
Learning Global Term Weights for Content-based
Recommender Systems

Yupeng Gu
∗

Northeastern University
Boston, MA, USA

ypgu@ccs.neu.edu

Bo Zhao
LinkedIn Corp

Sunnyvale, CA, USA
bozhao@linkedin.com

David Hardtke
LinkedIn Corp

Sunnyvale, CA, USA
dhardtke@linkedin.com

Yizhou Sun
Northeastern University

Boston, MA, USA
yzsun@ccs.neu.edu

ABSTRACT
Recommender systems typically leverage two types of sig-
nals to e�ectively recommend items to users: user activ-
ities and content matching between user and item pro�les,
and recommendation models in literature are usually catego-
rized into collaborative �ltering models, content-based mod-
els and hybrid models. In practice, when rich pro�les about
users and items are available, and user activities are sparse
(cold-start), e�ective content matching signals become much
more important in the relevance of the recommendation.

The de-facto method to measure similarity between two
pieces of text is computing the cosine similarity of the two
bags of words, and each word is weighted by TF (term fre-
quency within the document) × IDF (inverted document
frequency of the word within the corpus). In general sense,
TF can represent any local weighting scheme of the word
within each document, and IDF can represent any global
weighting scheme of the word across the corpus. In this pa-
per, we focus on the latter, i.e., optimizing the global term
weights, for a particular recommendation domain by lever-
aging supervised approaches. The intuition is that some
frequent words (lower IDF, e.g. \database") can be essential
and predictive for relevant recommendation, while some rare
words (higher IDF, e.g. the name of a small company) could
have less predictive power. Given plenty of observed activ-
ities between users and items as training data, we should
be able to learn better domain-speci�c global term weights,
which can further improve the relevance of recommendation.

We propose a uni�ed method that can simultaneously
learn the weights of multiple content matching signals, as
well as global term weights for speci�c recommendation tasks.
Our method is e�cient to handle large-scale training data

∗This work was conducted during an internship at LinkedIn.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2883069 .

generated by production recommender systems. And ex-
periments on LinkedIn job recommendation data justify the
e�ectiveness of our approach.

Keywords
Term weighting, recommender systems, feature selection

1. INTRODUCTION
Recommendations are ubiquitous on the web in all kinds

of areas, including product recommendation, movie/music
recommendation, job recommendation, etc. Recommender
systems typically leverage two types of signals to e�ectively
recommend items to users: user activities and content match-
ing between user and item pro�les. Recommendation models
in literature are usually categorized into collaborative �lter-
ing models, content-based models and hybrid models. The
e�ectiveness of di�erent approaches varies depending on the
characteristics of data and user interactions of the speci�c
domain. For example, if user activities are sparse and a lot of
users do not have much interaction with the system (among
all LinkedIn users who we show job recommendation results,
few people have actually applied the recommended jobs),
collaborative �ltering would su�er from the cold start issues
and therefore we should rely more on content-based signals.
Moreover, in scenarios where rich pro�les about users and
items are massively available (most LinkedIn users have rich
pro�les about their past work experience, titles and skills,
etc.; jobs on LinkedIn also have complete pro�les), e�ective
content matching signals become even more important in
the relevance of the recommendation.

When we talk about user pro�les in recommendation con-
text, we typically refer to the pro�le of user preferences. We
could speci�cally ask for user preferences (in LinkedIn job
recommendation we allow users to specify their preferred lo-
cation, seniority level, etc.), infer user preferences from past
user interactions [30], or assume other types of user pro�les
are proxies of user preferences. We focus on the last case in
the scope of this paper. Speci�cally, we can reasonably as-
sume users’ LinkedIn pro�les which include their past work
experience, skills, titles indicate their preferences for future
jobs, and therefore, we could rely on content matching sig-
nals between user pro�les and job pro�les to compute the
relevance scores between users and jobs.

391

Since we are using user pro�les as proxies for user pref-
erences for jobs, and both user pro�les and job pro�les are
rich in text, it becomes obvious that more e�ective content
analysis methods and text similarity measures are crucial for
improving the relevance of recommendation. The de-facto
method to measure similarity between two pieces of text is
computing the cosine similarity of the two bags of words,
and each word is weighted by TF (term frequency within
the document) × IDF (inverted document frequency of the
word within the corpus). If we go beyond the narrow def-
inition of TF and IDF, in general sense, TF can represent
any local weighting scheme of terms within each document,
and IDF can represent any global weighting scheme of terms
across the corpus. Numerous previous work on content anal-
ysis can be applied to improve the calculation of TF, e.g., we
could use term weighting schemes in IR such as BM25, and
we could apply NLP techniques such as keyword extraction,
topic analysis and salience detection to select important and
topical keywords from the document. In this paper, we focus
on improving IDF, or the global term weights across corpus,
and it is clear that any content analysis techniques for im-
proving TF are orthogonal and can be easily integrated with
our approach.

Inverse document frequency (IDF) [28] of a term is pro-
portional to an inverse function of the number of document
it occurs in. The idea is simple: the more documents a term
appears in, the less likely it can distinguish relevant and non-
relevant documents. This simple yet e�ective method has
been popular over the decades with wide applications in var-
ious areas. However, sometimes IDF is not optimal or even
not reliable. In some scenarios, relatively frequent terms
could be very predictive. For example, \machine learning"
1 is a very predictive term in job recommendation, but its
IDF is decreasing since we are having more machine learn-
ing jobs in the corpus. In some other circumstances, we
should down-weight some rare and high IDF terms in a rec-
ommendation task. Consider the scenario when some rare
but non-essential terms happen to match between user and
job pro�les, which could result in absurd job recommenda-
tion to the user.

