
Automatic Extraction of Indicators of
Compromise for Web Applications

Onur Catakoglu
Eurecom & Monaco Digital

Security Agency
catakogl@eurecom.fr

Marco Balduzzi
Trend Micro Research

marco balduzzi@trendimicro.com

Davide Balzarotti
Eurecom

davide.balzarotti@eurecom.fr

ABSTRACT
Indicators of Compromise (IOCs) are forensic artifacts that
are used as signs that a system has been compromised by
an attack or that it has been infected with a particular ma-
licious software. In this paper we propose for the first time
an automated technique to extract and validate IOCs for
web applications, by analyzing the information collected by
a high-interaction honeypot.

Our approach has several advantages compared with tra-
ditional techniques used to detect malicious websites. First
of all, not all the compromised web pages are malicious or
harmful for the user. Some may be defaced to advertise
product or services, and some may be part of affiliate pro-
grams to redirect users toward (more or less legitimate) on-
line shopping websites. In any case, it is important to detect
these pages to inform their owners and to alert the users on
the fact that the content of the page has been compromised
and cannot be trusted.

Also in the case of more traditional drive-by-download
pages, the use of IOCs allows for a prompt detection and cor-
relation of infected pages, even before they may be blocked
by more traditional URLs blacklists.

Our experiments show that our system is able to automat-
ically generate web indicators of compromise that have been
used by attackers for several months (and sometimes years)
in the wild without being detected. So far, these apparently
harmless scripts were able to stay under the radar of the
existing detection methodologies – despite being hosted for
a long time on public web sites.

1. INTRODUCTION
Despite the constant effort by the security community and

the attempts to raise awareness and better educate web de-
velopers, software vulnerabilities in web applications are still
very common. Attackers routinely exploit them to steal sen-
sitive data, to take control of the target system, or simply
to deface web pages for political reasons or personal fame.
In 2013, Canali et al. [4] performed a study to measure the

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2883056.

typical behavior of an attacker after a website has been com-
promised – showing that many attacks result in the instal-
lation of new pages (e.g., phishing kits) or the modification
of existing ones (e.g., to serve malicious code or redirect the
victims to another location). This happens so frequently
that it is very hard for the security community to react in
time, detect the malicious or newly infected web pages, and
update existing blacklists (such as Google SafeBrowsing [6]
or Phishtank [20]) to protect users.

Existing approaches based on honeyclients [10, 26], web
crawlers [5,11,24], or user reports [20], are not able to keep
up with the current rate of infections. Therefore, we need
new techniques to automatically distinguish, in a simple but
effective way, “bad” pages from benign ones. To detect the
presence of malicious programs in traditional systems, the
forensics community uses the so-called Indicators of Com-
promise (IOCs), i.e., simple network or operating system ar-
tifacts whose presence is a reliable indicator of a computer
intrusion or malware infection. For example, the presence
of a certain entry in the Windows Registry or of a file with
a given MD5 in a temporary directory may be associated
to a certain banker trojan. These indicators are often used
as part of malware detection and investigations [9] and are
often shared between experts as part of other threat intel-
ligence informations [16]. Unfortunately, to the best of our
knowledge, the use of indicators of compromise has never
been studied in the context of web applications.

Our work starts from a simple observation that we made
after several years of operation of a web honeypot: Attackers
often use external components in their malicious or compro-
mised pages. For example, these pages often rely on Java-
Script code to perform a wide range of actions. In our ex-
perience we noticed that these accessory scripts are rarely
installed by the attacker on the compromised hosts, but they
are instead included from public URLs hosted on remote ma-
chines. A possible reason for this behavior is that this choice
provides more flexibility for the attacker to update these
components without the need to modify all the pages they
had previously compromised. However, this may also seem
like a potential weakness, as this part of their infrastructure
could be easily detected and taken down – jeopardizing a
large number of infected pages.

Quite surprisingly, while investigating some of these re-
mote components, we discovered that in the vast majority
of the cases they were not malicious per se. For instance, we
identified three main classes of external components: popu-

333

lar JavaScript libraries (e.g., jquery), scripts to control the
look and feel of the page (e.g., by adding dynamic effects to
its text), or scripts that implement reusable functionalities
(e.g., to fingerprint the user browser, to disable the right
click of the mouse, to overlap the page with transparent
frames, or to insert an advertisement banner in the page).
Since none of these categories is harmful to the final user,
these components can be safely hosted by the attackers on
public pages or shared hosting services, with no risk of being
detected and blocked by security scanners.

The main idea behind our work is that, while these com-
ponents are indeed innocuous, their presence can be used to
precisely pinpoint compromised or malicious pages. In other
words, the link to a particular benign JavaScript can be con-
sidered as some sort of signature of the attack – therefore
acting as an indicator of compromise for web applications.
We call this new types of indicators, Web Indicators of Com-
promise (WIOCs).

We believe that the extraction and use of indicators of
compromise has several important advantages. In particu-
lar, while most of the existing approaches focus on the detec-
tion of malicious pages, our solution allows to detect com-
promised pages. This category is much broader and much
harder to identify in a black-box manner. In fact, compro-
mised pages are not necessary harmful for the user browser,
but also include defacements, phishing pages, or banners to
redirect users into other web sites.

Our experiments show that our system was able to ex-
tract, in average, one new indicator per day. These indi-
cators were then used by Trend Micro, a popular antivirus
vendor, to cross-check their customers’ requests in their web
telemetry dataset, finding thousands of users each day vis-
iting previously unknown compromised websites.

To summarize, this paper makes the following contribu-
tions:

• To the best of our knowledge, we are the first to pro-
pose the use of indicators of compromise for web ap-
plications.

• We propose a novel technique to automatically extract
and validate these indicators – starting from the data
collected by a web honeypot.

• We discuss several features that can be used to distin-
guish good indicators of compromise from components
that are also used as part of benign websites.

• We tested our system over a period of four months.
In this period, almost 100 new WIOCs were extracted
and validated from our dataset. Finally, we use these
indicators in collaboration with Trend Micro to esti-
mate the number of users that are affected by compro-
mised webpages that include these components.

