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ABSTRACT
Social instant messaging services are emerging as a transformative
form with which people connect, communicate with friends in their
daily life — they catalyze the formation of social groups, and they
bring people stronger sense of community and connection. How-
ever, research community still knows little about the formation and
evolution of groups in the context of social messaging — their life-
cycles, the change in their underlying structures over time, and the
diffusion processes by which they develop new members.

In this paper, we analyze the daily usage logs from WeChat
group messaging platform — the largest standalone messaging
communication service in China — with the goal of understanding
the processes by which social messaging groups come together,
grow new members, and evolve over time. Specifically, we dis-
cover a strong dichotomy among groups in terms of their lifecycle,
and develop a separability model by taking into account a broad
range of group-level features, showing that long-term and short-
term groups are inherently distinct. We also found that the lifecycle
of messaging groups is largely dependent on their social roles and
functions in users’ daily social experiences and specific purposes.
Given the strong separability between the long-term and short-term
groups, we further address the problem concerning the early pre-
diction of successful communities.

In addition to modeling the growth and evolution from group-
level perspective, we investigate the individual-level attributes of
group members and study the diffusion process by which groups
gain new members. By considering members’ historical engage-
ment behavior as well as the local social network structure that
they embedded in, we develop a membership cascade model and
demonstrate the effectiveness by achieving AUC of 95.31% in pre-
dicting inviter, and an AUC of 98.66% in predicting invitee.
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1. INTRODUCTION
The advent and proliferation of social instant messaging services

have been shaping and transforming the way people connect, com-
municate with individuals or groups of friends, bringing users di-
verse and ubiquitous social experiences that traditional text-based
short message service (SMS) could not. For example, WhatsApp
is the most globally popular messaging service with more than 900
million monthly active users (MAUs), WeChat, the largest messag-
ing service in China, has more than 600 million MAUs. These tools
have enriched the way people interact by including images, video,
location information, audio and text messages. More importantly,
they have also catalyzed the formation of social groups, bringing
people a stronger sense of community and connection compared
with traditional text messaging [12].

While past work has extensively studied the dynamics of group
formation and evolution, much of the work is limited to the setting
of online communities embedded within the social networking sites
— which is inherently different from groups seen in the context of
social messaging. Previous study [12] has shown that, for most so-
cial messaging tools adopters, the creation and use of instant group
messaging occurs more frequently and habitually than other form
of group-level social engagement in their daily life. In terms of life-
cycle, social messaging groups have a relatively shorter life span —
ranging from several hours to months — as opposed to those on-
line groups seen in social networking sites such as Reddit [8] and
Facebook [29] that can sustain up to years. Furthermore, all the
chat groups are by default only visible to the group members and
grow in an invitation-only fashion, i.e., new members invited to the
group are guaranteed to be on the fringe of group networks (one-
hop neighbors of current group members) — thus the membership
cascade process is more locally dependent, with unidirectional con-
tagion dominated mostly by the existing group members. This is
very dissimilar from the diffusion and growing models in previous
literature on online communities (e.g., [6, 28]), in which users can
make their own decisions to join, even if they are not friends with
any of the current group members.

Researchers have recently begun interpreting the group messag-
ing behavior and processes from a social science perspective, yet
concrete empirical measurement and statements cannot be drawn
from existing literature. Much of the challenge has been the lack of
appropriate datasets — one needs a large collection of messaging
groups with sufficient time-resolution so that one can keep track of
their emergence, growth and demise over time. Another challenge
comes from devising an effective model to depict and quantify the
diversified, complex processes by which the groups develop over
time. As a result, the research community still knows very little
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about the formation and evolution of chat groups in the context of
social messaging — their lifecycles, the change in their underly-
ing structures over time, and the cascade processes by which they
develop new members.

To address these issues, in this paper, we analyze the daily usage
logs from the WeChat 1 group messaging platform — the largest
standalone messaging communication service developed by Ten-
cent in China [2] — with the goal of understanding the processes
by which social messaging groups come together, grow new mem-
bers, and evolve over time. To our knowledge, this is so far the
first large-scale analysis on messaging group dynamics. WeChat
allows users to send and receive multimedia messages in real-time
via Internet. One important feature in WeChat is that any user can
create a new group and invite friends to join this group. Please
note that such group is invited only, which means that the other
users (friends) cannot apply to join if no invitation comes from the
group. Groups play a very important role in WeChat. Our statistics
show that roughly 25% of the messages in WeChat were generated
in group conversations. On the other hand, the groups are very dy-
namic. Every day, about 2,300,000 new groups were created and
about 40% of the newly created groups become silent within only
one week. We will describe detailed information about the WeChat
dataset along with its mechanics in Section 3.

The Present Work: Lifecycle Dichotomy in Social Messaging
Groups. In this paper, we contribute to research on group evolu-
tion in social messaging platforms by observing and making a con-
ceptual difference between two types of groups in terms of their
lifecycle: long-term and short-term groups. Our empirical analysis
shows that almost 40% of them stop interaction within one week.
On the other hand, we also observe 30% of the groups can survive
a much longer period of time (≥ 30 days). The strong lifecycle
dichotomy of chat groups leads us to a natural lifecycle modeling
and prediction questions — how separable are the long-term and
short-term groups by taking into account the structural and social
behavioral features? To address this issue, we develop a separabil-
ity model by studying snapshots of millions of groups, and show
the strong distinction between long-term and short-term groups —
measured with a broad range of features including the underlying
group network structure, the membership cascade tree properties
(e.g. tree size and depth), and the demographics entropy of group
members such as gender, age and region.

