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ABSTRACT
Recommender systems play a crucial role in mitigating the
information overload problem in social media by suggesting
relevant information to users. The popularity of pervasively
available social activities for social media users has encour-
aged a large body of literature on exploiting social networks
for recommendation. The vast majority of these systems fo-
cus on unsigned social networks (or social networks with only
positive links), while little work exists for signed social net-
works (or social networks with positive and negative links).
The availability of negative links in signed social networks
presents both challenges and opportunities in the recommen-
dation process. We provide a principled and mathematical
approach to exploit signed social networks for recommen-
dation, and propose a model, RecSSN, to leverage positive
and negative links in signed social networks. Empirical re-
sults on real-world datasets demonstrate the e�ectiveness of
the proposed framework. We also perform further experi-
ments to explicitly understand the e�ect of signed networks
in RecSSN.

General Terms
Algorithms
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1. INTRODUCTION
Recommender systems play a crucial role in helping online

users collect relevant information by suggesting information
of potential interest. The increasing popularity of social me-
dia allows online users to participate in online activities in
a pervasive way. These social networks provide independent
sources of recommendation and unleash previously unknown
potentials of recommender systems. The exploitation of so-
cial networks for recommendation has attracted increasing
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interest in recent years [3, 16, 6, 17, 7]. Existing social rec-
ommender systems can be roughly categorized into memory-
based systems and model-based systems [32]. The vast ma-
jority of these systems focus on unsigned social networks
(or social networks with only positive links); however, social
networks in social media can contain both positive and neg-
ative links. Examples of these signed social networks include
Epinions1 with trust and distrust links, and Slashdot2 with
friend and foe links. Such networks provide a much richer
source of information than what is exploited by the current
systems [39, 13, 1, 5].

Experience with real-world social systems such as Epin-
ions and eBay suggests that negative links in signed social
networks are at least as important as positive links [4]. Neg-
ative links tend to be more noticeable and credible, and
weighed more than positive links of a similar magnitude [21,
2]; therefore, they can be critical in various analytical tasks.
For example, negative links add a signi�cant amount of
knowledge than that embedded only in positive links [12,
29], and a small number of negative links can improve the
performance of positive link prediction remarkably [4, 14].
Evidence from recent achievements in signed social network
analysis suggests that negative links may also be potentially
helpful in recommender systems. However, negative links
exhibit very di�erent properties from positive links [28, 33];
hence, recommendation with signed social networks can-
not be successfully carried out by simply extending recom-
mender systems with unsigned social networks in a straight-
forward way. For example, most existing recommender sys-
tems with unsigned social networks assume that a user’s
preference is similar to or in
uenced by their friends (or
positive links) according to homophily [22] and social in
u-
ence [19]. Such assumptions are not applicable in signed
social networks [33]. This makes the recommendation prob-
lem more challenging in the signed network scenario.

In this paper, we study the problem of recommendation
with signed social networks, in the context of (i) exploiting
positive and negative links in signed social networks; and
(ii) modeling them mathematically for recommendation. In
order to address these two challenges, we propose the Rec-
SSN framework, in which the primary contributions are as
follows:

� We provide a principled approach to mathematically
exploit signed social networks for recommendation;

1http://www.epinions.com/
2http://slashdot.org/
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� We propose a novel recommendation framework, de-
noted by RecSSN, which captures both positive and
negative links in signed social networks; and

� We evaluate the proposed framework in real-world so-
cial media datasets to understand the e�ectiveness and
mechanisms of the proposed framework.

The remainder of this paper is organized as follows. In
Section 2, we formally de�ne the problem of recommenda-
tion with signed social networks. We describe the datasets
and perform preliminary data analysis on these datasets in
Section 3. In Section 4, we provide approaches to model
signed social networks and introduce details about the pro-
posed RecSSN framework with an optimization algorithm.
Section 5 presents experimental results with discussions. Sec-
tion 6 brie
y reviews related work. Finally, Section 7 con-
cludes with future work.

2. PROBLEM STATEMENT
Let U = fu1, u2, . . . , uNg be the set of users and V =
fv1, v2, . . . , vmg be the set of items where N and m are the
numbers of users and items, respectively. We assume that
R 2 RN×m is the user-item matrix where Rij denotes an
observed score from ui to vj and we set Rij = 0 if the score
from ui to vj is missing. Note that in di�erent recommender
systems, the score has di�erent meanings. For example, in
rating systems such as Epinions and Net
ix, scores denote
rating scores from users to items; in tagging systems such
as Slashdot and Flikcr, scores indicate whether users are
associated with tags.

For the problem of recommendation with signed social
networks, signed social networks among users are also avail-
able in addition to the user-item matrix R. A signed social
network G can be decomposed into a positive component
Gp and a negative component Gn. Let Ap 2 RN×N be the
adjacency matrix of Gp where Ap

ij = 1 if ui has a positive

link to uj and Ap
ij = 0 otherwise. Similarly, An 2 RN×N

denotes the adjacency matrix of Gn where An
ij = 1 if ui has

a negative link to uj , and An
ij = 0 otherwise. Note that we

only consider links with a binary weight f0, 1g in this paper
although the generalization of the proposed framework to
links with continuous weights is straightforward.