The rest of the paper is organized as follows. In Section 2
we present an overview of what happens when an attacker
compromise a web application, and we introduce an exam-
ple of the indicators of compromise that are the focus of our
paper. In Section 3 we introduce our approach and in Sec-
tion 4 we present the results of our experiments. We then
select and discuss in more details a number of case studies
in Section 5. Finally, Section 7 discusses the related work
and Section 8 concludes the paper.

2. AN OVERVIEW OF THE COMPROMISE
OF WEB APPLICATIONS

In this section we introduce a real example of how attack-
ers approach and compromise a vulnerable web application,
summarizing their actions both during and after the attack
is performed. This process, already described in more de-
tails in previous studies [4, 12], serves as motivation for our
work.

Usually, attackers start by taking advantage of search en-
gines to find their targets. They generally rely on auto-
mated bots to search for a set of keywords (typically called
Google dorks) which allow them to find a number of web
sites that are mis-configured or that are likely affected by
a certain vulnerability. For example, web sites that ex-
pose MySQL history files can be retrieved using the Google
query “?intitle:index.of?".mysql_history”. Once the
attacker finds her targets, she can proceed with the exploita-
tion phase, again typically performed by automated scripts.

In this paper, we are particularly interested in what hap-
pens after the attacker has successfully compromised the
target application – in what Canali et al. [4] called the post-
exploitation phase. In this phase, attackers try to achieve
their final goal which could be to install a webshell, to deface
the home page with a political message, to send spam, or to
install a phishing page. These goals are generally achieved
by either uploading new files on the compromised machine
or by modifying the sources of the existing HTML pages.
Either way, the attacker often needs to use a number of Java-
Script libraries which can be uploaded as well on the compro-
mised machine or just included from a remote source. Since
our primary goal is to identify indicators of compromise for
web applications based on these remote components, in the
rest of the paper we will not focus on means of exploitation
and on the techniques commonly used to compromise the
web applications.

One common misconception about the post-exploitation
phase is to consider all the components uploaded by the at-
tacker after a successful exploitation as malicious. Although
among all these uploaded components a portion of them is
indeed responsible to perform some sort of malicious activ-
ity (such as malware distribution, exploit kits, or phishing
pages), we discovered that the majority of them are often not
related to any type of malicious behavior. On the contrary,
the post-exploitation phase usually involves the usage of a
number of harmless JavaScript components to work prop-
erly.

For example, Figure 1 shows a snippet of code extracted
from a compromised web application. In this example, the
attacker injects a remote JavaScript code (i.e., ciz.js) to
the defaced victim web page. By retrieving this remote com-
ponent, we discovered that it only contained two lines of
code, which are reported in Figure 2. The script first creates
a new image object and then its source URL is set according
to the value of location.href.

The goal of this component seems to be to log compro-
mised web pages by sending a signal back to the attackers.
Interestingly, the same script is included in a number of pop-
ular web shells which are distributed (and backdoored) by
the same hacking group, as a mechanism to promptly detect
and gain access to third party installations. Even though
this code may look suspicious when manually examined be-
cause of the use of the r00t leetspeak in the URL, automated

334

1 ...

2 <head>

3 <meta http-equiv="Content-Language"

content="en-us">

4 <meta http-equiv="Content-Type"

content="text/html;

charset=windows-1252">

5 <title>4Ri3 60 ndr0n9 was here </title>

6 <SCRIPT SRC=http ://r57.gen.tr/yazciz/

ciz.js> </SCRIPT>

7 ...

Figure 1: HTML example of a compromised web
page

1 a = new /**/ Image();

2 a.src = ‘http://www.r57.gen.tr/r00t/yaz.

php?a=’ + escape(location.href);

Figure 2: Source code of ciz.js

scanners only looks at the maliciousness of the file itself and,
inevitably, this simple piece of code is not detected as ma-
licious by any available system or antivirus product. As a
result, this JavaScript component could be hosted on any
public page, without the risk of raising any suspicion from
security tools. Moreover, this gives the attacker the advan-
tage of rapidly changing the URL in all compromised pages,
without the need to re-deploy the JavaScript file on all the
target machines.

As we further investigate the websites which use this Java-
Script as an external resource, we foud that other websites
which include the same script were also compromised by the
same hacking group. Also in the other compromised sites
the script was included at the same place in the code as it is
shown in Figure 1, and all the defaced pages looked identical
when visited.

This very simple example perfectly summarizes the idea
behind our technique: a little and harmless script included
by attackers in compromised pages could be used to pre-
cisely fingerprint the action of these attackers and therefore
can serve as an indicator of compromise for web applica-
tions. In our experiments, as described in more details in
Section 4, we identified many of these examples ranging from
few to thousands lines of code, and from custom scripts to
popular libraries. We believe that this type of indicators of
compromise can complement existing detection techniques
that are purely based on manual reports or on automated
scanners that – unfortunately – can only identify malicious
components.

3. APPROACH
As explained in the example presented in the previous Sec-

tion, our idea is to analyze compromised and malicious web
pages – looking for seemingly innocuous external resources
that can be used to identify a certain group of attackers or
a certain attack campaign.

In the rest of this section we describe each step of our
automated technique.

3.1 Data Collection
The first component of our system is a high-interaction

honeypot that we use to observe the behavior of the attack-
ers and collect the pages they modify or they upload into
the vulnerable system. The role of this component is only
to collect a large number of pages compromised by attackers.
Other techniques could be used to obtain a similar dataset,
for instance by crawling the web or by using intelligence
feeds from security companies.

Our honeypot infrastructure, summarized in Figure 3, is
implemented as previously described by Canali et al. [4].
The deployment consists of proxy services (associated to 500
different domain names), which redirect the traffic through
a VPN gateway to seven virtual machines running in our
premises. Each VM is responsible to run a different vul-
nerable web applications isolated in a Linux container. As
attackers exploits these applications, they gain full control of
the corresponding container – where they are free to modify
existing web pages and install new ones.