In a production recommender system, tremendous amount
of past user activities can be collected and serve as training
data for improving the recommendation model. Intuitively,
from the massive training data, we should be able to learn
domain-speci�c global term weights, which are optimized for
the particular prediction task comparing with unsupervised
generic scheme like IDF. For example, if we observe users
who list machine learning as their skills are more likely to
apply for machine learning jobs, we can infer\machine learn-
ing" is a more important term. With optimized global term
weights, the content matching signals and relevance of rec-
ommendation can be improved as a result.

Ideally, the learning of global term weights and the learn-
ing of �nal relevance score between users and items should
be seamlessly integrated in a uni�ed framework, with the
same objective function. For example, if cosine function is
used for computing the similarity between text, then the
term weight learning should target on directly optimizing
the cosine similarity; if there are multiple cosine similarity
scores between di�erent sections of user and item pro�les
(e.g. user title section vs. job skills section; and user skills

1In this work we also treat n-grams as terms.

section vs. job skills section), then the global term weights
should be optimized holistically across all matching sections.
The uni�ed framework should also easily allow other features
not based on content matching and cosine similarity in the
overall relevance model. These aspects are all satis�ed in
our proposed method.

Learning global term weights has other applications as
well. For example, when we construct inverted index of jobs
for job search and recommendation, we could potentially
ignore terms with low weights so that index size and query
performance could be improved.

Overall, in this paper we investigate the problem of auto-
matically learning global term weights for content-based rec-
ommender systems. More speci�cally, we propose a uni�ed
supervised learning framework that can simultaneously learn
term weights as well as the weights of text similarity features
(cosine similarity scores) in the �nal relevance model. Our
proposed method is e�cient to handle large scale training
data generated by production recommender systems. We
conduct experiments on real data from LinkedIn job recom-
mendation system to demonstrate the e�ectiveness of our
approach. Based on our knowledge, we are the �rst to pro-
pose such method.

2. PROBLEM DEFINITION
In this section, we formally de�ne the problem we target

to solve in this paper. First of all, we use the following
examples to motivate our work.

Case 1. In some cases, relatively frequent terms could be
more predictive of relevant recommendation results. Con-
sider a user with description \I have enrolled in a project
which provides users with a visualization of federal govern-
ment financial statistics using machine learning techniques".
And we compute cosine similarity between user description
with the following two jobs description with equal length:
the �rst job says\We are a managed services provider for the
federal government", and the second job says \You will ap-
ply machine learning algorithms to analyze big data". Both
job descriptions share one phrase with the user (\federal
government" vs. \machine learning"), but if we have more
machine learning jobs than government-related jobs in the
job database, \machine learning" will be associated with a
lower IDF score than \federal government". As a result, the
government job will have a higher similarity score than the
machine learning job, but it is clearly less relevant.

Case 2. Consider the scenario when some rare but non-
essential terms happen to match between user and job pro-
�les, which could result in absurd job recommendation to
the user. For example, a user has worked at a company
that is funded by a venture capital �rm V, and the user
mentioned V in his/her pro�le. A job is posted by another
company that is also funded by venture capital V, and V is
also mentioned in the job description. The job is not related
to the user’s expertise, but the term V happens to match
between the member and job pro�le. Since V is quite rare
in the job corpus, it has very high IDF and therefore it can
arti�cially boost the similarity score between member and
job pro�le, although the job is not relevant to the user.

In this paper, we propose a supervised learning approach
that can simultaneously learn global term weights as well
as multiple text similarity features between user and item
pro�les. Formally, given a user and an item as in Figure 1,
we aim to solve the following questions:

392

• Predict the relevance score of the item to the user.

• Learn the weights of multiple content matching fea-
tures between user and item pro�les (e.g., user skills
against job skills, user titles against job skills)

• Learn the optimal global term weights for each user
text section and item text section (e.g., importance of
\machine learning" in job skills)

Figure 1: An example of content matching signals
between user and job profiles

We will propose a model that is able to address the is-
sues mentioned in the two scenarios above since the global
term weights are optimized for the particular recommenda-
tion domain.

We will use the notations in Table 1 in our paper. We
refer recommendation items as jobs in this paper, but the
approach can work with other types of items with rich text
information (e.g., products, movies).

Table 1: Table of Notations
NU Number of users
NV Number of jobs
NW Number of terms
FU Number of �elds for user
FV Number of �elds for job

ui,s
User i’s NW dimensional
bag-of-words representation in �eld s

vj,t
Job j’s NW dimensional
bag-of-words representation in �eld t

W
(1)
sw The weight for term w in �eld s

W
(2)
st

The weight for the pair of
user �eld s and job �eld t

W (1) Weight matrix in the �rst layer

W (2) Weight matrix in the second layer
yij Binary response from user i to job j
Sp Set of �eld pairs that are used in the model

S+ Positive label set

S− Negative label set

λ1 Regularization coe�cient for W (1)

λ2 Regularization coe�cient for W (2)

3. METHOD
In this section, we describe our approach in details, we

�rst describe the overall model that predicts relevance of
items to users, then we describe how we can incorporate the
learning of global term weights into the model.