We also discuss the phenomena of lifecycle dichotomy from the
perspective of the roles and functions that social messaging plat-
forms have in users’ daily social experiences. This leads to the
question of how does the lifecycle and growth pattern of social
messaging groups correlate with the social functions it is serving?
It turns out that messaging groups have been commonly adopted
as a convenient way of connecting with smaller communities all at
once, e.g., a family group, a colleague’s group, a classmate’s group,
as well as groups for social events [12]. And the lifecycle of mes-
saging groups is largely dependent on it social purpose for being
setup — for instance, one may expect that event-driven groups will
have a higher chance of dying out than friend groups for frequent
catching-up.

Furthermore, given the strong separability between the long-term
and short-term groups, a fundamental problem concerning the de-
sign of successful communities is: Can we predict whether a social
group will grow and persist in the long run by analyzing the struc-
tural and behavioral patterns exhibited by the group at its early
stage? We phrase it as a problem of early prediction in group
longevity. Through the lens of various features exhibited by a
1www.wechat.com/en/

group, we demonstrate that strong prediction results can be ob-
tained even with a group history of one day.

The Present Work: Group Membership Cascade and Pre-
diction. In addition to modeling the growth and evolution from a
group-level perspective, we take one step further and investigate the
individual-level attributes of group members and study the cascade
process by which groups gain new members. Specifically, given
the historical behavior of group users as well as the local social
structure, can we predict which users in the group are more likely
to be active and invite new users to the group chat and to whom will
he/she send invitations to? Making sense of such questions requires
fine-grained inspection into users’ historical engagement behavior
as well as the local social network structure that users embedded
in. To this end, we develop a membership cascade process model
in which we consider features of both inviter — a group member
who sends invitation to friend(s), and invitee — the individual in
the inviter’s ego networks who gets invited to the group chat. Our
inviter prediction model using all features generally achieves AUC
as high as 95.31%, and invitee prediction model reaches AUC of
98.66%.

Furthermore, we also attempt to analyze: how does the added
new members in return lead to the change of underlying social net-
work structure, as the group evolves over time? To address this
issue, we take snapshots and compare the same set of sample group
at the timestamp of setup and after a month, respectively. Inter-
estingly, we observe that although both long-term and short-term
groups have increment on features such as close triads, long-term
groups have shown to increase the close triads more significantly.

Organization. The remainder of the paper is organized as follows.
Section 2 describes related work on analyzing group formation and
evolution. In Section 3, we introduce the WeChat social messaging
group dataset. The discussion on group lifecycle dichotomy as well
as early prediction model is provided in Section 4. The membership
cascade process is investigated in Section 5. Finally we conclude
our work in Section 6.

2. RELATED WORK
The study of groups and communities is central to many research

problems on mining and analytics of sociological data. There have
been two major lines of research in this domain: one focuses on
the static snapshots of social graphs and seeks to infer and identify
tightly-connected group of members — also known as community
detection in literature [15, 19, 26, 27, 33]; another line of research
focusing on the group dynamics — the growth and evolution of so-
cial groups — is more related to our work here. Below we highlight
a few and exlpain how ours contribute to the existing research.

Group Dynamics. To understand the process of how social groups
form and evolve over time, previous work has extensively investi-
gated the growth and longevity of various forms of online commu-
nities such as Facebook apps [21], game communities [13], knowl-
edge sharing communities [37] and social networks communities
[6, 9, 20, 28, 33]. A more generalized work of Riberiro [30] inves-
tigates the group growth dynamics by encompassing a broad range
of 22 membership-based websites.

Our work focuses on studying the group dynamics of a rather
understudied realm — the social messaging services. Although re-
searchers have recently begun interpreting the group messaging be-
havior from a social science perspective (e.g., [12]), research com-
munity still knows little about the formation and evolution of social
messaging groups with concrete and empirical measurement. Fo-
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cusing on the Yahoo! instant messaging traffic data, Aral et al.
[5] considers the individual-level dynamics from the perspective of
peer influence and homophily, yet it is unclear how the groups as a
whole evolve over time — their lifecycles, their structural dynamics
etc. Our work contributes to the current research by discovering a
strong dichotomy among social messaging groups in terms of their
lifecycle. By taking into account a broad range of group-level struc-
tural and behavioral features, we develop a separability model that
distinguishes between long-term groups and short-terms groups, as
well as an early prediction model that forecasts the longevity of
groups.

Cascades. The second half our of work on group membership cas-
cade prediction builds on previous literature that studies diffusion
processes [17]. In recent years, scientiests have been able to ob-
serve and quantify large-scale diffusions from the richness of on-
line data, including blog space [3, 25], marketing [24], social sites
such as LinkedIn [4], Flickr [10], Twitter [16, 23, 31], Facebook
[7, 11, 21, 32], LiveJournal [6]. In work that aligns more closely
to our focus on social messaging, Aral et al. [5] have looked into
the effects of peer-influence and homophily during the diffusion
processes. Our work has a more comprehensive scope than [5] by
integrating both individual-level and group-level features into our
cascade prediction model.