In order to discover what has been modified after an attack
is performed, each VM automatically collects and compares
the original state of the container with the exploited state.
When a difference is detected between two states, all the files
that are modified or uploaded by the attacker are extracted
by our system. Moreover, the vulnerable applications are
reverted back to their original “clean” state at the end of
each day. All the collected data is stored in a database
hosted by the manager machine, which is also responsible to
run the subsequent analysis.

We configured each virtual machine to prevent attackers
from using the honeypot as stepping stone to run attacks and
propagate over the network. For this end, we run all services
as non privileged user and keep each of our honeypots up
to date with software and security patches. Additionally, we
drop all outgoing connection in order to prevent attackers to
use our system to perform attacks or send spam messages.
We also mitigate the problem of hosting malicious content
by reverting virtual machine back to its clean state on a
regular basis.

3.2 Extraction of Candidate Indicators
The second component of our system is in charge of pre-

processing the collected data to automatically extracts the
URLs of the components remotely included in the attackers’
files, and to store them along with some additional informa-
tion in our database. This requires our system to analyze
each HTML file and collect the addresses of all the external
resources.

In addition to the URL, we store the base date, which is
the date when the URL was first seen in our honeypot, and
the last date in which we observed it. Moreover, our system
periodically probes on a daily basis each URL to verify if it
returns a valid response. If it does not encounter any error, it
updates the last good response date in the database. Finally,
we also store the information of how many times a URL is
included in the uploaded components from the base date to
the last date.

While our technique can be applied to any resource type
(e.g., JPEG images), in this paper we focus in particular

335

Honeypot Virtual Machines
Linux ContainerwebX-host

webX

.

.

.

Gateway Proxy Server

VPN

.

.

.

Manager

snapshot

analysis

database

Redirect
Requests

Connect
via SSH Domain 1

Domain 2
Domain 3

.

.

.
Domain 500

webX-host

webX-host

Linux Container

Linux Container

webX

webX

Figure 3: Overview of the Honeypot Infrastructure

on JavaScript files. In particular, since we extract the Java-
Script URLs from the uploaded files after an actual attack is
performed, one would probably expect that the vast major-
ity of these scripts would contain malicious code. However,
a manual inspection reveals that it is quite common for an
attacker to include simple scripts that implement simple vi-
sual effects or common JavaScript libraries in their code.
Unfortunately, this makes the identification of indicators of
compromise much more complex. In fact, considering the
fact that many of the scripts are not malicious in nature but
they might still be used for malicious intents, it is impossible
to tell whether a certain URL is in fact a good indicator of
compromise by just looking at the content of the JavaScript
code.

For example, simple scripts designed to prevent the right
click of the mouse, which are not malicious per se, are widely
used by attackers to prevent users from inspecting the source
code of an infected page. However, to be certain that one of
these scripts can be used to indicate that an attack has been
successfully performed against the website which includes it,
we need to extend our analysis to inspect not just the script
content per se, but also the context in which it is used and
the other pages on the Web that import it.

3.3 Searching the Web for Indicators
As we shift our focus more on the web pages that in-

clude each candidate indicator, we need a way to search the
World Wide Web for a particular snippet of source code.
Unfortunately, common search engines do not provide such
functionality. For example, Google provides a search opera-
tor, intext:, that lets users search for a term contained in
the text of the document. However, this only includes the
content of a page that is displayed to the user, and not its
HTML tags. As a result, it is not possible to use popular
search engines to search for JavaScript entries or for other
file included in a HTML document. Therefore, we needed a
more sophisticated tool that indexes the source code of each
visited page. For this reason, our prototype applications
uses Meanpath [17], a search engine that also captures and
index HTML and JavaScript source codes. While Meanpath
does not have the same coverage as other classical search en-
gines such as Google or Bing, its archive of over 200 Million
web sites can help us to identify the web pages that actually
include external scripts. In our context, these scripts are
the ones pointed by our candidate indicator URLs.

3.4 Features Extraction
For each candidate indicators, we extract five different

groups of features:

• Page Similarity
The vast majority of the attacks are largely automated,
and therefore attackers tend to re-use the same tem-
plate for each website they compromise. We capture
this characteristic by looking at the similarities of the
web pages that include a candidate indicator URL as
an external resource. For this purpose, our system au-
tomatically queries Meanpath to find websites that in-
clude the candidate URLs and it then downloads the
HTML source code of the first 100 results. We use
a fuzzy hashing algorithm (ssdeep [13]) to compute
the similarity of the content of each website and then
group the similarity of each unique pairwise compar-
ison in one of five categories: low (similarity below
0.25), medium-low (0.25 to 0.5 similarity), medium
(0.5 to 0.75 similarity), high (0.75 to 0.97 similarity)
and perfect match (higher than 0.97 similarity). For
each class we count the number of web pages that falls
in the corresponding range. So if the high similarity
count of a candidate indicator is high, it means that
our tool came across almost the same content over and
over again in the top 100 websites that include that
indicator. Likewise, if the lowest similarity count is
high, it means that all the websites that include the
candidate URL have almost nothing in common.

• Maliciousness
Although the majority of the candidate indicators are
not malicious, they are often included as an external
resource inside malicious pages. Hence, we also com-
pute the maliciousness of the top 100 web pages that
include a certain candidate URL, as part of the fea-
tures we use to distinguish a normal script from a in-
dicator of compromise. To this end, we automatically
scan each website using the VirusTotal API [7] and
Google SafeBrowsing [6]. We then categorize websites
into three categories according to their maliciousness
level: maybe malicious if less than five AV detected
as so, likely malicious if five to ten AV return a pos-
itive match, and malicious if it is identified as so by
SafeBrowsing or when the positive matches are more
than 10 out of the 60 available AVs. Finally, we use the

336

total number of websites in each category as features
for clustering candidate indicators.

• Anomalous Origin
We also observed that attackers sometimes use popular
JavaScript libraries in their pages. However, instead of
including them from their original domain, they host
their own copy on other servers under their control.