With the aforementioned notations and de�nitions, the
problem of recommendation with a signed social network
can be formally stated as follows:

Given observed values in R and a signed social network G
with positive links Ap, and negative links An, the problem of
recommendation with a signed social network aims to infer
missing values in R.

3. DATA ANALYSIS
Because recommendation with unsigned networks strongly

depends on the �nding that users are likely to share simi-
lar preferences with their friends [32], it is natural to ex-
plore similar �ndings of signed social networks for recom-
mendation. Such an understanding lays the groundwork for
a meaningful recommendation framework with signed social
networks. In this section, we �rst introduce the datasets
and then perform preliminary data analysis to understand
the impact of signed social networks on recommendation.

Table 1: Statistics of the Epinions and Slashdot
datasets.

Epinions Slashdot
# of Users 18,210 11,868
# of Items 41,089 27,942
# of Positive Links 358,985 290,719
# of Negative Links 75,091 67,108
Density of User-item Matrix 8.42e-4 1.20e-3
# of Users with Negative Links 11,598 7,837

3.1 Datasets
For the purpose of this study, we collected two datasets

from Epinions and Slashdot. Some details about these datasets
are described below.

Epinions is a popular product review site. Users in Epin-
ions can create both positive (trust) and negative (distrust)
links to other users, which results in a signed network G.
They can also rate various products with scores ranging from
1 to 5. Therefore, if ui rates vj , Rij is the rating score, and
Rij = 0 otherwise.

Slashdot is a technology news platform. Users in Slashdot
can create friend (positive) and foe (negative) links to other
users, which results in the signed network G. They also
can specify tags associated with them. Therefore if vj is
associated with ui, Rij = 1, and Rij = 0 otherwise.

Some additional preprocessing was performed on these
two datasets by �ltering users without any positive and neg-
ative links, or with few non-zero entities in the user-item
matrix R. A number of key statistics of these datasets are
illustrated in Table 13. It is evident from these statistics that
(i) positive links are denser than negative links in signed so-
cial networks; (ii) not all users in signed social networks have
negative links; and (iii) the user-item matrix is very sparse.

3.2 An Analysis of Signed Social Networks
Previous studies suggest that users in unsigned social net-

works are likely to share similar preferences with their friends,
which serves as the basis of most existing recommender sys-
tems with unsigned social networks [35]. In this subsection,
we investigate similar preference properties of users in signed
social networks.

Let pi, ni and ri denote the number of users with pos-
itive, negative and no links with ui. We construct three
circles for each user ui with the same size of min(pi, ni, ri).
These circles correspond to (i) a friend circle FRi includ-
ing randomly selected users who have positive links with ui;
(ii) a foe circle FOi containing randomly selected users who
have negative links with ui; and (iii) a random circle RAi

including randomly selected users who have no links with
ui. Similar to the study of preference properties of users
in unsigned social networks [35], we investigate preference
properties of users in signed social networks by investigat-
ing similarities between users and their circles. We will use
the friend circle as an example to illustrate how we perform
these investigations.

Let F ip
k be the set of users from FRi from whom we ob-

serve scores to the item vk as

F ip
k = fuj juj 2 FRi ^Rjk 6= 0g (1)

3We will make these two datasets publicly available via
http://jiliang.xyz/signed.html
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Table 2: Average similarities between users and
their circles.

Epinions
CI COSINE CI-COSINE

\Friend" Circles (sp) 6.4520 0.0292 0.4954
\Foe" Circles (sn) 2.0808 0.0167 0.3811

Random Circles (sr) 1.2014 0.0092 0.2497
Slashdot

CI COSINE CI-COSINE
\Friend" Circles (sp) 8.5517 0.0456 0.5141

\Foe" Circles (sn) 2.5035 0.0206 0.4329
Random Circles (sr) 1.7151 0.0129 0.3226

Then, the average score of FRi to the k-th item �Rip
k is

calculated as follows:

�Rip
k =


∑

uj∈Fip
k

Rjk

|Fip
k
|

for F ip
k 6= ;,

0 otherwise.
(2)

With �Rip
k , we can calculate the similarity spi between ui

and her friend circle FRi. In this work, we investigate three
ways of calculating spi as follows:

� CI: We compute spi as the number of common items
scored by both ui and his/her friend circle FRi as:

spi = jIpi j, I
p
i = fvj jRij 6= 0 ^ �Rip

j 6= 0g (3)

� COSINE: The term spi is calculated as cosine similarity
of scores between ui and FRi over all items as:

spi =

∑
vj

Rij � �Rip
j√∑

vj
R2

ij

√∑
vj

( �Rip
j )2

, (4)