3.1 Logistic Regression Model
First we briey review the logistic regression model, which

is a commonly used model because of its e�ciency and ef-
fectiveness. Logistic regression estimates the probability of
a binary response based on a series of input features. In
our task we will design features based on text similarity be-
tween user and job pro�les and feed them into the logistic
regression model to predict the probability that the job is a
good recommendation for the user. To incorporate our data
into the logistic regression model, we must carefully design
the feature for each data instance, namely a pair of user and
job.

Intuitively there are many reasons why the user is inter-
ested in a job: the user possesses the skills required by the
job, the seniority of the job is a good match, they are in the
same location, etc. This corresponds to the concept of �elds
in our framework: both users and jobs have various text
�elds such as title, skills, location and so on. An example is
given in Figure 1 where the user and job pro�le have some
matching �elds.

For a pair of user text �eld and job text �eld, we calculate
the similarity between the two pieces of text as a feature of
the overall recommendation model. The classic text simi-
larity function is cosine similarity, formally, the similarity
between user i’s �eld s and job j’s �eld t is,

s
(i,j)
s,t =

ui,s · vj,t

||ui,s||2 · ||vj,t||2
. (1)

Here || · ||2 is the l2 norm of a vector, and ui,s represents
the term vector, each dimension represents a term, and the
value in each dimension represents the weight of the term.
ui,s is often decomposed as tfs ◦ idfs, where tfs repre-
sents local term weights. Each element of tfs could simply
be the frequencies of terms in the document, or it could be
estimated by more advanced methods, such as IR weighting
scheme (e.g., BM25), or other NLP and content analysis ap-
proaches. idfs represents the inverted document frequencies
of terms or other global term weights for all terms in �eld
s, and ◦ is the element-wise product between two vectors:
x ◦ y = (x1y1, · · · , xnyn).

Not every pair of �elds is meaningful, for example, it does
not make too much sense to compute the similarity between
user’s skills and job’s location. Therefore we will only com-
pute similarity scores in a subset Sp of all possible pair of
�elds as the features for the recommendation model. The
selection of meaningful pairs could be done o�ine and by
domain experts.

We assign weights for each pair of �elds in Sp to indi-
cate the importance of the feature. The probability that
job j is a good recommendation for user i is determined by
the weighted sum of input feature scores plus a threshold,
namely

p(yij = 1|{ui,s}FU
s=1, {v

j,t}FV
t=1,W) = σ

(∑
s,t∈Sp

wsts
(i,j)
s,t +w0

)
(2)

393

where σ(·) is the sigmoid function σ(x) = 1/(1 + e−x) and

s
(i,j)
s,t is de�ned as in Equation (1).
The logistic regression model in our framework is depicted

in Figure 2. Note that it is exible to include other features
that are not based on content matching between users and
jobs into this model, and the learning of the weights for
those features are the same, except we do not perform global
term weight optimization for those features, which we will
describe in the next section.

Figure 2: Logistic Regression Model

3.2 Multi-layer Logistic Regression Model
In this section, we describe how we can learn global term

weights. In order to simultaneously learn term weights (W
(1)
s ,

W
(1)
t) and weights of text similarity features (W

(2)
s,t) in a uni-

�ed framework, we design a two-layer neural network, where
terms are in the bottom layer and text similarity features are
in the top layer.

In the term layer of the neural network, we associate
weights with each term. Those weights are considered as
model parameters and the gradients can back-propagate to
the �rst layer to learn them. More speci�cally, the raw
feature of each word w in �eld s is adjusted from ui,sw to

W
(1)
sw · ui,sw . Note that existing global weighting scheme such

as IDF can still be incorporated in ui,sw .
On one hand, if a term is predictive in the recommenda-

tion task (a user with machine learning skill is more likely to
apply for machine learning jobs), we would expect the corre-
sponding global term weight to be large so that the term will
be more important when cosine similarity is calculated. On
the other hand, if some term is meaningless or even mislead-
ing, the weight for the corresponding term should be close
to zero in order to reduce the e�ect of the term.

It is noteworthy that the same term in di�erent �elds will
be assigned with di�erent weights, since they may carry dif-
ferent meanings and have di�erent importance scores. For
instance, the term \California" is essential in �eld \location",
but may not be that meaningful if it appears in another �eld.

Therefore, we assign weight W
(1)
sw to each term w and �eld s

where the term appears in. We use a (FU + FV)×NW ma-

trix W (1) to represent the term weights in all �elds, where
the entry at sth row and wth column represents the weight
for term w in �eld s. Another design choice would be cre-
ating a set of term weights for each matching pair of user
text �eld and job text �eld, but it would result in too many
parameters to estimate.

Now user i’s raw feature in �eld s (ui,s) is mapped to the

transformed feature ũi,s = W
(1)
s ◦ ui,s, where W

(1)
s denotes

the sth row of matrix W (1). The �eld pair similarity score
is now calculated based on the transformed feature values.
An example of the �rst layer is shown in Figure 3. Formally,
the similarity score between user i’s �eld s and job j’s �eld
t is changed to

s
(i,j)
s,t =

ũi,s · ṽj,t

||ũi,s||2 · ||ṽj,t||2
. (3)

After the construction of �rst layer, each input feature
(similarity score) is assigned a weight in the overall relevance
model. Naturally these weights appear in the second layer of
the neural network and we represent the weight as a sparse
FU ×FV matrix W (2), where the element at sth row and tth

column represents the weight for user-job �eld pair (s, t).
A toy example of the neural network model is depicted in
Figure 4. Note that in this framework, we could easily add
features in the second layer that are not based on content
similarity, and we can learn the weights of these features
together with the text similarity features, the only di�erence
is that we do not have term layer for those non-text features.