For instance, an attacker may include the very popu-
lar JQuery library (e.g., jquery-1.11.3.min.js) not
from jquery.com but from a personal server located
in Russia. This could be a suspicious behavior, and
in fact we encountered many examples in which web
pages that include popular JavaScript libraries from
external domains were compromised. In particular,
we observed two different phenomena. First, some at-
tackers use popular library names to hide code that
has nothing to do with the library itself. For instance,
we found a jquery.js file that was used to disguise
a modified version of the ciz.js script shown in Fig-
ure 2. In a different scenario, attackers use instead a
copy of the original script, often obfuscating its content
(possibly to hide small modifications or customizations
of the code). While this feature alone is not sufficient
to generate WIOCs, our experiment demonstrates a
high correlation between these cases and compromised
websites.

• Component Popularity
As the popularity of the external component increases,
it is less likely that it is associated only to malicious
activities, and therefore that it is a good indicator of
compromise. For instance, some scripts associated to
the Facebook Software Development Kit (e.g., connect.
facebook.net/en_US/all.js) can also be found in the
remote components uploaded by the attackers on our
honeypot. However, since the same script is used by
millions of other websites, it is unlikely that it is used
only for malicious intents. Even if this was the case,
it would have probably already attracted the attention
of the security community and therefore other protec-
tion mechanisms and blacklists would be sufficient to
protect the end users. Therefore, in our system we use
the total number of search results from Meanpath as
a feature to filter out very popular URLs.

• Security Forums
In addition of using Meanpath to retrieve the pages
that include a certain resource, we also query Google
to collect how many times the candidate indicator is
mentioned on the Web. From these results we extract
two separate features: the total number of search re-
sults, and how many of the top 10 results mention the
candidate indicator together with certain security re-
lated keywords such as “hacked”, “malware”, “compro-
mised”, and “antivirus”. This is used to capture online
forum discussions or threat web pages maintained by
antivirus companies – in which people discuss the role
of certain JavaScript files or ask for more information
after a piece of JavaScript has been detected in their
websites.

3.5 Clustering
After we automatically extracted all the features for each

candidate external URL component, we applied an unsu-
pervised learning algorithm to separate different classes of
components. The reason for not using a supervised classi-
fier is that it would require a considerable effort to build a
ground truth. In fact, verifying if a certain URL is a good
WIOC can take a large amount of time also for a skilled
manual analyst. On the contrary, we believe that the fea-
tures of good and bad indicators would differ enough to be
clearly separated by a clustering algorithm.

In particular, we are interested in differentiating three
main cluster categories:

• Good Indicators of Compromise
This category includes the components that are, to the
best of our knowledge, used only by attackers when
they compromise a web page or install a malicious one.
Although in our experiments the page similarity was
the most distinctive feature to detect good indicators,
all features contributed to the identification of this cat-
egory.

• Invalid Indicators of Compomise
This category covers the opposite case, in which a cer-
tain component is used as part of attacks but also as
part of benign pages. As expected, the most distinc-
tive feature in this category is the popularity of the
candidate URLs.

• Undecided
This cluster category describes those components for
which the available data was not sufficient to take a
final decision. Therefore, the URLs which fall into
this category cannot be labeled as either good or bad
indicators, even after a manual inspection. In fact,
some components are so rare that both Google and
Meanpath return no results (even though the remote
JavaScript is online and can be retrieved by our sys-
tem). In other cases, only few of matches are found
in the search engines. Even if they were all examples
of compromised pages, it would still be too risky to
classify the indicator with such a limited amount of
information.

We conducted a number of experiments with different
thresholds and finally obtained the best results by using the
K-means algorithm with k equal to eight. Other values of
k may provide equivalent results, as our goal in this phase
is only to show that it is possible to clearly separate the
different behaviors in distinct groups. With this setup, the
clustering algorithm was able to clearly separate each be-
havior and group candidate indicators in clusters that only
contained a certain type (valid, invalid, or undecided).

To verify the accuracy of our approach, we manually veri-
fied a number of random items picked from each cluster. Out
of the eight clusters identified by our algorithm, one con-
tained only bad indicators, five only good indicators (three
mainly defacements and two mainly malicious pages), and
two were associated to the undecided group. In the Exper-
iment Section we report on the accuracy of our clustering
approach when applied to categorize potential indicators ex-
tracted by our live honeypot.

337

3.6 Impact on End Users
To measure the impact of our technique, we collaborated

with Trend Micro, a popular antivirus vendor, to estimate
how many real users have interacted with our WIOCs. Us-
ing a cloud-based infrastructure, the vendor collects over 16
terabytes of data per day from 120 million client installa-
tions worldwide. We based our analysis on a subset of this
data, based on a telemetry feed that collects information on
the URLs that are accessed by users over HTTP(S) – using
their browser or any other client.

Whenever one of the AV client visits a page that includes
our web indicators of compromise, her browser sends an
HTTP request to fetch the missing component and we can
detect and log this action.

In an operational environment, we envision that our ap-
proach could be deployed in three ways. First, to generate
a blacklist that a company can use to prevent users from
visiting compromised web pages. Second, by combining the
Referer HTTP header with the telemetry information, a
security company can use our indicators of compromise to
automatically discover, in real time, new URLs of infected
pages. While we were not able to test this configuration in
our experiments, we believe that this scenario would pro-
vide even greater advantages compared with other existing
mechanisms to detect malicious web pages. Finally, our indi-
cators could be used as seeds to quickly search for malicious
or compromised pages on the web. It would be enough to
query for the pages that include these components to build
a list of candidate targets, which can then be visited with
more sophisticated scanners or honeyclients solutions.

4. EXPERIMENTS
In this section, we explain the tests we conducted to eval-

uate our approach and the results of our experiments. We
also discuss the impact of our solution by correlating our
data with the telemetry information of Trend Micro.

4.1 Dataset
Over a period of four years, our honeypots collected over

133K unique URLs of remote components – either uploaded
by the attackers as part of their pages or as modification of
the honeypot pages themselves. Note that in this study we
were not interested in distinguishing between attack types,
nor in measuring the frequency of attacks, or time period
between successive threats. The reader may refer to previous
studies [4] for a detailed analysis of these characteristics.