� CI-COSINE: Di�erent from COSINE, CI-COSINE com-
putes the cosine similarity over common items Ipi as:

spi =

∑
vj∈I

p
i

Rij � �Rip
j√∑

vj∈I
p
i

R2
ij

√∑
vj∈I

p
i
( �Rip

j )2
, (5)

Similarly, we can compute the similarity sni between ui

and his/her foe circle FOi, and the similarity sri between ui

and his/her random circle RAi. Let sp, sn, and sr be the
similarity vectors of spi , sni , and sri over users for these three
circles, respectively. The means of sp, sn, and sr are demon-
strated in Table 2. We observe that (i) friend circles have
larger means than foe circles; and (ii) among these three cir-
cles, friends circles have the largest means. From these two
observations, we form two assumptions about social signed
networks - (i) users are likely to be similar with their friend
circles; and (ii) users are likely to be more similar with their
friend circles than their foe circles.

For two vectors fx,yg, the null hypothesis H0 and the
alternative hypothesis H1 of a two-sample t-test are de�ned
as follows:

H0 : x <= y H1 : x > y. (6)

where the null hypothesis indicates that the mean of x is less
than or equal to that of y. We perform t-test on fsp, srg
and fsp, sng to examine aforementioned assumptions, re-
spectively. For example, when we perform the t-test on

Table 3: P-values of t-test results.
Epinions

CI COSINE CI-COSINE
fsp, srg 3.93e-124 6.07e-193 -2.71-111
fsp, sng 3.12e-37 6.83e-65 2.35e-47

Slashdot
CI COSINE CI-COSINE

fsp, srg 6.79e-140 5.62e-107 8.61e-85
fsp, sng 1.83e-31 7.37e-27 3.89e-21

fsp, sng, the null hypothesis is that users are likely to be less
similar with their friend circles than their foe circles; there-
fore if we reject the null hypothesis, then the assumption of
users likely to be more similar with their friend circles than
their foe circles is veri�ed. The null hypothesis for each test
is rejected at signi�cance level α = 0.01 with p-values shown
in Table 3. The evidence from t-test on fsp, srg suggests that
users are likely to be similar with their friend circles; and
the evidence from t-test on fsp, sng indicates that users are
likely to be more similar with their friend circles than their
foe circles.

4. THE PROPOSED FRAMEWORK
Two types of information from unsigned social networks

can be exploited for recommendation, which correspond to
local information and global information [34]. Local infor-
mation reveals the correlations among the user and his/her
friends, while global information reveals the reputation of
the user in the whole social network. Users in the physical
world are likely to ask for suggestions from their local friends
while they also tend to seek suggestions from users with high
global reputation. This suggests that both local and global
information can be exploited in social networks to improve
the performance of recommender systems [31]. In the fol-
lowing subsections, we will �rst provide details about the
methods for capturing local and global information in signed
social networks, and then introduce the proposed RecSSN
framework.

Matrix factorization is chosen as our basic model because
it is one of the most popular techniques for building rec-
ommender systems [11, 10]. Assume that Ui 2 RK is the
K-dimensional preference latent factor of ui, and Vj 2 RK

is the K-dimensional characteristic latent factor of item j.
Typically, scores from ui to vj in Rij are modeled by the
interactions between their latent factors. This interaction is
de�ned in terms of the product of the latent vectors:

Rij = U>i Vj (7)

Matrix factorization-based recommender systems solve the
following optimization problem:

min

N∑
i=1

m∑
j=1

WijkRij �U>i Vjk2
2 + α(kUk2

F + kVk2
F ) (8)

where U = fU1,U2, . . . ,Ung and V = fV1,V2, . . . ,Vmg.
Wij controls the contribution from Rij , and the term kUk2

F +
kVk2

F is added to avoid over�tting.

4.1 Capturing Local Information from Signed
Social Networks
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The local information in signed social networks is about
the preference relations between users, and their \friends"
(or users with positive links) and \foes" (or users with neg-
ative links). Next, we introduce our approach to capture
local information from signed social networks based on the
�ndings of the previous section.

Let Pi and Ni be ui’s friend circle, including users who
have positive links with ui, and foe circle, including users
who have negative links with ui, respectively. Based on Pi

and Ni, we can divide users into three groups as below:

� OP includes users who have only positive links as -
OP = fuijPi 6= ; \ Ni = ;g;

� ON includes users who have only negative links as -
ON = fuijPi = ; \ Ni 6= ;g;

� PN contains users who have both positive and nega-
tive links as - PN = fuijPi 6= ; [ Ni 6= ;g.

