations
as links, and the set of lexical terms as set of attributes. We
adopt the pre-processed dataset used by Chang and Blei [12]
where the observed attributes for each node convey the pres-
ence (0 or 1) of a given term in the paper abstract.

Review-Trust Network. This dataset consists of re-
views on various products spanning DVDs to cars, and the
trust network among Ciao’s users. Each review consists of a
user (or reviewer), the product, the category of the product
being reviewed, the review score, and the score that mea-
sures the helpfulness. To simplify, we disregard review and
helpfulness scores, and assume that the presence of a review
(regardless of the score) indicates a certain amount of in-
terest in the product by the reviewer (e.g., which led the
reviewer to buy the product and review it). Each user es-
tablishes a directed trust link with other users whom they
want to follow. We treat those trust relationships as links,
and the list of reviewed products as attributes.

Co-purchase Network. In this dataset, an undirected
edge describes the \customers who bought this item also
bought" relationship. We consider each product as node in
our model. Each product also has a label description as
a category, provided by Amazon. Most items are matched
to multiple hierarchical label descriptions that correspond
to the product. For instances, many digital cameras have
multiple labels with Electronics> Camera & Photo> Dig-

ital Cameras, and are often purchased together with mem-
ory cards, tripods, or batteries. Here, we use these label
descriptions as attributes.

Social Network with Special Interest Groups. Orkut
is a social network service owned by Google. The dataset
has been originally collected by Mislove et al. [42] during a
crawl performed during Oct-Nov 2006. Each user in Orkut
makes online friends with others and can also join special
interest groups. Users are allowed to join as many groups
as they would like. A group might consist of colleagues,
celebrity fans, etc. Users can make new friends in a group,
thus two users being in a same group does not necessarily

imply that they are friends each other. Here, we consider the
top 5,000 communities with the highest quality as identi�ed
by Yang and Leskovec [55]. Users with no connections to
these communities have been �ltered out. The dataset has
been further re�ned by excluding the users with no links,
and removing the groups with no nodes of our interest. In
our experiments, we use the group a�liations as attributes
and the friendships between users as links.

Media-Sharing Social Network. Instagram is a so-
cial multi-media sharing platform owned by Facebook. This
dataset has been collected during Jan-Feb 2014, starting
from 2,100 randomly-selected user seeds who participated to
at least one of 72 popular photography contests, as identi�ed
by particular hashtags [22]. The social network mode reports
follower relationships, whereas the behaviors represent the
tags adopted by each user to label photos (attributes) chosen
to participate to a given contest.

4.2.3 Task 1: Link Prediction
Here we discuss our �rst evaluation task, link prediction.

Accurate link prediction can be very useful in many real-
world applications: for instance, in a location-based social
network, we can use such tool to recommend friends to new
users who have just joined the service and have not yet made
any friends but already left some records of their activity.

Borrowing the language of topic modeling, using the four
folds of data for training, (i) we �rst infer the topic distri-
bution using the attributes, (ii) then compute the proba-
bility of the links between the nodes, and (iii) �nally rank
the pairs according to their likelihoods. These sorted can-
didates are compared with the ground truth, represented
by the �fth fold left out for testing purposes. Our perfor-
mance evaluation measure is the average ranking score. Fig-
ure 3 shows the average ranking of positive edges with 100%
recalls. Lower average ranking scores imply better perfor-
mance: a user would �nd their \real" friends higher up in
the recommendation list. For each dataset, we increase the
number of topics from 5 to 25 by increment of 5, and for
each con�guration we perform 10 rounds of cross validation
and average the results. We also compare the performance
of the benchmarked models using the Area Under the ROC
Curve (AUC): the results are reported in Table 2.

For illustration purpose, let us discuss Gowalla �rst. Our
approach performs better than the baselines (Pairwise Link-
LDA and RTM) for any number of topics. As the number of
topics increases, Pairwise Link-LDA fails to capture the joint
topic space, whereas CLSM shows improvements in perfor-
mance. Interestingly, when the number of topic is small,
Pairwise Link-LDA performs better than RTM. We believe
that a small number of topics functions as a constraint that
enforces the two topic spaces to be close each other. CLSM
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Figure 3: Average ranking score of link prediction on six
multi-modal datasets. Lower scores ⇔ better performance.

clearly outperforms the baselines in terms of AUC scores,



Table 2: Accuracy (AUC) in link and attribute prediction.