The membership cascade process in the context of social mes-
saging groups differs from previous work in two folds. First, in
terms of cascade size, in contrast to previous findings on the struc-
tural virality in global-scale cascades [4, 16, 35], we observe a
relatively smaller scale of cascade in message groups and find a
siginificant fraction of short-term group memerbship cascades ter-
minate at the depth of 2 or 3. Such difference is caused by the
social messaging group nature of maintaining a compact commu-
nity size than going “viral” [36]. Second, due to mechanics spe-
cific to application, the cascade process we consider here is locally
dependent, with unidirectional contagion dominated mostly by the
existing group members. In WeChat, all the groups are by default
only visible to group members and grow in a invitation-only fash-
ion. Only the one-hop neighbors of current group members can be
invited to the group chat. And this is very dissimilar to the diffusion
models in previous work by Backstrom et al. [6] which assumes
that users can make their own decision to join based on the group
influence, even if they are not friends with any of the current group
members.

3. DATA
Preliminaries. Before describing the details of the dataset, we
first give a brief overview about WeChat’s Group Chat feature that
is central to our study here. While WeChat supports many other
important features including Moments for photo sharing, Friend
Radar for searching nearby friends and Sticker Gallery, it is impor-
tant to note that those are beyond the scope of our research focus in
this paper.

On WeChat, each user keeps a brief profile, including demo-
graphical information (e.g., gender, age and region) and address
book which saves the contact list of user’s friends. We use the tuple
(u, v,T ) to denote a friend relationship record if user u becomes
friend with user v at timestamp T .

A chat group on WeChat can be analogy to a community, where
one can chat with several friends all at once. There are two ways
in which a user can involve in a chat group: one can either initi-
ate a new chat group, or get invited by an existing member of the
group. Figure 1 illustrates an example of the WeChat user inter-
face of inviting friends to group chat. We consider (u, v, C,T ) as

(a) WeChat group membership (b) Membership invitation

Figure 1: The WeChat user interaface (UI) of inviting friends
to group chat. (a) Group membership UI displays the current
users in the group, along with attributes and basic settings for
the group such as group name, group capacity etc. Group mem-
bers can tap the “+” button to invite friends into the group
chat. (b) The UI of inviting friends to the group chat. Users
can browse and select contacts to add, and click “OK” to send
invitations. When group size is under the capacity 40, invited
users will be automatically added into the current group chat
without requiring further confirmation. However, under the
circumstances that group size exceeds the capacity limit, in-
vited users will have to manually click through the invitation
message in order to join the group. The largest WeChat group
can have as many as 500 members by default. Sourced from
WeChat official feature site [1].

a successful invitation if user v joins group C invited by user u at
timestamp T .

After being a member of a chat group, one can send various
forms of messages (e.g., text, photo and voice) to the entire group.
We use the tuple (u, C,T ) to denote the a group chat record if user
u send a message to group C at timestamp T .

Data Collection and Cleaning. The data for this study comes
from anonymized logs of complete WeChat group messaging ac-
tivities, collected between July 26th, 2015 to August 28, 2015. We
first collect all the 2.3 million groups generated on July 26th, 2015,
as our group set of interest. We preprocess the data by ignoring
groups with less then 5 chat logs— i.e., we only consider groups
that are not born to be dead; and also filtering groups with users
that are in list of monthly spam users (MSU) or monthly inactive
users (MIU). The list is maintained and updated by WeChat on a
monthly basis. All the initial groups in consideration consist of at
least three members.

Data Description. After preprocessing the initial group set, we
are left with 474,726 groups for further analysis. We then collect
four datasets of interest listed below. Tabel 1 summarizes statistics
of the dataset used for this study.

• Group Activity Records G: It consists of all the tempo-
ral group activity records (u, C,T ) for each of the sampled
group, with T running between July 26th, 2015 to August
28, 2015.
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• User Set U : It consists of all the members belonging to the
sampled groups as well as their one-hop neighbors, as of Au-
gust 28, 2015. Note that we further remove users in the list
of MSU or MIU from the user set.

• Invitation Records I: It consists of tuples (u, v, C,T )
where user u successfully invites v to join group C at times-
tamp T during our data collection period.

• Friendship Records F : It consists of all the tuples (u, v,T )
where u and v (u, v ∈ U) become friends with each other at
time T . The friend relationships in WeChat are undirected,
and we have both (u, v,T ) ∈ F and (v,u,T ) ∈ F .

Table 1: Summary of data set.
Category Type Number

Group
Total 474,726

Min group size 3
Max group size 500

User Total 245,352,140
Invitation Total 2,013,351
Friendship Total 624,529,005

4. GROUP LIFECYCLE DICHOTOMY
One question that we brought up previously is how social mes-

saging groups grow and evolve over time — their lifecycles and
their structural dynamics. As a high-level characteristic, social
messaging groups can have a relatively shorter lifespan — rang-
ing from several hours to months — as opposed to those online
groups seen in social networking sites such as Reddit [8] and Face-
book [29] that can sustain up to years. In this section, we start with
discussing the phenomena of lifecycle dichotomy we observe from
the group activity temporal data. To do this, we define the lifespan
of a social messaging group below.