Out of all the remote components, our analysis focused
on 2765 unique JavaScript files. In average, each of them
was re-used several times (an average of seven and a maxi-
mum of 202) as part of different, likely automated, attacks.
However, more than half of the JavaScript URLs were ob-
served only once – as confirmation that our honeypot also
captured unique events probably performed manually by the
attackers.

To test our system, we trained our feature extraction
and validation routines on the data collected between Jan-
uary and April 2015. While older data was available in
our database (and it was used to analyze long-lasting cam-
paigns), some of the features used by our technique need
to be computed in real-time. Therefore, we were forced to
operate only on the attacks performed after we started our
study of indicators of compromise. We then used the result
of the clustering to classify the new URLs observed by our

honeypot over a period of four months starting in mid-April.
The results are presented in the following sections.

4.2 Model Training
In order to evaluate our work, we first used our clustering

approach to divide the URLs in the training set in different
categories. The dataset included 373 candidate indicators.
The clustering was performed using Weka [8] – a common
open source tool for machine learning and data mining tasks.
After the clustering operation was completed, we manually
inspected the content of each cluster to assign it with the
correct label (i.e., good indicator, invalid indicator or unde-
cided), as described in Section 3.5.

This phase allowed us to tag five clusters as valid web
indicators of compromise, for a total of 12% of the total
number of candidate indicators. However, the goal of the
clustering was not to detect indicators, but instead to sepa-
rate the features space and provide reference values for the
next phase.

4.3 Results
Our live experiment was conducted over a period of four

months. During this time, the honeypot continued to col-
lect new URLs of external components and to pass them
to our analysis framework. The analysis system collected
the external information and then computed the individual
features. Finally, it computed the distance between the fea-
tures of each URL and the different clusters built during
the training phase and it assigned the URL to the category
of the closest cluster. So, if a new candidate indicator was
close to a cluster marked as “Invalid Indicators”, the URL
would be considered invalid as well and discarded. If, in-
stead, the closest cluster was flagged as “Good Indicators”,
then the candidate URL was considered valid. Table 1 shows
the results of our classification.

As we already mentioned, the page similarity was the most
distinctive feature, followed by the presence in security fo-
rums and by the number of hits in VirusTotal. Interestingly,
most of the websites that include an indicator URL were not
detected as malicious. However, even a single page flagged
by VT in the set of hundred results can be a very distinctive
factor once combined with the other features. On the other
end of the spectrum, the component popularity feature was
the one with the highest negative correlation.

With a considerable manual effort, we investigated each
single case to understand if our system was correct with its
classification and to look for possible false positives. As we
better discuss in the next section along with a number of
examples and case studies, we only found two false positive
out of 303 analyzed URLs.

The first false positive is a very popular library provided
by Google and used as external resource by many websites
(including some defaced and some malicious ones). Unfor-
tunately, some of these websites were duplicated in different
domains (therefore with exactly the same content) and this
caused an increase in the similarity rate which, inevitably,
results in a false positive. The other false positive is a Java-
Script file used for video and animated online ads (AdIn-
terax). Although there were no results on Meanpath for
this URL, it was often discussed on security forums by users
who were afraid it was a malicious component.

Except for these two isolated cases, we were able to con-
firm that the web indicators of compromise extracted by

338

Figure 4: Di�erences in days between the �rst seen
date and the last seen date of the Valid Indicators
of Compromise

Figure 5: Total number of uploads of WIOCs

our tool were indeed constantly associated with malicious
activities and did not appear in benign pages.

Almost 20% of those indicators were URLs of JavaScript
component that we never observed before in our honeypot.
Interestingly, the remaining 80% were instead components
that were observed several times by our honeypot during the
previous years. In average, these indicators of compromise
were first observed 20 months before our experiment, with
a maximum of 44 and a minimum of 5 months. Figure 4
shows the difference between the first seen date and the last
seen date for each valid indicators of compromise identified
by our tool. The graph shows that the average lifetime of
these JavaScript components is very high. This is likely a
consequence of the fact that the majority of these scripts
are not malicious per se, and therefore the identification of
these components is very difficult by using existing tech-
niques. As a result, some stay unnoticed for months or even
years. Figure 5 shows instead the total number of times each
indicators was used in attacks against our honeypot.

Category Number of Items

Invalid Indicator 22
Valid Indicator of Compromise 96
Not-enough-data 185

Table 1: Clustering results for the detection set

4.4 Antivirus Telemetry
To assess the impact of our indicators of web compromise

in a real deployment, we asked Trend Micro to cross-check
our results. For this purpose, we sent them the set of our
indicators and asked them to match the URLs against their
web telemetry dataset collected in the same time period.

Overall, over 90% of our web indicators were previously
unknown to the vendor and were considered benign by their
internal intelligence database. Moreover, the vast majority
of pages that included those components were not detected
as infected by any AV tool used by VirusTotal. In total,
only 5.3% of the webpages including an indicator were de-
tected by at least for one antivirus products. Once more,
this confirms our initial hypothesis that existing automated
scanners only flag a page when there is an clear evidence of
malicious activity and fail to detect more subtle signs of a
possible compromise.

Interestingly, some of our indicators were hosted on do-
mains for which Trend Micro observed only hits toward the
URL of that particular Javascript and nothing else in their
telemetry dataset, as if that component was the only item
hosted on the same domain.

In average, each indicators was requested by 47 different
users per day. However, the distribution was quite unbal-
anced, with one case that was never observed in the wild
and one case that had more than 800 visits per day.

However, we believe that an automated system that could
prevent each day thousands of users from visiting malicious
or compromised websites – not caught by any other detec-
tion systems and by the blacklists already in use at the an-
tivirus vendor – is a promising result that shows the value of
our idea and the need for more research in the area of web
indicators of compromise.