The probability that user i will apply for the job j is given
by

pij = p(yij = 1) = σ
(∑
s,t∈Sp

W
(2)
s,t s

(i,j)
s,t + w

(2)
0

)
(4)

where σ is the logistic function and yij is a binary value that
indicates the label of the user-job pair. Basically yij = 1
denotes a successful recommendation and yij = −1 means

otherwise. We will use σij to denote
∑
s,t∈Sp

W
(2)
s,t s

(i,j)
s,t +

w
(2)
0 in the remaining part.

Figure 3: First Layer of the Neural Network Model

394

Figure 4: The Neural Network Model - A Toy Example. Each filled circle denotes a term and each box
represents a field. Each hollow circle denotes a neuron in the neural network. Parameters are W (1) and W (2).

We use log-loss to denote the prediction error, therefore
the objective function is

~J(W (1),W (2)) =

NU∑
i=1

NV∑
j=1

log (1 + e−yijσij) .

We will minimize the objective with respect to model pa-
rameters W (1) and W (2).

The summation above contains NU · NV terms, namely
all possible pairs of users and jobs in the dataset. However,
in real world the actual user-job interaction matrix is very
sparse. Therefore we only consider the set of good recom-
mendations S+, and sample the set of bad recommendations
S− from the remaining pairs. The union of the two disjoint
sets will be used to approximate the two summations in the
formula above. We will specify the criterion for good/bad
recommendations in our dataset and how they are generated
in section 4.1.

3.3 Regularization
The parameter of our model is W (1) and W (2). l2 regu-

larization is added on logistic weights W (2) to avoid over-
�tting. For the term weights W (1), as the feature dimen-
sion is very large and majority of terms should receive small
weights, we add an l1 regularization on W (1) to encourage
sparsity in term-level weights. So the �nal objective function
we will minimize is

J(W (1),W (2)) =
∑

(i,j)∈S+∪S−
log (1 + e−yijσij)

+λ1 ·
FU+FV∑
s=1

NW∑
w=1

|W (1)
sw |+

λ2

2
· ||W (2)||2F

(5)

where || · ||F is the Frobenius norm of a matrix: ||A||F =(∑
m,nA

2
mn

)1/2
.

3.4 Optimization
Since the number of parameters is large and there are

tremendous amount of training data, we use stochastic gra-
dient descent (SGD) to learn the model, since it is proven
to be scalable and e�ective. For learning term weights in
the bottom layer, we use ideas similar to the common back-
propagation approach [23], where the error is propagated
backwards from the top label layer down to the �rst layer.
To handle the optimization for l1 norm, we use the subgra-
dient strategy proposed in [24].

The gradients w.r.t parameters can be calculated as fol-
lows. First, we look at the top layer weights (for �eld pairs):

∂J

∂W
(2)
st

=
∑

i,j:yij 6=0

cij ·
ui,s · vj,t

||ui,s|| · ||vj,t|| + λ2 ·W (2)
st (6)

where

cij = −yij ·
e−yijσij

1 + e−yijσij
.

Then, the gradients for �rst layer weights in user �elds:

∂J

∂W
(1)
sw

=

∂J̃

∂W
(1)
sw

+ λ1
W

(1)
sw

|W (1)
sw |

if |W (1)
sw | > 0

∂J̃

∂W
(1)
sw

+ λ1 if W
(1)
sw = 0, ∂J̃

∂W
(1)
sw

< −λ1

∂J̃

∂W
(1)
sw

− λ1 if W
(1)
sw = 0, ∂J̃

∂W
(1)
sw

> λ1

∂J̃

∂W
(1)
sw

if W
(1)
sw = 0,−λ1 ≤ ∂J̃

∂W
(1)
sw

≤ λ1

where

∂ ~J

∂W
(1)
sw

=
∑

i,j:yij 6=0

∑
t:(s,t)∈Sp

cij ·W (2)
st

||ũi,s|| · ||ṽj,t|| · (u
i,s
w vj,tw W

(1)
tw

− W
(1)
sw · (ui,sw)2 · (ũi,s · ṽj,t)

||ũi,s||2) .

(7)

395

The gradients for �rst layer weights in job �elds are simi-
lar:

∂J

∂W
(1)
tw

=

∂J̃

∂W
(1)
tw

+ λ1
W

(1)
tw

|W (1)
tw |

if |W (1)
tw | > 0

∂J̃

∂W
(1)
tw

+ λ1 if W
(1)
tw = 0, ∂J̃

∂W
(1)
tw

< −λ1

∂J̃

∂W
(1)
tw

− λ1 if W
(1)
tw = 0, ∂J̃

∂W
(1)
tw

> λ1

∂J̃

∂W
(1)
tw

if W
(1)
tw = 0,−λ1 ≤ ∂J̃

∂W
(1)
tw

≤ λ1

∂ ~J

∂W
(1)
tw

=
∑

i,j:yij 6=0

∑
s:(s,t)∈Sp

cij ·W (2)
st

||ũi,s|| · ||ṽj,t|| · (u
i,s
w vj,tw W (1)

sw

− W
(1)
tw · (vj,tw)2 · (ũi,s · ṽj,t)

||ṽj,t||2) .