We de�ne �Up
i and �Un

i as the average user preferences of
ui’s friend circle and foe circle, respectively, as follows:

�Up
i =

∑
uj∈Pi

SijUj∑
uj∈Pi

Sij
, �Un

i =

∑
uj∈Ni

SijUj∑
uj∈Ni

Sij
(9)

where Sij is the connection strength between ui and uj .
Next, we will discuss how to capture local information for
these groups separately:

� For a user ui with only friend circle (or ui 2 OP), our
previous �nding suggests that ui’s preference is likely
to be similar with her friend circle. Hence, we force
ui’s preference close to Pi by minimizing the following
term:

min kUi � �Up
i k

2
2. (10)

� For a user ui with only foe circle (or ui 2 ON ), this
user is likely to be untrustworthy and we should not
consider this user for the purpose of recommendation [37].
Therefore, we ignore local information from these users
with only foe circles, which are only a small portion of
the users in real-world signed social networks. For ex-
ample, in the two studied datasets, there are less than
5% of users with only foe circles.

� For a user ui with both friend and foe circles, our pre-
vious �nding suggests that the preference of ui is likely
to be closer to that of his/her friend circle than that
of his/her foe circle. In other words, (1) if a user ui

sits closer to his/her friend circle Pi than her foe circle
Ni, i.e., kUi � �Up

i k
2
2 � kUi � �Un

i k2
2 < 0, we should

not penalize this case; while (2) if a user ui sits closer
to his/her foe circle Ni than her friend circle Pi, i.e.,
kUi� �Up

i k
2
2�kUi� �Un

i k2
2 > 0, we should add a penalty

to pull ui closer to Pi than Ni. Therefore, we propose
the following minimization term to force ui’s prefer-
ence closer to Pi than Ni as:

min max(0, kUi � �Up
i k

2
2 � kUi � �Un

i k2
2) (11)

Next, we give details on the inner workings of Eq. (11).
(1) When ui sits closer to his/her friend circle Pi than
his/her foe circle Ni, the minimizing term in Eq. (11)
is 0 because kUi� �Up

i k
2
2�kUi� �Un

i k2
2 < 0 and we do

not add any penalty; and (2) when ui sits closer to her

foe circle Ni than her friend circle Pi, the minimizing
term in Eq. (11) is kUi � �Up

i k
2
2 � kUi � �Un

i because
kUi � �Up

i k
2
2 � kUi � �Un

i > 0 and Eq. (11) will pull ui

back to Pi from Ni.

We can develop a uni�ed term to capture local information
from these three groups in signed social networks with the
following observations - (1) if we de�ne �Un

i = Ui for ui in
OP, the term for OP is equivalent to max(0, kUi � �Up

i k
2
2 �

kUi � �Un
i k2

2); and (2) if we de�ne �Un
i = Ui for ui in ON ,

the term max(0, kUi � �Up
i k

2
2 � kUi � �Un

i k2
2) is 0 for ON ,

which indicates that we ignore the impact of users from ON .
Therefore by rede�ning �Up

i and �Un
i as,

�Up
i =


∑

uj∈Pi
SijUj∑

uj∈Pi
Sij

for ui 2 OP [ PN ,

Ui for ui 2 ON .

�Un
i =


∑

uj∈Ni
SijUj∑

uj∈Ni
Sij

for ui 2 ON [ PN ,

Ui for ui 2 OP,
(12)

we can �nd a uni�ed term to capture local information from
signed social networks as:

min

n∑
i=1

max(0, kUi � �Up
i k

2
2 � kUi � �Un

i k2
2) (13)

4.2 Capturing Global Information from Signed
Social Networks

The global information of a signed social network reveals
the reputation of a user in the whole network [20]. User rep-
utation is a sort of status that gives additional powers and
capabilities in recommender systems [31]. There are many
algorithms to calculate the reputations of nodes in positive
networks [24, 8]. However, a small number of negative links
can signi�cantly a�ect the status of the nodes, which sug-
gests that we should consider negative links. Therefore, we
choose a variant of Pagerank, Exponential Ranking [36], tak-
ing into account negative links to calculate user reputations.
In detail, we �rst perform Exponential Ranking to rank users
by exploiting the global information of signed social net-
works. We assume that ri 2 f1, 2, . . . , Ng is the reputation
ranking of ui where ri = 1 denotes that ui has the highest
reputation in the social network. Then we de�ne user rep-
utation score wi as a function f of user reputation ranking
ri: wi = f(ri) where the function f limits the value of the
reputation score wi within [0, 1] and is a decreasing function
of ri, i.e., top-ranked users have high reputation scores.

In the physical world, user reputation plays an important
role in recommendation. Many companies employ people
with high reputations to enhance consumers’ awareness and
understanding of their products. Seno and Lukas found that
suggestions from people with high reputations positively af-
fect a consumer’s adoption of a brand [26]. While in the on-
line world, Massa found that recommendations from users
with high reputations are more likely to be trustworthy [20].
To capture global information from signed social networks,
we can use user reputation scores to weight the importance
of their recommendations. Originally the importance of Rij

in Eq. (8) is controlled by Wij . With signed social networks,
we should also consider the reputation of ui; hence we de�ne
the new weight for Rij as Ŵij = g(Wij ,wi) where g is a
function to combine two weights. With these new weights,
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the formulation to capture global information from signed
social networks is computed as follows:

min

N∑
i=1

m∑
j=1

g(Wij ,wi)kRij �U>i Vjk2
2

+ α(kUk2
F + kVk2

F ) (14)

where the importance of Rij is controlled by Wij and the
reputation score of ui through a function g.