5. CASE STUDIES
The 96 indicators extracted over four months by our sys-

tem belong to different categories. For instance, 26% of
the JavaScript components were used to implement simple
visual effects (such as moving or teletype text, or a snow
effect over the page) commonly used in defacement cam-
paigns. Other were used as part of phishing pages, or to
redirect the visitors towards other websites.

In this section we discuss in more details some of these
cases, to try to show different scenarios and different types
of malicious activity detected by our system.

Affiliate Programs
Attackers often try to monetize the traffic towards web sites
they compromise, for example by joining affiliate programs
or including Adwares banners. In our evaluation, we identi-
fied several cases of JavaScript dedicated to this purpose.

339

For example, one of the indicators found by our system1

is part of a large affiliate network called VisAdd [25]. The
script acts as a traffic redirection system – i.e., a sort of
proxy that brings the users of the exploited web page to the
affiliate web site. In this way, the miscreant get rewarded
for each visitor of the site she was able to compromise. In-
terestingly, VisAdd also makes use of a malicious software
called A.Visadd.com2 to bring additional visitots into its
network. By correlating this indicators with Trend Micro’s
web telemetry dataset, we confirmed that an average of 620
users per day were affected by sites including this JavaScript.
In another example, a malicious browser plugin – in form of
an Internet Explorer Browser Helper Objects (BHOs) was
loaded by a JavaScript file at run-time in order to hijacking
the browser’s user’s session. We observed the same Java-
script embedded in a multitude of defaced web sites.

In both cases, it is interesting to observe that cyber crimi-
nals used a combination of client-side approaches – like mal-
ware and BHOs – and server-side compromised websites to
redirect legitimate traffic to affiliate programs. We recorded
an average of 594 visits per day to this indicator.

Since these JavaScript files were quite popular in the an-
tivirus dataset, it would be possible to use them to track
the activity and evolution of this large campaign, whose list
of compromised websites is still increasing at the time this
paper was written.

Web Shells
A second class of indicators that we automatically identi-
fied as malicious are related to web shells, which are often
deployed by the attackers and hidden in compromised web
sites. Their goal is to allow the attackers to easily control
the compromised machine and execute arbitrary commands
by using an intuitive web interface. We found several cases
in which, despite the attacker protected the access to the
web shell via password, our system was able to automat-
ically flag these cases because they embedded a malicious
indicator.

As already described in the example of Section 3, we also
discovered a small JavaScript responsible to send a signal
back to the attackers every time someone visited one of the
installed web shells. Some of these (e.g. http://r57shell.

net/404/ittir.js) automatically leak the information of
the visit to the attacker’s dropzone, e.g. by embedding the
request in the form of a image retrieval – in a technique
similar to a CSRF. The inclusion of this URL on compro-
mised websites is a clear indicator of an organized network
in which the attackers monitor the websites they infected
as well as the ones infected by other groups that reuse the
same web shells.

Code Repositories
In our dataset, we found a considerable amount of indicators
of compromise hosted in public code repositories, such as
Google Code. Even though it is not unexpected for attackers
to use such repositories, it was surprising to observe how
long these indicators can survive before they get noticed and
taken down by the maintainer or the security community.

1http://4x3zy4ql-l8bu4n1j.netdna-ssl.com/res/
helper.min.js
2http://malwaretips.com/blogs/
a-visadd-com-virus-removal/

For example, we found two indicators hosted on Google
Drive and eight on Google Code. Interestingly, one of them
was online for at least 729 consecutive days before it was fi-
nally suspended by Google and just in a single month Mean-
Path reported dozens of defaced websites and drive-by pages
using this script.

During the manual verification of this case, we realized
that most of the web pages that include WIOCs look almost
identical. Furthermore, even a quick search on Google re-
turned many forums in which people complained about how
their website got hacked as well as scan results from popular
sandboxes. This case confirms that our features provides an
accurate characterization of indicators.

Mailers
Another use of compromised websites is to turn them into
a spam mailing server to send large amounts of fraudulent
emails. Instead of switching between different providers or
relying on botnet-infected machines, attackers often search
for non-blacklisted vulnerable websites to use as part of their
infrastructure.

In our experiments, our system reported two indicators
of compromise corresponding to two copies of the JQuery
library, hosted respectively on Google and Tumblr. The
majority of websites using these libraries (e.g., http://www.
senzadistanza.it/ and http://www.hprgroup.biz/) con-
tained pages injected with a popular mailer called Pro Mailer
v2, which is often shared among hackers in underground fo-
rums. Because of the popular domains used by these indica-
tors, and because of the fact that they were unmodified copy
of popular libraries, these files very likely misclassified as
benign by both automated scanners and manual inspection.
Therefore, we believe this particular example is very impor-
tant, since it emphasize the fact that even the most harmless
and legitimate URLs can be valid indicators of compromise.

Phishing
Phishing pages are commonly found in our dataset, as at-
tackers try to install copy of popular websites in our honey-

of phishing. However, since these components are also used
by their legitimate service, we did not count their hits in the
AV dataset in our report.

6. LIMITATIONS
Since our method relies on the fact that attackers re-

motely include resources in their pages, it is possible to
evade our technique by using a different deployment strat-
egy. For example, attackers could include their code inline
rather than importing the indicator’s URL from an external
source, or they could generate a different URL for each tar-
get. Even though these techniques would effectively under-
mine our ability to extract valid indicators of compromise,
these changes would also result in a loss of flexibility (e.g.,
the attacker would not be able to change at once the code
used in hundreds of compromised pages) or in an increased
complexity in the deployment of the code.

In our current implementation, our system relies on a clus-
tering phase to separate the good from the bad indicators.
While we did not need to repeat this training during our
experiments, it may be helpful to update the clustering at
least once a year – to account for possible changes in the
features distribution. For example, it is possible that secu-
rity forums become more popular in the future, or that the
results returned by Meanpath increase (or decrease) over
time.

Finally, while this paper is the first to introduce the con-
cept of web indicators of compromise, we expect more re-
searchers to focus on this interesting problem and to pro-
pose more sophisticated and more robust solutions to extract
WIOCs in the future.