AUC scores with K = 15
Dataset Model Link AUC Attribute AUC

Gowalla (SF)
PL-LDA 0.6278 0.7154

RTM 0.6300 0.6746
CLSM 0.7010 0.7429

Cora
PL-LDA 0.6341 0.7928

RTM 0.6509 0.7971
CLSM 0.7570 0.8203

Ciao
PL-LDA 0.7038 0.7636

RTM 0.6738 0.6850
CLSM 0.7532 0.7929

Amazon
PL-LDA 0.8565 0.9661

RTM 0.9586 0.9752
CLSM 0.9686 0.9765

Orkut
PL-LDA 0.8837 0.6884

RTM 0.8836 0.6580
CLSM 0.9031 0.7890

Instagram
PL-LDA 0.6385 0.7113

RTM 0.6971 0.6598
CLSM 0.7791 0.7401

The prediction tasks we presented also unveiled some lim-
its and challenges of these models: for example, the improve-
ment aMMSB yields tend to reduce in Cora, possibly as a
consequence of the presence of few topics in the documents.
Finally, Gowalla data suggest that location-based social net-
works pose some serious challenges, yielding an accuracy of
only 70% and 75% for link and attribute prediction respec-
tively. We will explore in further details these two scenarios
in the following in-depth analysis.

4.3 Case Studies
Case Study 1: Analysis of Cora. In this data set, each

document is assigned to one of the following categories: Neu-
ral Networks, Rule Learning, Reinforcement Learning, Prob-
abilistic Methods, Theory, Genetic Algorithms, and Case
Based in Machine Learning. The assignment was performed
manually by the dataset’s curators [40, 51]. Figure 5a shows
the total number of documents for each category: over half
of the documents belong to either Neural Networks, Prob-
abilistic Methods, or Genetic Algorithms. Without access
to this category information, our model only uses the con-
tained words and the citation link information to infer the
topics of the documents. We here investigate how these cat-
egories match the topics we inferred. For each document, we
specify a major topic and collect all documents in the cor-
pus related to that topic. Figure 5b shows the percentage
of categories for each of the 10 topics, where we have used
K = 10 (number of topics) for illustrative purposes. The
documents which have topic 1 as major topic are dominated
by Neural Networks. We can also see how many topics favor
speci�c categories over others. Some of the topics contain
mixtures of labels: this is due to the loose separation be-
tween the category labels. When the categories are closely
related, this tends to be captured in the pie chart of our
inferred topics forming a mixture. With higher number of
total topics (e.g., K = 25), we can observe a better separa-
tion of labels over topics. However, even with small size of
K, we can still obtain meaningful insights such as how di�er-
ent categories relate each other (i.e., whether two categories
are often captured together in a topic).

30%

7%

8%

16%

13%

15%

11%

Category Percentage in Cora

 

 

Neural Network
Rule Learning
Reinforcement Learning
Probabilistic Methods
Theory
Genetic Algorithms
Case Based

(a)

Topic 1:
Neural Network

Topic 2: 
Neural Network

Topic 3: 
Neural Network

Topic 4: 
Reinforcement Learning

Topic 5: 
Probabilistic Methods

Topic 6: 
Theory

Topic 7: 
Theory

Topic 8: 
Genetic Algorithms

Topic 9: 
Genetic Algorithms

Topic 10: 
Case Based

(b)

Figure 5: (a) The percentage of known categories in Cora.
(b) The percentage of the categories for the collection of
documents of each topics (K = 10).

Figure 6: The top 30 attended venues from the four most
popular clusters are displayed in di�erent colors. The emer-
gence of neighborhoods appear evident.

Case Study 2: Analysis of Gowalla. To the best
of our knowledge, our work is one of the �rst attempts at
�nding the joint topic space in a location-based social net-
work. Previous studies modeled social networks and user
mobility patterns [14, 17, 50, 53]. For example, Wang et
al. [53] measured the co-visitation frequency to infer social
interactions. However, their model su�ers from capturing
ties between nodes which often exhibit no co-occurrence in
locations within physical proximity. We previously intro-
duced a latent space representation of venues to predict so-
cial ties [16] using agglomerative information bottlenecks to
cluster venues, and compared it to other models including
one based on LDA. However, that approach only clusters
venues, while ideally one would prefer to cluster venues and
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Figure 7: Maps of San Francisco’s four most attended clusters, and their top 100 attended venues. The three leftmost maps
show clusters that mostly capture physical proximity. However, the rightmost map shows that CLSM can also capture other
dimensions: in such a case for example we can see many tourist spots emerging due to the social nature of human traveling.