5. AN OPTIMIZATION ALGORITHM FOR
RECSSN

We have introduced our approaches to capture local and
global information from signed social networks. With these
model components, we propose a recommendation frame-
work, RecSSN, which exploits local and global information
simultaneously from signed social networks. The proposed
RecSSN framework solves the following optimization prob-
lem:

min

N∑
i=1

m∑
j=1

g(Wij ,wi)k(Rij �UiV
>
j )k2

2 + α(kUk2
F + kVk2

F )

+ β

n∑
i=1

max(0, kUi � �Up
i k

2
2 � kUi � �Un

i k2
2) (15)

where β
∑n

i=1 max(0, kUi � �Up
i k

2
2 � kUi � �Un

i k2
2) captures

local information from signed social networks and the pa-
rameter β controls its contribution. The term g(Wij ,wi) is
introduced to capture global information from signed social
networks.

By setting g(Wij ,wi) = Wij and ignoring all negative
links, the proposed formulation for RecSSN in Eq. (15) can
be written as follows:

min

N∑
i=1

m∑
j=1

Wijk(Rij �UiV
>
j )k2

2 + α(kUk2
F + kVk2

F )

+ β

n∑
i=1

kUi � �Up
i k

2
2 (16)

Interestingly, this formulation is equivalent to one of the
state-of-the-art recommender systems with positive networks
SocialMF [6]. Therefore, RecSSN provides a uni�ed recom-
mendation framework with unsigned and signed social net-
works.

Eq. (15) is jointly convex with respect to U and V and
there is no nice solution in closed form due to the use of the
max function. A local minimum can be obtained through
following gradient decent optimization method, which usu-
ally works well for recommender systems [11]. We de�ne
Mk

i at the k-th iteration for ui as follows:

Mk
i =

{
1 kUi � �Up

i k
2
2 � kUi � �Un

i k2
2 > 0

0 otherwise
. (17)

Then, we use J to denote the objective function of Eq. (15)
in the k-th iteration as follows:

J =

N∑
i=1

m∑
j=1

g(Wij ,wi)k(Rij �UiV
>
j )k2

2

+ α(

N∑
i=1

kUk2
2 +

m∑
j=1

kVjk2
2) + β

N∑
i=1

Mk
i (

kUi �
∑

uj∈Pi
SijUj∑

uj∈Pi
Sij

k2
2 � kUi �

∑
uj∈Ni

SijUj∑
uj∈Ni

Sij
k2

2)

(18)

The derivatives of J with respect to Ui and Vj are as
follows:

∂J
∂Ui

= �2
∑
j

g(Wij ,wi)(Rij �UiV
>
j )Vj + 2αUi

+ 2βMk
i (Ui � �Up

i )� 2βMk
i (Ui � �Un

i )

� 2β
∑

uj∈Pi

Mk
j (Uj � �Up

j )
1∑

uj∈Pi
Sji

+ 2β
∑

uj∈Ni

Mk
j (Uj � �Un

j )
1∑

uj∈Ni
Sji

∂J
∂Vj

= �2
∑
i

g(Wij ,wi)(Rij �UiV
>
j )Ui + 2αVj (19)

The detailed algorithm is shown in Algorithm 1. In Algo-
rithm 1, γu and γv are learning steps, which are chosen to
satisfy Goldstein Conditions [23]. Next, we brie
y discuss
the algorithm. In line 1, we initialize latent factors of users
U and items V randomly. In each iteration, we calculate
�Up

i , �Un
i and Mk

i for ui from line 3 to line 6. From line 7
to line 9, we update U and V using aforementioned update
rules. After learning the user preference matrix U and the
item characteristic matrix V via Algorithm 1, an unknown
score R̂i′j′ from the user u′i to the item v′j will be predicted

as R̂i′j′ = u>i′ vj′ .

Algorithm 1: The Proposed Recommendation Frame-
work RecSSN with Signed Social Networks.

Input: The rating information R, positive links An,
negative links Ap, the number of latent factors K and β
Output: The user preference matrix U and the item
characteristic matrix V

1: Initialize U and V randomly and set k = 1
2: while Not convergent do
3: for i = 1 : N do
4: Calculate �Up

i and �Un
i according to Eq. (12)

5: Calculate Mk
i according to Eq. (17)

6: end for
7: Calculate ∂J

∂U
and ∂J

∂V

8: Update U U� γu ∂J
∂U

9: Update V V � γv ∂J
∂V

10: k = k + 1
11: end while
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6. EXPERIMENTAL RESULTS
In this section, we conduct experiments to answer the fol-

lowing two questions - (1) can the proposed RecSSN frame-
work improve the recommendation performance by exploit-
ing signed social networks? and (2) which model compo-
nents of RecSSN contribute to the performance improve-
ment? Before answering these questions, we begin by intro-
ducing the experimental settings.