Definition 1. Group Lifespan. We define it by the duration
from the timestamp at which a group is initialized, to the times-
tamp at which no group member sends chat messages anymore.
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Figure 2: Group Lifecycle Dichotomy. Left: Histogram of
group lifespan (measured by day); Right: Cumulative distri-
bution function (CDF) of group lifespan.

We begin by analyzing the distribution of lifespan among all the
474,726 group samples. Since we stop our data collection on the
day of August 28, 2015, the longest lifespan a group can have is
34 days during the period of our observation. Figure 2(a) and Fig-
ure 2(b) display the distribution and Cumulative distribution func-
tion (CDF) of group lifespan respectively. A salient observation
drawn from the result is that the histogram of group lifespan is
dominated by two peaks: one appears on the leftest (near a few
hours) and another appears on the rightest side (near one month).

This implies a strong dichotomy exists among groups in terms of
their lifecycle, and we accordingly make a conceptual difference
between two types of groups:

• Short-term groups: this type of groups emerge and die very
quickly, and usually have lifespan ranging from hours to a
few days. For example, Figure 2(b) shows that almost 40%
of groups stop interaction within only a week.

• Long-term groups: this type of groups can survive a much
longer period of time than short-term groups. Figure 2(b)
shows that about 30% groups fall into this category and can
sustain longer than 30 days.

The phenomena of lifecycle dichotomy also leads us to the
question of how does the lifecycle and growth pattern of social
messaging groups correlate with the social functions it is serv-
ing? To address this, we manually examine 100 randomly selected
groups, among which 60 are long-term groups and 40 are short-
term groups, respectively. We categorize these groups according
to their social functions (the title of groups) by hand, and list the
details in Table 2. Quite interestingly, we find that most short-
term groups are event-driven (e.g., travel groups, meeting groups
and dining groups), while long-term groups are more relationship-
driven (e.g., family groups, colleague groups and friend groups).

Table 2: Case study by group displayed name.
Category Long Short Example

Travel 0 8 Discuss on a short trip
Meeting 1 2 Schedule an official meeting

Event 4 13 Plan a wedding
Entertain 5 13 Dine together

Organization 9 0 Departments of company
Class 12 4 Course for GRE test
Friend 13 0 Childhood friend
Family 16 0 A family of three

4.1 Group Structure Dynamics
In this subsection, we move on to study the underlying structural

change of messaging groups over time. We investigate several rep-
resentative structural features (e.g., open triad count, closed triad
count and edge density), and quantitatively analyze the how these
features evolve in a different pattern with respect to the long-term
and short-term groups, respectively.

Triad Count. The studies about transitivity in social net-
works [18] suggest that the local structure in social networks can be
expressed by the triad count. In WeChat groups, we try to examine
whether long-term and short-term groups show different transitivity
patterns. We take into account both the open triad count and close
triad count, based on the friendship networks structure of sampled
WeChat groups. To illustrate this, Figure 3(a) shows an example
of a small WeChat group friendship networks, in which nodes A,
B and C form a closed triad; nodes A, C and D is considered an
open triad.

Edge Density. We also consider the feature of internal edge den-
sity of a group, which is defined by the fraction of edges (friend-
ships) within the group among all the possible edges when the
group is fully connected.

To see how these structural features change over time, we take
two snapshots for the groups: one at the time when the groups are
initialized (we choose ∼10 minutes in this study), another after
one month being setting up. We consider long-term and short-term
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Figure 3: Group Structure Pattern. (a): An example of group friendship networks. Group members and friend relationships are
represented as nodes and dot lines, respectively. For this example, we can see A, B and C are connected as a closed triad; A, C
and D are connected as an open triad. The edge density of this group is 0.476. (b) (c): Horizontal axis is the normalized number of
open/closed triads at the setting up of a WeChat group, and vertical axis is the normalized number of open/closed one month later.
(c): Horizontal axis is the edge density at the setting up of a WeChat group, and veritcal axis is the edge density one month later.

groups separately in order to see the different patterns of structural
patterns between these two. We also remark here that although
short-term groups may stop messaging interactions at some point,
members within the groups are still likely to build friendship as
long as they maintain the group membership, and thus affect the
underlying friendship network structure for potentially longer pe-
riod of time.

Figure 3(b), Figure 3(c) and Figure 3(d) show the results for fea-
ture dynamics of open triad count, close triad count and edge den-
sity, respectively. Note that if the structure of groups are not chang-
ing at all, we would expect to see a scatter plot centering around the
diagonal line of y = x (with normalization). From the visualiza-
tion results, it is interesting to first observe the different evolution
patterns exhibited between short-term groups and long-term groups
— the long-term ones show stronger dynamics in terms of the un-
derlying friendship structure features while most short-term groups
are less likely to develop friendship over time.

We infer such dichotomy in structure dynamics is related to the
social roles and functions for the social groups to be setup. For
example, a colleague’s group served for long-term communications
is more likely to develop social connections between members, as
opposed to a group setup for some specific social event.