7. RELATED WORK
Previous work on detecting compromised websites includes

anomaly detection, content monitoring, and custom feature
extraction techniques. Our work deals with the identifica-
tion of indicator of web compromise. However, since there
is no similar studies on this topic, this section includes pre-
vious works focusing on detecting and analyzing malicious
URLs.

To the best of our knowledge, the work most closely re-
lated to ours is the study to automatically detect malicious
web pages conducted by Invernizzi et al. [11]. The authors
start with a set of URLs that are already known to be ma-
licious and then make a guided search using a web crawler
to find other pages that share certain similarities with the
initial set of URLs. For this purpose, they use Wepawet,
Google Safe Browsing, and their custom fake AV detector
to check if the guided search results are successful in de-
tecting malicious websites. In our work, we gathered URLs
from remote components uploaded to our honeypot during
real attacks. Instead of analyzing the maliciousness of web
pages, we analyze the features of the URLs that are fre-
quently used by the attackers. These URLs may or may
not be malicious, but they still indicate a compromised or
malicious page.

Most of previous work on maliciousness of URLs includes
URL classification by using machine learning algorithms.
For example, Ma et al. [14, 15] used lexical and host-based
features (IP address, domain name, etc.) to classify ma-
licious and benign URLs. Their aim is to differ malicious
URLs from the benign ones by training their models with

the data they gathered by querying blacklists for the mali-
cious URLs and using Yahoo’s random URL selector. An-
other study presented by Soska et al. [22] tries to predict if
a benign web page will turn malicious in the future. The
authors use traffic statistics, file system structure, and the
web page content as features and they use the data gath-
ered from a number of blacklist to build their ground truth.
Zhao et al. [27] proposes two cost-sensitive learning algo-
rithms in order to detect malicious URLs and they analyze
their theoretical performance.

Provos et al. [21] described several server-side and client-
side exploitation techniques which are used for the distri-
bution of malware. The authors instrumented Internet Ex-
plorer in a virtual machine to analyze anomalies when a
malicious binary is downloaded while visiting a defaced or
malicious web site. They then visit a large number of URLs
and look for suspicious elements such as an iFrame pointing
to a host known to be malicious. If there is no such element,
they further investigate the interpreted JavaScript in each
page. Webcop [23] aims at finding the relations between
malicious URLs and malware distribution sites. The au-
thors used the data from commercial Anti-Malware clients
to decide if a URL is hosting malicious code. Then they
used a web graph constructed by a commercial search en-
gine crawler to find the malicious URLs directly linked to
malware distribution sites via hyperlinks.

Honeymonkey [26] is a client-side honeypot, which con-
sists of several vulnerable web browsers in virtual machines
of different patch levels. The honeypot can be used to scan
web pages to detect the malicious ones. Moreover, for the
malicious URLs, a redirection analysis is performed to get
all the URLs involved in the exploit. Finally, the same ma-
licious URLs are analyzed on fully patched virtual machines
to see if the attacks are still successful. This process also
helps to find zero-day exploits. On the contrary, in our
work, we use server side honeypots and instead of scanning
the web, and we use real incoming attacks as seeds for our
analysis.

Nikiforakis et al. [19] draw attention to the fact that a
website can be compromised if the remotely included li-
braries are changed by the owner of the remote server. They
investigate the trust relationship of websites with their Java-
Script library providers. They crawl the most popular web-
sites to collect millions of URLs and measure the quality of
the JavaScript providers based on various features includ-
ing hosts availability, cookies, anti-XSS and anti-clickjacking
protocols, and the SSL/TLS implementation. They then
manually assign a weight for each feature and evaluate their
metrics, showing that even the highly popular websites can
get compromised through their external library providers.
While they measure the quality of JavaScript providers that
legitimate websites are using, we use JavaScript libraries
that are not hosted in its original domain to identify deface-
ment of web pages.

Bartoli et al. [1] presents a compromised website detection
service, called Goldrake, based on anomaly detection. The
authors monitored websites and analyzed various elements
including contents of the web page, frequency of items, typi-
cal defacement signatures (e.g. common phrases, black back-
ground) without requiring any kind of assistance from the
monitored web page. Although they managed to keep false
positive rate low, their work is hard to extent in order to find

341

defaced web applications in the whole Internet, due to the
fact that they have to continuously monitor the websites.

Evil Searching [18] takes a different approach to the detec-
tion of compromised websites by analyzing the search queries
that attackers use to find the vulnerable websites to deface.
The authors goal is to analyze the methods which attack-
ers use to detect possible targets in the wild. Their aim is
to find phrases, called “evil searches”, that can be used in
phishing attacks. In our experiments, we instead use search
engines to find “evil scripts” that can be used in many types
of attacks including phishing.

Finally, several works focus on the detection of defaced
pages [2, 3]. While not strictly related to our objective and
methodology, our system can be adapted to detect defaced
websites by identifying their possible use of certain indica-
tors of compromise.

8. CONCLUSIONS
In this paper we present a novel idea to use the informa-

tion collected by a high interaction honeypot of vulnerable
web applications. Our approach starts from the observation
that attackers often include remote JavaScript components
in the pages they modify or they upload after a successful
attack. These components are rarely malicious per se, but
their URLs can still be used to precisely pinpoint the activ-
ity of a certain group and therefore the fact that a web page
has been compromised. For this reason, in this paper we
propose a technique to collect these components, validate
them using a number of features, and finally use them as
Web Indicators of Compromise (WIOCs).

We implemented our system and run it on our premises
for several months. After an unsupervised training phase,
we tested for four months its ability to automatically extract
valid WIOCs. The results showed that these indicators cover
several types of malicious activities, from phishing sites to
defacements, from web shells to affiliate programs. More-
over, most of these components have been used for a long
time by the attackers, who hosted them on public websites
– since their apparently harmless content was not detected
as suspicious by any of the existing tools and techniques.

We believe that more research is needed in this area, to
help the security community to reliably extract and share
this new type of indicators of compromise.