6.1 Experimental Settings
In Epinions, the scores in the user-item matrix denote the

rating scores from users to items. Following common ways
to assess recommendation performance in rating systems, we
choose two metrics, corresponding to the Root Mean Square
Error (RMSE) and the Mean Absolute Error (MAE), which
are formally de�ned as follows:

RMSE =

√√√√∑(ui,vj)∈T (Rij � R̂ij)2

jT j ,

MAE =
1

jT j
∑

(ui,vj)∈T

jRij � R̂ij j, (20)

where T is the set of ratings in the testing set, jT j is the

size of T and R̂ij is the predicted rating from ui to vj .
A smaller RMSE or MAE value means better performance.
Note that previous work demonstrated that small improve-
ment in RMSE or MAE terms can have a signi�cant impact
on the quality of the top few recommendations [9]. In this
work, we choose x% of rating scores as training and the
remaining 1� x% as testing, and x is varied as f50, 70, 90g.

In Slashdot, scores in the user-item matrix indicate whether
users are associated with certain items. In this scenario,
the performance is often evaluated via precision@N and re-
call@N [27], which are formally de�ned as follows:

precision@N =

∑
ui∈U jTopNi

⋂
Iij∑

ui∈U jTopNij
(21)

recall@N =

∑
ui∈U jTopNi

⋂
Iij∑

ui∈U jIij
, (22)

where TopNi is the set of N items recommended to user ui

that ui has not been associated in the training set, and Ii is
the set of items that have been associated with ui in the test-
ing set. A larger precision@N or recall@N value means bet-
ter performance. The values of precision@N and recall@N
are usually small in the case of sparse datasets. For example,
the precision@5 is less than 0.05 over a dataset with 8.02e�3
density [40]. In this work, we set N = 5 and N = 10.

6.2 Performance Comparison of Recommender
Systems

To answer the �rst question, we compare the proposed
RecSSN framework with existing recommender systems. Tra-
ditional collaborative �ltering systems can be grouped into
memory-based systems and model-based systems; hence we
choose two groups of baseline methods.

The �rst group of baseline methods includes the following
memory-based systems:

� UCF: This system makes recommendations by aggre-
gating recommendations from ones’ similar users only
based on the user-item matrix.

� pUCF: This system is a variant of UCF, which com-
bines recommendations from ones’ similar users and
their friends [20]. pUCF utilizes both user-item ma-
trix and positive links.

� pnUCF: This system is a variant of pUCF, which ex-
cludes recommendations from ones’ foes by exploiting
negative links [37]. pnUCF makes use of user-item
matrix, positive and negative links.

The second group of baseline methods includes the follow-
ing model-based systems:

� MF: This system performs matrix factorization on the
user-item matrix as shown in Eq. (8) [25]. It only
utilizes the user-item matrix.

� SocialMF: This system combines both user-item ma-
trix and positive links for recommendation [6], which
is a special case of the proposed framework with only
positive links as shown in Eq. (16).

� SoReg: This system also leverages both user-item ma-
trix and positive links, and de�nes social regularization
to capture positive links [17].

� LOCABAL: This system captures local and global
information of positive links under the matrix factor-
ization framework [31].

� disSoReg: In [15], two systems are proposed to ex-
ploit positive and negative links, respectively. dis-
SoReg is a combination of these two systems to ex-
ploit positive and negative links simultaneously, which
is actually a variant of SoReg by considering negative
links as dissimilarity measurements.

Note that we use cross-validation to determine parameters
for all baseline methods. For RecSSN, β is set to 0.7 and 0.3
for Epinions and Slashdot, respectively. More details about
parameter selection for RecSSN will be discussed in the fol-
lowing subsections. We empirically set α = 0.1 and the num-
ber of latent factors K = 10 for both datasets. In Eq. (14),
we empirically �nd that f(x) = 1

log(x+1)
and g(x, y) = x � y

work well. The comparison results are demonstrated in Ta-
bles 4 and 5 for Epinions and Slashdot, respectively.

We make the following observations:

� In general, model-based methods outperform memory-
based methods on the two studied datasets. Most of
the existing recommender systems su�er from the data
sparsity problem but model-based methods are usually
less sensitive than memory-based methods [9].

� pUCF outperforms UCF. Furthermore, SocialMF,
SoReg and LOCABAL outperform MF. These re-
sults support the known contention that exploiting
positive links can signi�cantly improve recommenda-
tion performance.