(8)
Since the terms in the �rst layer are very sparse, we need

to consider such sparsity in deciding the learning rate in
SGD. Here, we use the method of adaptive step-size de-
scribed in [22] and [10] to update the learning rate for each
feature dynamically. The intuition is that for a sparse fea-
ture that appear very few times, the step size of such feature
should be larger. Speci�cally, we keep track of the gradient
applied on a parameter in every iteration and decrease its
step-size accordingly. In short, the more a parameter has
been updated, the smaller its step-size becomes. The up-
dating rule of any parameter θ is given by

θ(t+1) = θ(t) − η · gt+1√∑t+1
t′=1 g

2
t′

(9)

where θ(t) is the value of θ for the tth times θ appears, η is
the learning rate and gt is the gradient of θ for the tth times
that θ is updated.

4. EXPERIMENTS
In this section we will demonstrate the advantage of our

model compared to baseline models. We will �rst describe
the dataset and then evaluate our model with other base-
lines. We also conduct several case studies to show which
terms are the most predictive in our recommendation task,
as well as which pairs of �elds are important. Those case
studies show the alignment of our model with the intuition.

4.1 Dataset
We use a real world dataset from LinkedIn2 to evaluate

our model. LinkedIn has a feature called \Jobs You May
Be Interested In" (JYMBII), which provides job recommen-
dations to its members that match the member’s pro�le in
some way. When a user logs in, he/she is able to see several
recommendations under the JYMBII panel in the timeline
as in Figure 5, and the user can click the job to see details,
apply for it or simply ignore them.

We used job recommendation data from May 2015. Each
record contains information such as the user ID, job ID,
whether the user applied/viewed for the job, time stamp
and so on. We further divide them into two sets according
to the interaction between the user and the job. We consider

2http://www.linkedin.com/

Figure 5: JYMBII (“Jobs you may be interested in”)
panel

the label of a user-job pair as positive if the member applied
for the job, and one as feedback negative if the member has
seen the job recommendation but did not click it. The rea-
son for the di�erent criterion is to distinguish the two labels
as much as we can, as applying for the job is a much stronger
behavior than simply clicking it. The collection of positive
pairs constitutes the positive label set S+. In considera-
tion of balancing positive and negative samples, we sample
a subset of negative pairs from our negative label set S−.
For the negative label set, half is chosen from the feedback
negatives (the user did not click the job), the other half is
called random negatives, which are generated by randomly
sampling pairs of users and jobs. We need the random neg-
atives because there is bias if we only use feedback negatives
as negative training data.

In total, our sample data contain about 3.1 million user-
job pairs. 90% of the data are used for training and the
remaining 10% as test. The dictionary contains 490,089 dis-
tinct terms, where stop words have already been removed
and meaningful phrases are also extracted (such as\machine
learning"), we simply treat these phrases the same as other
uni-gram terms. Users have 51 �elds and jobs have 24 �elds.
As mentioned before, we manually scanned the possible �eld
pairs between users and jobs and keep 79 �eld pairs in the
logistic regression.

4.2 Baseline
In our experiments, we compare with a baseline and sev-

eral variations of our method. In all the methods, TF in
certain short text �elds are simply term frequency, while in
longer text �elds are BM25 scores. Standard IDF scores are
also used in our approach as mentioned in Section 3.2, so we
are essentially learning an adjustment of the standard IDF
scores.

• The basic logistic regression model as described in 3.1
with TF-IDF weighting scheme.

• One variation of our multi-layer logistic regression model
where only term weights in the job’s �elds are learned,
while on member side, heuristic TF-IDF is used. Since
we reduce the number of parameters, the training of
this model is more e�cient.

• One variation of our multi-layer logistic regression model
where only top portion of terms are kept in every �eld
after the training process. The remaining terms are
dropped as if they never exist. This mainly tries to test

396

if we can e�ectively reduce our index size by learning
term weights.

By comparing our model with the �rst baseline, we are
able to show the advantage of using automatically learned
term weights in a speci�c task rather than using a heuristic
one. Improvement of the �rst variation demonstrates the
signi�cance in constructing entity feature using learned pa-
rameters as well. The comparison to the second variation
illustrates our ability to achieve a good recommendation re-
sult e�ectively using only a portion of the terms. For fair
comparison, we use the same coe�cient for the l2 regulariza-
tion and apply adaptive learning rates in all methods above.

4.3 Evaluation of the Multi-layer Logistic Re-
gression Model

We use the area under the ROC (receiver operating char-
acteristic) curve (AUC) as well as the area under precision-
recall curve (AUPRC) to evaluate the results. AUC and
precision/recall are important measures in terms of recom-
mendations. ROC curve illustrates the performance of a
binary classi�er as the threshold changes. Two axes of the

curve is true positive rate TPR =
∑

True Positive∑
Condition Positive

and

false positive rate FPR =
∑

False Positive∑
Condition Negative

. AUC is the

area under the ROC curve, and basically the score will be
higher if the probability of more positive instances ranks
higher than negative ones. Precision-recall curve is also a
plot that presents the results of a binary classi�er and it is
created by plotting precision against recall as the threshold
varies. Both of them are popular evaluation measures for a
binary classi�er.