4.2 Cascade Tree Pattern
Beside studying the friendship structure, we also discuss the

group formation processes, namely by investigating the group
membership invitation cascading tree structure. We start with
defining the group cascade tree below.

Definition 2. Group Cascade Tree. A directed graph where
each group member is a node, and a directed edge from u to v
is constructed if u (inviter) successfully invites v (invitee) to the
group. The tree is rooted at the user who initiated the group. Cy-
cles are impossible since inviters always join the group earlier than
invitees.

To show how long-term and short-term groups differ in terms
of cascade tree structure, Figure 4(a) and Figure 4(b) show the ex-
amples for two types of WeChat group cascade tree. We find that
long-term groups tend to exhibit a deeper tree structre with more
branchings; whereas many short-term group cascade trees display
an approximate star graph structure with most members being the
leaves of the root node. In order to quantify such difference, we
consider here four representative features concerning the structure
of cascade trees.

Cascade Size. We start our analysis on cascade tree by examin-
ing the total number of nodes in the cascade tree, i.e., group size.
Figure 5(a) shows the normalized distribution of cascade tree size

(a) Example of long-term group (b) Example of short-term group

Figure 4: Example of WeChat group cascade tree for long-term
group and short-term group, respectively.

for both types of groups. We find that long-term groups tend to
have larger size (up to 500 by default) while the size of short-term
groups diminishes around 100. This is not very surprising since
long-term groups can be advantageous in gaining more members
give a longer timespan for growth.

Invitation as a Function of Cascade Depth. A natural way to
measure the difference in cascade tree between long-term groups
and short-groups is to examine the distribution of cascade depth at
which the invitation occur. We measure the cascade depth for each
of the invitation happens during our observation period, which is
defined by the number of steps from the root to the group member
in the cascade tree. Figure 5(c) shows the normalized distribution
of cascade depth among all the invitations in our dataset. We ob-
serve that more invitations occurs far from the root in long-term
groups than that in short-term groups. For example, 10% of invita-
tions in long-term groups occur at depth 3 or greater; whereas for
short-term groups, only less than 1% of invitations occur at depth
3 or greater.

Invitation as a Function of Subtree Size. Finally, we measure the
difference of cascade tree structure between long-term groups and
short-term groups by measuring the size of subtree for each node in
the cascade tree. In Figure 5(b), we show the distribution of the cas-
cade subtree size for each node resides in the cascade tree, aggre-
gated among all the sampled groups. Again, we observe substantial
difference between long-term groups and short-term groups. For
example, 30% of nodes in the cascade tree of long-term groups
have subtree size greater than 10; whereas only 10% of nodes have
subtree size greater than 10 in short-term groups.

Structural Virality. We also quantify cascade trees by measur-
ing their structural virality as that used in [16]. Structural virality,
also know as Wiener index, is useful for disambiguating between
shallow, broadcast-like diffusion and the deep branching structures.
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Figure 5: Cascade tree related feature distributions. (a): Distribution over group size. Vertical axis is the fraction of groups with size
larger than |C|. (b): Distribution over subtree size. Vertical axis is the fraction of non-singleton members in trees of specific size. (c):
Distribution over cascade depth. (d): Distribution over Wiener index.

Wiener index is defined by the average distance between any two
nodes in the cascade tree. For example, the cascade trees in Fig-
ure 4(a) and Figure 4(b) have Wiener indexes of 3.99 and 1.83,
respectively. In Figure 5(d), we show the distribution of Wiener in-
dex of cascade trees for both long-term and short-term groups. We
observe that more than 99% of short-term groups have Wiener in-
dex smaller than 2, which implies that most membership cascades
happen in a broadcast fashion, settled mostly by the root node.

4.3 Group Lifecycle Prediction
The strong dichotomy of group lifecycle and structure dynamics

leads us to a natural modeling and prediction questions —– how
separable are the long-term and short-term groups by taking into
account the structural, behavioral as well as demographical fea-
tures? Can we predict whether a social group will grow and persist
in the long run by analyzing the structural and behavioral patterns
exhibited by the group at its early stage? In this section, we address
both issues through analyzing the snapshots of millions of groups,
combining a broad range of features.

4.3.1 Separability Model
In this model, we consider the task of predicting whether a group

is long-term or short-term, from features including the underlying
group network structure, the membership cascade tree properties,
and the demographics entropy of group members. The full list of
features can be found in Table 5, where we are only using group-
level ones for this task.

To train the separability model, we construct the training dataset
by labeling groups with less than 5 days of lifespan as negative ex-
amples, and groups with longer than 25 days of lifespan as positive
examples. We represent each group as a feature vector extracted
one month after groups are built, and further train the dataset using
support vector machine (SVM) [14] with 10-fold cross validation.