� LOCABAL exploits local and global information from
positive links, and obtains better performance than the
systems which model only local information from posi-
tive links such as SocialMF and SoReg. These obser-
vations indicate the importance of global information
for recommendation.
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Table 4: Comparison of Different Recommender Systems in Epinions

Training Metrics
Memory-based Methods Model-based Methods

UCF pUCF pnUCF MF SocialMF SoReg LOCABAL disSoReg RecSSN

50%
MAE 1.0323 0.9764 0.9683 1.0243 0.9592 0.9589 0.9437 0.9679 0.9273
RMSE 1.2005 1.1477 1.1392 1.1902 1.1397 1.1354 1.1212 1.1407 1.0886

70%
MAE 1.0074 0.9493 0.9402 0.9988 0.9341 0.9327 0.9274 0.9425 0.8981
RMSE 1.1758 1.1301 1.1196 1.1692 1.1163 1.1127 1.1009 1.1237 1.0697

90%
MAE 0.9817 0.9272 0.9187 0.9779 0.9189 0.9153 0.9017 0.9263 0.8863
RMSE 1.1592 1.1059 1.0885 1.1525 1.0986 1.0951 1.0821 1.1032 1.0479

Table 5: Comparison of Different Recommender Systems in Slashdot

Metrics
Memory-based Methods Model-based Methods

UCF pUCF pnUCF MF SocialMF SoReg LOCABAL disSoReg RecSSN
P@5 0.0343 0.0372 0.0381 0.0354 0.0387 0.0386 0.0394 0.0379 0.0419
R@5 0.0438 0.0479 0.0485 0.0453 0.0492 0.0488 0.0498 0.0473 0.0511
P@10 0.0332 0.0358 0.0364 0.0338 0.0365 0.0368 0.0375 0.0359 0.0388
R@10 0.0413 0.0454 0.0463 0.0427 0.0463 0.0467 0.0479 0.0457 0.0497

� pnUCF obtains better performance than pUCF, which
suggests that excluding recommendations from users
with negative links can improve recommendation per-
formance. Furthermore, disSoReg performs worse
than SoReg. These results suggest that we may not
consider negative links as dissimilarities in recommen-
dation, which is consistent with observations in [33].

� The proposed RecSSN framework always obtains the
best performance. RecSSN captures local and global
information from signed social networks. In addition
to positive links, signed social networks also provide
negative links. More details about the e�ects of neg-
ative links on the performance of RecSSN will be dis-
cussed in the following subsection.

With these observations, we can draw conclusions about
the �rst question - the proposed RecSSN framework outper-
forms the state-of-the-art recommender systems by exploit-
ing local and global information from signed social networks.

6.3 Impact of Negative Links on RecSSN
We will now focus on the second issue of examining the

precise impact of negative links on RecSSN. The experimen-
tal results in the previous subsection show that the proposed
RecSSN framework outperforms various representative rec-
ommender systems with unsigned social networks. Com-
pared to these systems, RecSSN also leverages information
from negative links. In this subsection, we investigate the
impact of negative links on the proposed RecSSN framework
to answer the second question. In particular, we eliminate
the e�ects of negative links systematically from RecSSN by
de�ning the following algorithmic variants:

� RecSSNnGN - Eliminating the e�ect of negative links
from global information of signed social networks by
using Pagerank to calculate status scores of users with
only positive links.

� RecSSNnLN - Eliminating the e�ect of negative links
from local information of signed social networks by re-
placing

∑n
i=1 max(0, kUi � �Up

i k
2
2 � kUi � �Un

i k2
2) with∑n

i=1 kUi � �Up
i k

2
2 in Eq. (15).

� RecSSNnGN-LN - Eliminating the e�ects of negative
links from global and local information of signed social
networks.

The parameters in all these variants are determined via
cross-validation. The experimental results in Epinions are
demonstrated in Figure 1. Note that we only show the re-
sults in Epinions because similar results were obtained in
Slashdot. In general, eliminating any model component
which captures the e�ect of negative links will reduce the
recommendation performance. The relative performance re-
ductions for variants compared to RecSSN are shown in
Table 6. When eliminating the e�ect of global informa-
tion of negative links from the proposed framework, the
performance of RecSSNnGN degrades. We make a simi-
lar observation for RecSSNnLN when eliminating the e�ect
of local information. For example, compared to RecSSN,
RecSSNnGN and RecSSNnLN have 1.02% and 3.06% rela-
tive performance reductions, respectively, in terms of RMSE
with 50% of Epinions data. When eliminating the e�ects of
negative links from global and local information of signed
social networks, RecSSNnGN-LN obtains worse performance
than both RecSSNnGN and RecSSNnLN. This suggests that
local and global information contain complementary infor-
mation to each other for recommendation.

With the results from Figure 1 and Table 6, we can answer
the second question - both local and global information of
negative links in the proposed RecSSN framework can help
improve the recommendation performance.