Table 2: Effectiveness of MLRM
Method AUC AUPRC

Baseline 0.692 0.671
MLRM 0.811 (+17.2%) 0.793 (+18.2%)

MLRM (jobs only) 0.792 (+14.5%) 0.771 (+14.9%)

Table 2 shows the AUC and AUPRC of baseline, our
method MLRM and MLRM (jobs only). The ROC curve
and the precision-recall curve of our methods and the base-
line are shown in Figure 6. As we can see, MLRM can
improve both measures by more than 17% over the base-
line, which clearly justi�es the e�ectiveness of learning global
term weights. Even if we only learn term weights for jobs,
we could still improve the relevance by 14%.

Table 3: Effectiveness of selecting top terms
Method AUC AUPRC

MLRM 0.811 (+17.2%) 0.793 (+18.2%)
MLRM (top 90%) 0.786 (+13.6%) 0.764 (+13.9%)
MLRM (top 80%) 0.760 (+9.8%) 0.768 (+14.4%)
MLRM (top 50%) 0.756 (+9.3%) 0.761 (+13.4%)
MLRM (top 10%) 0.744 (+7.5%) 0.780 (+16.2%)

In consideration of e�ciency, after learning the parame-
ters for terms in all �elds, we could use the terms that have
highest weights in each �eld as the �eld’s representation.
Those terms which have a weight lower than a threshold
are discarded. If we build inverted index on jobs to allow

search and recommendation, we could only select these top
terms so that index size can be reduced and query time can
be improved, since query terms that are not top terms will
not hit any inverted index. The results of the variations are
shown in Table 3, in general if we drop terms, results will be
worse, but they are still better than the baseline. Note that
we already perform L1 normalization in learning the term
weights, so there are already quite a few terms that have
zero weights in the full model. We can see that even if we
only use the top 10% terms, AUC is still 7.5% better than
the baseline.

In sum, our full model has the best performance among
all the trials. We are able to achieve an outstanding per-
formance as well even if we are only allowed to manipulate
one type of entity in a recommendation task. In particu-
lar, our approach still has considerable improvement over
the baseline even if we use only half of the terms in every
�eld to do recommendation, which indicates less storage re-
quirement and better computing e�ciency. The results of
keeping fewer important keywords show a trade-o� between
performance and even higher space and computational e�-
ciency.

Table 4: Sensitivity of regularization parameter
Coe�cient of

l1 Regularization
AUC AUPRC

λ1 = 10−8 0.804 (+16.2%) 0.789 (+17.6%)

λ1 = 10−7 0.806 (+16.4%) 0.789 (+17.6%)

λ1 = 10−6 0.808 (+16.8%) 0.789 (+17.6%)

λ1 = 10−5 0.780 (+12.7%) 0.750 (+11.8%)

We set the regularization coe�cient to be λ1 = 10−6 and
λ2 = 10−5 in all of the results and �gures above. We try
di�erent values of λ1 in our model and the comparison with
baseline is shown in Table 4. We can observe that our model
is not sensitive to the choice of regularization coe�cient.

We also study the e�ect of adaptive learning rate and
l1 regularization in Table 5. In short, regularization and
optimizing tricks do improve our model’s performance.

Table 5: Effect of Adaptive Learning Rate and l1
Regularization

Method AUC AUPRC

MLRM without l1
and adaptive

0.793 (+14.6%) 0.774 (+15.4%)

MLRM with
l1

0.808 (+16.8%) 0.789 (+17.6%)

MLRM with
adaptive

0.811 (+17.2%) 0.793 (+18.2%)

4.4 Case Studies
In addition to the improvement in terms of AUC/AUPRC

as shown above, we also conduct a few case studies on the
parameters which can tell some interesting stories behind
our model.

4.4.1 First Layer Weights W (1)

These weights are also known as term weights in di�erent

�elds. Recall that W
(1)
sw is large if term w is discriminating

397

Figure 6: Comparison on Test Dataset

and predictive in �eld s, whereas W
(1)

sw′ is close to zero if

term w′ acts like a stop word. We plot a histogram of W
(1)
sw

for some of job �elds in Figure 7, and histograms on term
weights in user �elds are similar. The weight distribution
basically follows the Zipf’s Law.

There are a few terms in each �eld with large weights.
The importance of these keywords is straightforward: if they
appear in the particular �elds of both user and job, the user
is more likely to apply for the job. In other words, these
keywords are predictive in our job recommendation task.
From the results we can also recognize which are the most
predictive skills, locations, etc. when people are looking for
jobs. For instance, the term \machine learning" has a large
weight in both user and job’s skill �eld. It can be inferred
that the chance of a machine learning person applying for a
machine learning related job is higher than another user-job
pair with di�erent skills.

Table 6: Top Field Pairs
Rank User Field Job Field

1 Skill Id Skill Id
2 Summary Description
3 Skill Terms Skill Terms
4 Past Position Summary Description
5 Past Title Title
· · · · · · · · ·
79 Past Title Skill

4.4.2 Second Layer Weights W (2)

These �eld-pair weights indicate which pairs of �elds come
�rst in determining the overall relevance of jobs to users. A

larger weight W
(2)
st indicates that the interaction between

user �eld s and job �eld t is more essential. We sort those

�eld pairs according to W
(2)
st and summarize the results in

Table 6. We can see from the table that the most important
factors in job application are, the matching of user and job
skills (ranking 1st and 3rd), and user’s summary with job’s

description (ranking 2nd); whereas the matching between
user’s past title and job’s skills is the least important.These
�eld-pair weights agree with both the weights learned by the
baseline model and our intuition.