Table 3: Feature contribution analysis on the separability of
long-term and short-term groups.(%)

Features used AUC Prec. Rec. F1
All Features 66.62 63.23 57.66 60.32
-Structure 64.75 59.36 62.83 61.04
-Cascade 65.36 64.49 47.67 54.82

-Demographics 65.24 57.35 65.71 61.25
Random Guess 50.00 50.00 50.00 50.00

+Structure 64.21 61.98 42.51 50.43
+Cascade 61.23 57.35 65.71 61.25

+Demographics 62.77 63.18 41.41 50.03

The prediction results are shown in Table 3. We find that highest
classification accuracy (66.62% AUC) can be obtained with full set
of features. We further investigated how each set of features (i.e.,
structure, cascade and demographics) affects the training perfor-

mance by considering only one at a time. And we find that the set
of structural features by itself can yield high accuracy, which again
confirms that strong distinctions exist between short-term and long-
term group structures.

4.3.2 Early Prediction of Group Lifecycle
Given the strong separability between the long-term and short-

term groups, we pose a fundamental question of how well can we
predict if a group can grow and persist in the long run, from the
features exhibited in its early age?

Table 4: Group lifecycle early prediction performance re-
sults(%). We train the classifier using all the group-level fea-
tures.

Features used AUC Prec. Rec. F1
1 hour 57.95 54.16 56.80 55.45
1 day 65.08 61.92 53.38 57.34
5 days 65.46 62.52 54.11 58.01

10 days 65.57 62.48 56.81 59.51
20 days 65.76 62.78 56.56 59.51
1 month 66.62 63.23 57.66 60.32

The way we implement the early prediction model is largely sim-
ilar to the separability model previously except for the subtle dif-
ference that group features (see group-level features in Table 5) are
extracted at earlier timestamps. Specifically, for each group in our
training set, we take multiple snapshots at the age of 1 hour, 1 day,
5 days, 10 days, 20 days and 1 month, and calculate the feature
vector accordingly. We repeat similar procedure to train the dataset
with respect to features extracted at various timestamp, and com-
pare the training performance. Table 4 shows the prediction per-
formance results at different stages. We find that features extracted
one day after the groups being set up can yield AUC accuracy as
high as 65.08%, which is almost as good as the prediction accuracy
of 66.62% when adopting features at timestamp of 1 month.

The results of early prediction model reassure that the likelihood
for social messaging group to grow in the future can be well in-
ferred from its very early age (e.g., 1 day). Such predictability is in
contrast to previous study on predicting the longevity of online so-
cial communities [20] which requires features at the age of months
for making short-term prediction and years for making long-term
prediction. And again this is partly due to the different nature of
social messaging groups and online communities in terms of the
lifecycle.

5. MEMBERSHIP CASCADE PROCESS
Now we have modeled the growth and evolution of social mes-

saging groups from a group-level perspective. In this section, we
approach the problem with a focus on the individual-level and study
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the membership cascade process by which group gain new mem-
bers.

To start with, we introduce a group membership cascade model,
as illustrated in Figure 6. The model captures two important roles:
inviter — a group member who sends invitation to friend(s), and
invitee — the individual in the inviter’s ego networks who gets in-
vited to the group chat2. For instance, the big dotted circle in Fig-
ure 6 encompasses all the current members within a group. There
are two essential steps behind each invitation: 1) a member in a
group become active (denoted by blue in Figure 6), and 2) the ac-
tive member selects his/her friends (denoted by red in Figure 6) into
the group chat.

inviter

regular

fringe

invitee

invite

friendship

Figure 6: Graphical example of WeChat groups’ cascade pro-
cess model. At some timestamp T , some members in a group
become active (denoted by blue) and select their friends (de-
noted by red) to the group chat.

5.1 Membership Cascade Pattern

5.1.1 Behavioral Pattern
To have a better understanding of membership cascade pattern,

it is important to first study group members’ behavioral pattern.
For example, an interesting question would be how often do people
invite their friends into the group chat once they become a group
member? This can also be phrased as how often do membership
cascade happen in social messaging groups? In this subsection, we
provide some empirical findings concerning members’ invitation
behavior pattern measured by the concepts of invitation interval
and first invitation latency defined below.

Definition 3. Invitation Interval is defined as the time inter-
val between any two consecutive invitations from a group member.
Additionally, First Invitation Latency is defined as the interval be-
tween the timestamp at which a user joins a group (invited by some
existing member) and the timestamp when he/she, for the first time,
invites another friend to the same group.

Intuitively, investigating the action of a group member’s first in-
vitation is useful since it signifies how well has he/she been adapt-
ing to the current group, and how strong the sense of relevance
he/she has with respect to the current group.

To address above questions, we obtain the distribution of invi-
tation interval and first invitation latency, aggregating over each
member in each group. Figure 7(a) and Figure 7(b) show the
CDF curve of first invitation latency and invitation interval, respec-
tively. We observe the invitations in WeChat groups are highly
time-sensitive. On the one hand, when one is invited to a group,
2On WeChat, instead of sending group invitation to any registered
user, one can only invite his/her current friends into the group chat.
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(a) First invitation latency
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(b) Invitation interval

Figure 7: Dynamic pattern of invitations. Left: Cumulative
distribution function (CDF) of first invitation latency (measured
by day); Right: Cumulative distribution function (CDF) of in-
vitation interval (measured by day). The invitations in WeChat
group display a highly time-sensitive pattern.

he/she tends to start invite other people soon. For example, about
80% of the first invitations happen within 5 days after the inviter
joining the group. On the other hand, we find that members suf-
fer from a longer latency in sending their first invitations than the
invitation interval in general. For example, more than 80% of con-
secutive invitations happen within 2 days of interval.