users simultaneously. Here, CLSM applied to Gowalla data
�nds the joint latent space that simultaneously describes the
friendship between users and their check-in behavior (i.e.,
venues they attend). Using the geo-coordinates provided for
each venue, we further investigate the geographical distribu-
tion of popular venues. Even though we have not explicitly
included the geo-coordinates in our inference algorithm, we
may reasonably assume that geo-clusters (neighborhoods)
should be reected in our inferred topics (clusters), since
some people make friends with others who live or work close-
by. Our analysis focuses on San Francisco: in Figure 6 we
produce the results of the attribute prediction task with
CLSM by setting the total number of topics (clusters) to
K = 25. After selecting the four most popular clusters, we
visualize the overall top 30 most attended venues: we can
appreciate how the four clusters appear geographically well
separated. Let us analyze them more into detail: Figure 7
this time shows the top 100 popular venues for each of the
four clusters above. From left to right, the �rst three maps
show that indeed the visited venues are a�ected by physical
distances, and we can observe the emergence of neighbor-
hoods. However, the rightmost map shows that our model
is also able to capture clusters not necessarily representing
physical closeness: further inspection reveals that this clus-
ter represents tourist spots that are often attended by San
Francisco’s visitors. No other model was able to capture si-
multaneously such diverse patterns: CSLM overcomes this
limit by leveraging the multi-modal nature of social data.

5. CONCLUSION
Techno-social systems exhibit a remarkable amount of com-

plexity, capturing not only the interactions among users but
also their attributes and behaviors along multiple dimen-
sions. For example, in location-based social networks users
can be concurrently described by their mobility patterns,
their activities, their preferences, and of course by their
social links. In online social networks users produce and
consume contents, link each other, join groups, etc. Re-
cent studies illustrated that these modalities taken indepen-
dently cannot capture the multiple facets of user activity
and behavior. As a result, our ability to e�ectively model,
design, analyze and improve such systems substantially de-
pends on the possibility of leveraging the abundance of rich
contextual information. In summary, very many practical
problems commonly occurring when designing or analyzing
socio-technical systems would greatly bene�t from a multi-
modal modeling framework.

To address these challenges, in this paper we proposed
the Constrained Latent Space Model (CLSM), which em-
ploys a multi-modal paradigm to simultaneously describe
social network information and user behavioral data using a
latent space representation. To describe the network gener-
ative process, CLSM leverages Mixed Membership Stochas-
tic Blockmodels (MMSB) that captures mixed memberships,
nodes that may belong to more than one community at the
same time. The latent space is inferred via Latent Dirichlet
Allocation (LDA). One remarkable characteristic of CLSM
is that it introduces a constraint that enforces MMSB and
LDA to overlap on the same latent space without loss of ex-
ibility. To tame the algorithmic complexity of such a task,
we suggested an e�cient inference strategy based on Varia-
tional Expectation Maximization, which scales linearly with
the size of the network. Experiments with synthetic data
illustrate the advantage of such an approach.

To further show the exibility of our framework, we de-
signed two evaluation tasks inspired by prediction problems
commonly occurring with real techno-social systems: (i) a
link prediction experiment that aims at reconstructing the
missing links among users given available attributes or be-
havior data; (ii) an attribute prediction experiment where
we infer user attributes (or behaviors) leveraging social in-
teraction data. A rigorous evaluation of our model against
two existing approaches (Pairwise Link-LDA and Relational
Topic Model) illustrates the superior performance of CLSM.
The benchmark performed on six di�erent multi-modal so-
cial datasets includes location-based social networks, social
sharing platforms, etc. We reported the increments in pre-
diction accuracy (measured by AUC) yielded by CLSM with
respect to the state of the art on all the evaluation sce-
narios: CLSM outperforms Pairwise Link-LDA on average
by 12.56% and 5.14% in link and attribute prediction, re-
spectively, and it surpasses RTM by 9.06% and 10.16% on
the same tasks. We further discuss two scenarios in details,
describing the insights obtained adopting our multi-modal
framework that would have not been otherwise possible.

The main appealing features of the proposed approach in-
clude its excellent scalability and its ability to handle various
types of multi-modal datasets with relational information. It
is worth noting that, although we here report only analyses
of bimodal networks, CLSM can be adopted with data cap-
turing any number of modalities. For such a reason, in the
future we plan to use our model on datasets with even more
modalities (e.g., multi-layered attributes, or combinations of
di�erent types of relational information between nodes).
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