ACKNOWLEDGMENTS

The research was partially funded by the Principality of
Monaco.

9. REFERENCES
[1] Bartoli, A., Davanzo, G., and Medvet, E. A framework

for large-scale detection of web site defacements. ACM
Transactions on Internet Technology (TOIT) 10, 3 (2010),
10.

[2] Borgolte, K., Kruegel, C., and Vigna, G. Delta:
Automatic identi�cation of unknown web-based infection
campaigns. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security
(New York, NY, USA, 2013), CCS ’13, ACM, pp. 109{120.

[3] Borgolte, K., Kruegel, C., and Vigna, G. Meerkat:
Detecting website defacements through image-based object
recognition. In Proceedings of the 24th USENIX
Conference on Security Symposium (Berkeley, CA, USA,
2015), SEC’15, USENIX Association, pp. 595{610.

[4] Canali, D., and Balzarotti, D. Behind the scenes of
online attacks: an analysis of exploitation behaviors on the
web. In Proceedings of the 20th Annual Network and
Distributed System Security Symposium (NDSS) (January
2013), NDSS 13.

[5] Canali, D., Cova, M., Vigna, G., and Kruegel, C.
Prophiler: a fast �lter for the large-scale detection of
malicious web pages. In Proceedings of the 20th
international conference on World wide web (2011), ACM,
pp. 197{206.

[6] Google Inc. Safe Browsing API.
https://developers.google.com/safe%2Dbrowsing/, 2015.

[7] Google Inc. VirusTotal. https://www.virustotal.com,
2015.

[8] Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., and Witten, I. H. The weka data mining
software: An update. SIGKDD Explor. Newsl. 11, 1 (Nov.
2009), 10{18.

[9] Hun-Ya Lock, A. K. Using IOC (Indicators of
Compromise) in Malware Forensics. Tech. rep., SANS, 2013.

[10] Ikinci, A., Holz, T., and Freiling, F. C. Monkey-spider:
Detecting malicious websites with low-interaction
honeyclients. In Sicherheit (2008), vol. 8, pp. 407{421.

[11] Invernizzi, L., Benvenuti, S., Cova, M., Comparetti,
P. M., Kruegel, C., and Vigna, G. Evilseed: A guided
approach to �nding malicious web pages. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2012), SP ’12, IEEE Computer
Society, pp. 428{442.

[12] John, J. P., Yu, F., Xie, Y., Krishnamurthy, A., and
Abadi, M. Heat-seeking honeypots: design and experience.
In Proceedings of the 20th international conference on
World wide web (2011), ACM, pp. 207{216.

[13] Kornblum, J. Identifying almost identical �les using
context triggered piecewise hashing. Digital Investigation 3,
Supplement, 0 (2006), 91 { 97.

[14] Ma, J., Saul, L. K., Savage, S., and Voelker, G. M.
Beyond blacklists: Learning to detect malicious web sites
from suspicious urls. In Proceedingsof theSIGKDD
Conference. Paris,France (2009).

[15] Ma, J., Saul, L. K., Savage, S., and Voelker, G. M.
Learning to detect malicious urls. ACM Trans. Intell. Syst.
Technol. 2, 3 (May 2011), 30:1{30:24.

[16] Mandiant. OpenIOC { An Open Framework for Sharing
Threat Intelligence. http://www.openioc.org, 2015.

[17] Meanpath. Meanpath Web Search API.
https://meanpath.com/, 2015.

[18] Moore, T., and Clayton, R. Evil searching: Compromise
and recompromise of internet hosts for phishing. In
Financial Cryptography and Data Security. Springer, 2009,
pp. 256{272.

[19] Nikiforakis, N., Invernizzi, L., Kapravelos, A.,
Van Acker, S., Joosen, W., Kruegel, C., Piessens, F.,
and Vigna, G. You are what you include: large-scale
evaluation of remote javascript inclusions. In Proceedings of
the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 736{747.

[20] PhishTank. PhishTank Website.
http://www.phishtank.com/, 2015.

[21] Provos, N., McNamee, D., Mavrommatis, P., Wang, K.,
Modadugu, N., et al. The ghost in the browser analysis
of web-based malware. In Proceedings of the first
conference on First Workshop on Hot Topics in
Understanding Botnets (2007), pp. 4{4.

[22] Soska, K., and Christin, N. Automatically detecting
vulnerable websites before they turn malicious. In Proc.
USENIX Security (2014).

[23] Stokes, J. W., Andersen, R., Seifert, C., and
Chellapilla, K. Webcop: Locating neighborhoods of
malware on the web. In Proceedings of the 3rd USENIX
Conference on Large-scale Exploits and Emergent Threats:

342

Botnets, Spyware, Worms, and More (Berkeley, CA, USA,
2010), LEET’10, USENIX Association, pp. 5{5.

[24] Stringhini, G., Kruegel, C., and Vigna, G. Shady
paths: Leveraging sur�ng crowds to detect malicious web
pages. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security
(2013), ACM, pp. 133{144.

[25] VisAdd. Advertisement Solution. http://visadd.com.

[26] Wang, Y.-M., Beck, D., Jiang, X., Roussev, R.,
Verbowski, C., Chen, S., and King, S. Automated web
patrol with strider honeymonkeys. In Proceedings of the
2006 Network and Distributed System Security Symposium
(2006), pp. 35{49.

[27] Zhao, P., and Hoi, S. C. Cost-sensitive online active
learning with application to malicious url detection. In
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(New York, NY, USA, 2013), KDD ’13, ACM, pp. 919{927.

343

	1 Introduction
	2 An Overview of the Compromise of Web Applications
	3 Approach
	3.1 Data Collection
	3.2 Extraction of Candidate Indicators
	3.3 Searching the Web for Indicators
	3.4 Features Extraction
	3.5 Clustering
	3.6 Impact on End Users

	4 Experiments
	4.1 Dataset
	4.2 Model Training
	4.3 Results
	4.4 Antivirus Telemetry

	5 Case Studies
	6 Limitations
	7 Related Work
	8 Conclusions
	9 References