5.1.2 The Influence of Local Structure
In this subsection, we probe into the local structure of group and

investigate how the membership cascade process is influenced by
the structural features. Specifically, we study how the probability
for a user u being invited by his/her friend into a group is affected
by the structure of ego networks of u.

Backstrom et al. Revisit. In the context of online social networks,
Backstrom et al. [6] introduced the probability that an individual
adopts and joins a community with the number of friends already
in the group.

As noted earlier, a significant difference in our setting of social
messaging group is that new group members are “passively invited”
to the group rather than “actively adopt” the group. To this end, we
calculate P (k) — the fraction of user who is invited to a commu-
nity as a function of the number of k of their friends who are already
members, with slightly tweaking the definition in [6]. Specifically,
we first take two snapshots of group membership, with 10 days
apart. We find tuples (u, C, k) where u /∈ C at the time of the first
snapshot and u has k friends in C at that time. We then compute
P (k) by looking at the fraction of tuples (u, C, k) that u ∈ C at the
time of the second snapshot.

The results for WeChat group (see Figure 8(b)) exhibit an in-
teresting contrast to the curves of LiveJournal and DBLP groups
shown in Backstrom, Huttenlocher, Kleinberg and Lan [6]. Instead
of observing an increasing trend of the curve with respect to larger
values of k, we find a qualitatively different shape where the adop-
tion probability suffers from a slight decrease at moderate values of
k, and drastic fluctuations when k exceeds 40. We infer such dif-
ference is caused by the mechanism inherent to WeChat, that when
a group has more than 40 users, inviting friends to join the group
requires their confirmation. We leave the detailed inspection on this
for future investigation.

Furthermore, we also observe a strong evidence for the influence
of structural locality. In particular when k is small, the fraction of
invitee (invited to the group) with 10 friends already in the group
(k = 10) is twice as much as the fraction of invitee with 5 friends
in the group (k = 5).
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Figure 8: Local structure pattern of invitations. (a): Illustration of a potential invitee’s ego networks. Give a group C, blue nodes
represent user v’s friends who have been in the group, while the white nodes denote those users in v’s ego networks who did not
join the group. (b): The probability p of being invited to a WeChat group as a function of the number of friends k already in the
group. Error bars represent 95% confidence interval. (c): The effect of structure diversity. Structural diversity is represented
by the number of connected components formed by the friends already in the group. Horizontal axis is the number of connected
components formed by friends already in the group and the vertical axis is the probability p of being invited to a WeChat group.

Table 5: List of features used in this study.
Group Level (for group C at time T )

Group Structre

Number of individuals with a friend in C (the fringe of C)
Number of edges with one end in the group and the other in the fringe.
Number of edges with both ends in the group.
The number of open triads at time T and at the setting up of group.
The number of closed triads at time T and at the setting up of group.
Clustering coefficient.

Cascade Tree

Number of Members (|C|).
Tenth quantile of members’ depth in the cascade tree.
Tenth quantile of members’ subtree size.
Number of members whose depth equal to k, k = 1, 2, . . . , 9.
The sum of the lengths of the shortest paths between all pairs of vertices, i.e., Wiener index.

Demographics

Number, fraction of members from country X .
Number, fraction of members who stated their gender to be X .
Number, fraction of membes who stated their age to be X .
Entropy of member’s region (country, province, city) distribution, e.g., −

∑
x∈Countries P (x) log2 P (x).

Entropy of member’s age: −
∑

x∈Ages P (x) log2 P (x).
Entropy of member’s gender: −

∑
x∈Genders P (x) log2 P (x).

Inviter Level (for member u in group C at time T )

History Behavior

How long has it been since u joined C.
How long has it been since u invited others to C.
The number of users that u invited to C before time T .
The number of chat made by the individual.

Local Structure

The number of u’s friends in the fringe with ≥ k friends in the group, 1 ≤ k ≤ 20, k = 30, 40, 50
The number and fraction of u’s friends in the group: |{v|v ∈ ego(u) ∧ v ∈ C}|.
The number and fraction of u’s friends not in the group: |{v|v ∈ ego(u) ∧ v 6∈ C}|.
The number of cross group edges in u’s ego networks: |{(v,w)|v ∈ C ∧ w 6∈ C ∧ u,w ∈ ego(u)}|.
The ratio of cross group edges to cross group edges that could possible exist in u’s ego networks.
The depth of u in cascade tree.

Invitee Level (for user u in the fringe of group C at time T )

Demographics

User u’s stated gender.
User u’s stated age.
User u’s stated region (country, province and city).
The fration of group member who has the same gender as u.
The fration of group member who has the same age as u.
The fration of group member who has the same region (country, province, city) as u.

Local Structure
Number of friends already in the group.
Number of friend in group C who are classified as acitive inviters.
Number of connected components formed by friends already in the group.
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Structural Diversity. The above analysis informs us that the num-
ber of friends in the group can affect whether a user gets invited.
Yet it is unclear how it is affected by the local network structure.
In this subsection, we study how structural diversity of user u’s ego
networks [34] affects the probability for u to be invited by friends
into a group.