5. RELATED WORK
Designing text representations from the content has at-

tracted interests from researchers in various �elds. The de-
facto method for weighting terms is the TF × IDF scheme,
and in general sense TF can represent any local weighting
scheme of the word within each document, and IDF can rep-
resent any global weighting scheme of the word across the
corpus. Numerous content analysis approaches can be ap-
plied to determine TF, including IR based measures (e.g.,
BM25), NLP based methods such as topic analysis, keyword
extraction, salience detection, etc. As we have mentioned,
these methods are orthogonal to the focus of this paper, and
they can be easily integrated with our approach.

In this paper we focus on learning the global term weights,
so far the most successful approach for global term weights
has been inverse document frequency (IDF), which was �rst
introduced as \term speci�city" in [28]. Some approaches
have been proposed to optimize term weights for the pur-
pose of document categorization, including some supervised
approaches [6, 8, 27, 15, 16, 4, 19, 7], which exploit the
category label of the documents to provide some guidance
on term weighting. Those methods build classi�ers that es-
timate the probability that each document belongs to cer-
tain category using term weights as parameters. Soucy and
Mineau [27] utilize statistical con�dence intervals to esti-
mate the proportion of documents containing each term,
thus de�ne the strength of each term. Their method fa-
vors the terms that are proportionally more frequent in the
positive class. Deng et al. [7] propose a weighting scheme
that consists of two parts: the importance of a term in a doc-
ument as well as the importance of the term for expressing
sentiment. Those measures are learned based on statistical
functions of the supervised document label information. Lan
et al. [15] propose a new factor called \relevant frequency"

398

Description Skills Standardized Skills

Figure 7: Job Fields

which takes category information into account to improve
term’s discriminating power. Unsupervised text representa-
tions are mostly based on statistical information of terms
in the corpus. These measures contain document frequency,
χ2 statistic [31], information gain, mutual information, odds
ratio and so on.

The settings of these previous methods are mainly doc-
ument categorization, which is very di�erent from the set-
ting of this paper on content-based recommendation, where
cosine similarity is leveraged to calculate the similarity be-
tween texts, and therefore the learning of term weights should
directly optimize the cosine similarity. Moreover, there are
multiple matching �elds between users and items, and they
should be considered holistically for learning term weights.

For recommendation systems where entities are associated
with text information, there are various context-aware meth-
ods [2, 13] that try to incorporate user pro�le information
with the system in order to achieve a better recommenda-
tion performance. Speci�cally, many models have been pro-
posed to utilize text information. Text can be used as a pre-
�lter [1], post-�lter, or integrated with the recommendation
model. Among the integrated models, some approaches [20,
9, 5, 18] use text to do user classi�cation or pro�le inference,
and apply the learned label as either �ltering or modi�ca-
tion to the rating scores. Some approaches [11, 3, 29, 21,
12] use trained textual labels or sentiments for latent rat-
ing dimension. They try to correspond the topics inferred
from the text with the latent factors in content-based rec-
ommendation models. For example, Agarwal and Chen [3]
build a topic model on both user and item side, and use
the topic distribution to match the latent factor in matrix
factorization. Other methods consider text as an auxiliary
feature besides the ratings. Li et al. [17] consider text as an
additional dimension of input feature for the recommenda-
tion model. Apart from directly using text as an additional
feature for a recommendation task, several latent semantic
models have been developed in order to obtain the similarity
of two documents at topic level. This is inspired by the fact
that sometimes two relevant documents may share few terms
in common because of their language discrepancy. In this
setting, a deep structure is usually built to generate a highly
non-linear concept vector for a text string. Some of the stud-
ies have been applied to web search ranking and relevance
tasks [14, 26, 25]. Although these approaches present a more
sophisticated framework to utilize textual knowledges, our
simple yet e�ective method has a very clear explanation of

the role of each term in the recommendation system. In
addition, our algorithm is more scalable towards real-world
tasks. All of these methods rely on the representation of text
without optimizing the text representation at term level. In
this paper we propose a general framework that can simul-
taneously learn domain speci�c term weights as well as rel-
evance between users and items for recommendation.

6. CONCLUSION
In this paper, we propose a method to learn global term

weights for improving content-based recommendation. Our
method can simultaneously learn term weights and the �-
nal relevance score between users and items. Text similarity
function (cosine) is directly optimized and multiple cosine
similarity scores between di�erent sections of user and item
pro�les are considered holistically. The uni�ed framework
also easily allows other features not based on content match-
ing and cosine similarity in the overall relevance model. Our
proposed method is e�cient to handle large scale training
data generated by production recommender systems. We
conduct experiments on real data from LinkedIn job recom-
mendation system to demonstrate the e�ectiveness of our
approach, we could improve AUC by over 17%. Moreover,
we demonstrate that learning global term weights has po-
tential to improve the e�ciency of recommender systems.

Acknowledgements
This work is partially supported by NSF Career Award #1453800.

7. REFERENCES
[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and

A. Tuzhilin. Incorporating contextual information in
recommender systems using a multidimensional
approach. ACM Trans. on Information Systems
(TOIS), 23(1):103{145, 2005.

[2] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In Recommender Systems
Handbook, pages 217{253. Springer, 2011.

[3] D. Agarwal and B.-C. Chen. da: matrix factorization
through latent dirichlet allocation. In Proc. of the
third ACM Int. Conf. on Web Search and Data
Mining, pages 91{100, 2010.