6.4 Parameter Analysis for RecSSN
The parameter β controls the contribution of local infor-

mation in signed social networks. In this subsection, we
investigate how changes of β a�ect the performance of Rec-
SSN. We vary the value of β as f0,0.001,0.01,0.1,0.3,0.5,0.7,1,10g.
The results in Epinions w.r.t. RMSE and MAE are demon-
strated in Figures 2(a) and 2(b), respectively. Since we have
similar observations in Slashdot, we only show the results in
Epinions to save space.

With increase in β, the importance of local information is
increased. We make the following observations:
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Figure 1: Impact of Negative Links on The Proposed Framework RecSSN in Epinions.

Table 6: Relative Performance Reductions for Variants Compared to RecSSN.

Variants
50% 70% 90%

MAE RMSE MAE RMSE MAE RMSE
RecSSNnGN -0.88% -1.02% -0.98% -1.21% -0.92% -1.15%
RecSSNnLN -2.06% -3.06% -3.15% -2.71% -1.67% -3.21%

RecSSNnGN-LN -2.59% -3.29% -3.56% -3.22% -2.04% -3.56%

� The performance �rst increases rapidly, which suggests
that local information is helpful in improving recom-
mendation performance in signed social networks.

� When β varies from 0.3 to 0.7, the performance is rel-
atively stable. This property is useful from a practical
point of view because it makes it easier to set β.

� After this point, the performance reduces. When β in-
creases from 1 to 10, the performance reduces dramat-
ically. A large value of β will lead to local information
dominating the learning process. In such cases, the es-
timates of the user preference matrix U and the item
characteristic matrix V will over�t to the local infor-
mation in signed social networks. For example, when
β ! 1, the user preference matrix U is learned only
from signed social networks and the item characteristic
matrix V = 0.

7. RELATED WORK
The pervasive nature of social media provides indepen-

dent sources of information, which brings new opportunities
for recommendation. Recently, social relations have found
increasing importance from the perspective of improving rec-
ommendation performance [20, 16, 17, 7]. In [16], a matrix-
factorization system, referred to as SoRec, is proposed. It
performs a co-factorization on the user-item ratings matrix
and user-user social relation matrix by assuming that users
should share the same user preference vectors in the rat-
ing space and the social relation space. Trust Ensemble is
introduced in [18] to take advantage of strong dependency
connections. It assumes that a user’s online behavior can be
a�ected by his/her trusted friends on the Web, and, based
on this intuition, unknown ratings for a certain user are
predicted by the user’s characteristics and the user’s trusted
friends’ recommendation. In [6], a social recommender sys-
tem with trust propagation is proposed to recommend items

for users in social network. The underlying assumption of
this method is that directly connected users may have simi-
lar interests and thus it forces a user’s preference close to the
average user preference of his/her social network. Social reg-
ularization is employed by [17] to exploit strong dependency
connections for recommendation. This approach forces a
user’s preference close to user preferences of his/her social
networks. The low cost of social relation formation can lead
to social relations with heterogeneous strengths [38]. Since
users with strong strength are more likely to share simi-
lar tastes than those with weak strength, treating all social
relations equally is likely to lead to degradation in recom-
mendation performance. Therefore the closeness between a
user’s preference and the preferences of his/her social net-
work is controlled by their rating similarities [17]. These
social recommender systems can reduce the number of cold-
start users and improve recommendation performance [6].

8. CONCLUSIONS
The pervasively available social networks in social media

have encouraged a large body of literature about recommen-
dation. The vast majority of these recommender systems
focus on unsigned social networks (or social networks with
only positive links). However, social networks in social me-
dia could contain positive and negative links and little work
exists for recommendation with signed social networks. The
leveraging of negative links for recommendation is a chal-
lenging task because straightforward extensions of unsigned
networks do not seem to be applicable in this case. In this
paper, we �rst perform data-driven analysis on signed social
networks and make a number of observations. Then we pro-
vide principled approaches to capture local and global infor-
mation from signed social networks mathematically, which
results in a novel recommendation framework, which we re-
fer to as RecSSN. Experimental results demonstrate that
the proposed framework outperforms various state-of-the-
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Figure 2: Performance Variations of The Proposed RecSSN Framework w.r.t. β in Epinions.

art recommender systems. Further experiments are con-
ducted to understand the importance of signed social net-
works in the proposed RecSSN framework.

There are several directions, which might be investigated.
First, the proposed RecSSN framework chooses matrix fac-
torization as the basic model on top of which the algorithms
are constructed. While this is a natural choice because of
the well-known robustness of such systems, it would be in-
structive to investigate whether other types of models can
be used. Second, as user preferences and signed social net-
works might evolve, incorporating temporal information into
the proposed RecSSN framework is an interesting direction.
Third, we make several important observations about signed
social networks in this paper, which may be helpful in devel-
oping algorithms for other online applications of signed so-
cial networks, such as information propagation and spammer
detection. Finally a comprehensive overview about signed
network mining in [30] suggests that mining signed networks
is still in its early stage; thus we would like to investigate
more applications in signed networks.
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