For a given user u with k friends already in a group, we mea-
sure structural diversity by counting the connected components in
the networks formed by these k friends. For example, as illustrated
in Figure 8(a), user v has four friends (A,B,C and D) already
in a group. A,B,C and D form 3 connected components, i.e.,
{A,B}, {C} and {D}. Figure 8(c) plots the curves of the proba-
bility of being invited to a group with respect to the number of con-
nected components formed by friends already in group. We choose
the parameter k (i.e., the number of friends already in group) to be
2, 3, 4, 5, 6-10 and > 10, respectively. Interestingly, we find that
given a fixed k, the more closely these k friends are connected, the
more likely u will be invited to the group.

5.2 Membership Cascade Prediction
Now we have seen how the membership cascade process can

be affected by both users’ behavioral pattern as well as the local
structure surrounding a user. In this subsection, we propose a pre-
diction model by integrating a comprehensive set of behavioral and
structural features. This can be used in practice to make effective
inference on the membership cascade process. Specifically, given
the historical behavior of group members as well as the local social
structure, can we predict which members in the group are more
likely to be active and invite new users to the group chat and to
whom will he/she send invitations to?

To address the issue, we separately model the inviter prediction
and invitee prediction problems.
Inviter Prediction. At some timestamp T , for a given group C and
a specified user u ∈ C, our learning task here is to predict whether
u will become active and invite friends to C during the time interval
(T ,T + ∆t].
Invitee Prediction. At some time T , for a given group C and a
user u ∈ fringe(C), our learning task here is to predict whether u
(one-hop neighbor of current members) will be invited to C during
the time interval (T ,T + ∆t].

For both prediction task, we construct each training example
by randomly selecting T from 10 minutes to 1 month, and fix-
ing ∆t = 1 day. We also notice that, on average, only 5.6% of
group members have invitation action and fewer than 1% among
users in the fringe of groups are invited, causing the number of
positive examples and negative examples quite unbalanced. We
thus down-sample [22] the size of negative examples and maintain
a positive/negative ratio of 1:2 in our training set.

Table 6: Performance of inviter/invitee prediction and
inviter/invitee-level feature contribution analysis (%).

Task Features used AUC Prec. Rec. F1

Inviter
All 95.31 85.95 88.39 87.15

-History Behavior 91.52 82.07 84.31 83.17
-Local Structure 93.22 84.50 87.04 85.75

Invitee
All 98.66 54.55 93.47 68.89

-Demographics 98.05 45.76 94.68 61.70
-Local Structure 89.29 11.85 76.53 20.52

We incorporate both group-level and inviter-level features seen
in Table 5 for training the inviter model; and use instead the group-
level and invitee-level features for invitee model. We further train
the dataset using support vector machine (SVM) [14] with 10-fold

cross validation. The prediction performance results are shown in
Table 6. We see that our model is quite effective, with AUC of
95.31% in predicting inviter, and an AUC of 98.66% in predicting
invitee. We further investigated how each set of features affects the
training performance by considering only one at a time. Quite inter-
estingly, we find that historical behavioral features can be important
factors in the task of predicting inviter; while local structural fea-
tures are the dominant ones in predicting invitee. The information
of demographics exert little affect on the performance of predicting
invitee, which implies that our model can be generalizable without
requiring user-specific attributes.

6. CONCLUSION

Summary. In this paper, we studied the formation and evolution
of chat groups in the context of social messaging — their lifecy-
cles, the change in their underlying structures over time, and the
diffusion processes by which they develop new members. We use
a large collection of anonymized data from WeChat group messag-
ing platform, providing analysis on dynamics of millions of groups
by keeping track of their emergence, growth and demise over time.
We discovered a strong dichotomy of groups existed in terms of
their lifecycle, and defined two types of groups accordingly: long-
term and short-term groups. First, we developed an effective sep-
arability model by taking into account a broad range of group-
level features, showing that long-term and short-term groups are
inherently distinct. We also found that the lifecycle of messaging
groups is largely dependent on their social roles and functionalities
in users’ daily social experiences and specific purposes. Specifi-
cally, event-driven groups in general have a shorter lifespan as ap-
posed to those friendship groups serving for frequent catching-up
purpose. Given the strong separability between the long-term and
short-term groups, we further addressed the problem of early pre-
diction in group longevity, and demonstrated that strong prediction
results can be obtained even with a group’s history up to one day.

In addition to modeling the growth and evolution from a group-
level perspective, we also investigated the individual-level at-
tributes of group members and study the diffusion process by which
groups gain new members. We developed a membership cascade
process model in which we consider users’ historical engagement
behavior as well as the local social network structure that users em-
bedded in. We demonstrated the effectiveness by achieving AUC
of 95.31% in the inviter prediction model using all features, and an
AUC of 98.66% in the invitee prediction model.

Future Research. Ours findings raise many important open ques-
tions that would be interesting to take into account in future re-
search. First, our design of membership cascade model can be used
for group member recommendation, and may be potentially inte-
grated into current WeChat platform. This can motivate research
on conducting online experiments and investigating whether users
are likely to adopt the group member recommendations, and under
what circumstances. Such studies will also lead to design of better
group chat platforms and engage users more effectively.
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