[4] L. Barak, I. Dagan, and E. Shnarch. Text
categorization from category name via lexical

399

reference. In Proc. of Human Language Technologies:
The 2009 Annual Conf. of the North American
Chapter of the Association for Computational
Linguistics, Companion Volume: Short Papers, pages
33{36, 2009.

[5] M. De Gemmis, P. Lops, G. Semeraro, and P. Basile.
Integrating tags in a semantic content-based
recommender. In Proc. of the 2008 ACM Conf. on
Recommender Systems, pages 163{170, 2008.

[6] F. Debole and F. Sebastiani. Supervised term
weighting for automated text categorization. In Text
Mining and its Applications, pages 81{97. Springer,
2004.

[7] Z.-H. Deng, K.-H. Luo, and H.-L. Yu. A study of
supervised term weighting scheme for sentiment
analysis. Expert Systems with Applications,
41(7):3506{3513, 2014.

[8] Z.-H. Deng, S.-W. Tang, D.-Q. Yang, M. Z. L.-Y. Li,
and K.-Q. Xie. A comparative study on feature weight
in text categorization. In Advanced Web Technologies
and Applications, pages 588{597. Springer, 2004.

[9] J. Diederich and T. Iofciu. Finding communities of
practice from user pro�les based on folksonomies. In
Proc. of the 1st Int. Workshop on Building Technology
Enhanced Learning solutions for Communities of
Practice (TEL-CoPs’06), pages 288{297, 2006.

[10] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning
Research, 12:2121{2159, 2011.

[11] G. Ganu, N. Elhadad, and A. Marian. Beyond the
stars: Improving rating predictions using review text
content. In Proc. of the 12th Int. Workshop on the
Web and Databases, volume 9, pages 1{6, 2009.

[12] Y. Gu, Y. Sun, N. Jiang, B. Wang, and T. Chen.
Topic-factorized ideal point estimation model for
legislative voting network. In Proc. of the 20th ACM
SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pages 183{192, 2014.

[13] N. Hariri, B. Mobasher, and R. Burke. Query-driven
context aware recommendation. In Proc. of the 7th
ACM Conf. on Recommender Systems, pages 9{16,
2013.

[14] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and
L. Heck. Learning deep structured semantic models for
web search using clickthrough data. In Proc. of the
22nd ACM Int. Conf. on Information and Knowledge
Management, pages 2333{2338, 2013.

[15] M. Lan, C. L. Tan, and H.-B. Low. Proposing a new
term weighting scheme for text categorization. In
Proc. 2006 AAAI Conf. on Artificial Intelligence,
volume 6, pages 763{768, 2006.

[16] M. Lan, C. L. Tan, J. Su, and Y. Lu. Supervised and
traditional term weighting methods for automatic text
categorization. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 31(4):721{735, 2009.

[17] Y. Li, J. Nie, Y. Zhang, B. Wang, B. Yan, and
F. Weng. Contextual recommendation based on text
mining. In Proc. of the 23rd Int. Conf. on
Computational Linguistics: Posters, pages 692{700,
2010.

[18] P. Lops, M. De Gemmis, and G. Semeraro.
Content-based recommender systems: State of the art
and trends. In Recommender Systems Handbook, pages
73{105. Springer, 2011.

[19] Q. Luo, E. Chen, and H. Xiong. A semantic term
weighting scheme for text categorization. Expert
Systems with Applications, 38(10):12708{12716, 2011.

[20] H. Mak, I. Koprinska, and J. Poon. Intimate: A
web-based movie recommender using text
categorization. In IEEE/WIC Int. Conf. on Web
Intelligence, pages 602{605, 2003.

[21] J. McAuley and J. Leskovec. Hidden factors and
hidden topics: understanding rating dimensions with
review text. In Proc. of the 7th ACM Conf. on
Recommender Systems, pages 165{172, 2013.

[22] H. B. McMahan and M. Streeter. Adaptive bound
optimization for online convex optimization. In Proc.
of the 23rd Annual Conf. on Learning Theory
(COLT), 2010.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error
propagation. Technical report, DTIC Document, 1985.

[24] M. Schmidt, G. Fung, and R. Rosales. Optimization
methods for l1-regularization. University of British
Columbia, Technical Report TR-2009, 19, 2009.

[25] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. A
latent semantic model with convolutional-pooling
structure for information retrieval. In Proc. of the 23rd
ACM Int. Conf. on Information and Knowledge
Management, pages 101{110, 2014.

[26] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil.
Learning semantic representations using convolutional
neural networks for web search. In Proc. of the
Companion Publication of the 23rd Int. Conf. on
World Wide Web Companion, pages 373{374, 2014.

[27] P. Soucy and G. W. Mineau. Beyond t�df weighting
for text categorization in the vector space model. In
Proc. 19th Joint Int. Conf. Artificial Intelligence,
volume 5, pages 1130{1135, 2005.

[28] K. Sparck Jones. A statistical interpretation of term
speci�city and its application in retrieval. Journal of
Documentation, 28(1):11{21, 1972.

[29] C. Wang and D. M. Blei. Collaborative topic modeling
for recommending scienti�c articles. In Proc. of the
17th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 448{456, 2011.

[30] J. Wang and D. Hardtke. User latent preference model
for better downside management in recommender
systems. In Proc. of the 24th Int. Conf. on World
Wide Web, pages 1209{1219, 2015.

[31] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proc. 1997
Int. Conf. Machine Learning, volume 97, pages
412{420, 1997.

400

