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ABSTRACT
JSON { the most popular data format for sending API re-
quests and responses { is still lacking a standardized schema
or meta-data de�nition that allows the developers to spec-
ify the structure of JSON documents. JSON Schema is an
attempt to provide a general purpose schema language for
JSON, but it is still work in progress, and the formal spec-
i�cation has not yet been agreed upon. Why this could be
a problem becomes evident when examining the behaviour
of numerous tools for validating JSON documents against
this initial schema proposal: although they agree on most
general cases, when presented with the greyer areas of the
speci�cation they tend to di�er signi�cantly. In this paper
we provide the �rst formal de�nition of syntax and seman-
tics for JSON Schema and use it to show that implementing
this layer on top of JSON is feasible in practice. This is done
both by analysing the theoretical aspects of the validation
problem and by showing how to set up and validate a JSON
Schema for Wikidata, the central storage for Wikimedia.

1. INTRODUCTION
JSON (JavaScript Object Notation) [5, 19, 9] is a data for-

mat based on the data types of the JavaScript programming
language. In the last few years JSON has gained tremen-
dous popularity among web developers, and has become the
main format for exchanging information over the web.

JSON nowadays plays a key role in web applications. In-
deed, software executing functions ordered by remote ma-
chines must establish a precise protocol for receiving and
answering requests, which is called an Application Program-
ming Interface (API). Given that JSON is a language which
can be easily understood by both developers and machines,
it has become the most popular format to send API requests
and responses over the HTTP protocol. As an example, con-
sider an application containing information about weather
conditions around the world. The application provides an
API to allow other software to access this information. A
hypothetical call to this API coulds be a request containing
this JSON �le:
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{"Country": "Chile", "City": "Santiago"},

by which a client is requesting the current weather con-
ditions in Santiago, Chile. The API would reply with an
HTTP response containing the following JSON �le:

{"timestamp": "14/10/2015 11:59:07",
"temperature": 25, "Country": "Chile",
"City": "Santiago", "description": "Sunny"},

indicating that the temperature is 25 degrees and the day is
sunny. This example illustrates the simplicity and readabil-
ity of JSON, which partially explains its fast adoption.

With the popularity of JSON it was soon noted that in
many scenarios one can bene�t from a declarative way of
specifying a schema for JSON documents. For instance, in
the public API scenario one could use a schema to avoid re-
ceiving malformed API calls that may a�ect the inner engine
of the application. Coming back to the weather application,
note that the API calls consist of JSON objects mentioning
two strings: a country and a city. What happens if a user
does not specify both strings, or if he or she speci�es more
properties in the JSON object? Similar issues arise when we
use a number or a boolean value instead of a string. Without
an integrity layer all of these questions need to be taken into
consideration when coding the API, and could be avoided if
we use a schema de�nition to �lter out documents that are
not of the correct form. A declarative schema speci�cation
would also give developers a standardised language to spec-
ify what types of JSON document are accepted as inputs
and outputs by their API.

JSON Schema [20] is a simple schema language that allows
users to constrain the structure of JSON documents and pro-
vides a framework for verifying the integrity of the requests
and their compliance to the API. If we consider again the
weather API, by simply adding the following JSON Schema
we can assure the correct form of each API call:

{
"type": "object",
"properties": {
"Country": {"type": "string"},
"City": {"type": "string"},

},
"required": ["Country", "City"]
"additionalProperties": false,

}

This schema asserts that the received JSON document
must be of type object (a collection of key-value pairs), it
should contain keys "Country" and "City", both required
and with a string value attached to them, and there cannot
be any more keys. For example, the JSON �le requesting
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the weather in Santiago, Chile would comply to this schema,
but the JSON �le {"Country": "Croatia", "City": 5}

would not as the value of the city is not a string.
To the best of our knowledge, JSON Schema is the only

general attempt to de�ne a schema language for JSON doc-
uments, and it is slowly being established as the default
schema speci�cation for JSON. The de�nition is still far from
being a standard (the speci�cation is currently in its fourth
draft [10]), but there is already a growing body of appli-
cations that support JSON schema de�nitions, and a good
deal of tools and packages that enable the validation of doc-
uments against JSON Schema. There have been other alter-
natives for de�ning schemas for JSON documents, but these
are either based on JSON Schema itself or have been de-
signed with a particular set of use cases in mind. To name a
few of them, Orderly [16] is an attempt to improve the read-
ability of a subset of JSON Schema, Swagger [2], RAML
[29] and Google discovery [12] are proposals for standardis-
ing API de�nition that use JSON Schema, and JSON-LD
[26] is a context speci�c de�nition to specify RDF as JSON.

Despite all the advantages of a schema de�nition, the
adoption of JSON Schema has been rather slow. One of
the issues that have prevented the widespread recognition
of JSON Schema as a standard for JSON meta-data is the
ambiguity of its speci�cation. The current draft addresses
most typical problems that would show up when using JSON
Schema, but the de�nitions lack the detail needed to qual-
ify as a guideline for practical use. As a result we end up
having huge di�erences in the validators that are currently
available: most of them work for general cases, but their
semantics di�er signi�cantly when analysing border cases.

The lack of a formal de�nition has also discouraged the
scienti�c community to get involved: to the best of our
knowledge there has been no formal study of general schema
speci�cations for JSON, nor has there been any formal dis-
cussion regarding the design choices taken by the JSON
Schema speci�cation. A formal speci�cation would also help
the development of automation tools for APIs. There is al-
ready software for automatically generating documentation
[14] and API clients [13, 15], but all of them su�er from the
same problems as validators.

Looking to �ll this gap, we present in this paper a formal
grammar for the speci�cation of JSON Schema documents,
and provide a formal semantics to standardise the meaning
of all the features in JSON Schema. For space reasons we
cannot present the full formal de�nition, but we have identi-
�ed and formalised a semantic core that is enough to express
any possible JSON Schema. The full de�nition can be found
on our web page dedicated to JSON Schema [1, 25].

Our framework allows us to conduct a formal study of
several aspects of the JSON Schema speci�cation. We begin
with the problem of validating a JSON document against a
schema, providing tight bounds for the computational com-
plexity of this problem. We also study the expressive power
of JSON Schema as a language for de�ning classes of JSON
documents. Since JSON Schema is the only native schema
de�nition for JSON we cannot compare to other standards;
instead we provide comparison with respect to automata
theory and logic, the two most important theoretical yard-
sticks for expressive power. These theoretical tools allows
us, for example, to conclude that JSON Schema can de�ne
relationships that are not available in the schema de�nitions
for XML that are currently used in practice.

We also study the e�ciency of JSON Schema in practice
using two sets of experiments. First we analyse the impact of
validating the most involved features in JSON schema, un-
der JSON documents of increasing size, and conclude that it
is not di�cult to implement a validation system that scales
well with the data. Afterwards we demonstrate a practical
use case of increasing importance: a JSON Schema de�ni-
tion for Wikidata [32, 30], the central storage for Wikime-
dia data [3]. We show the general picture of a Schema for
Wikidata, and then validate all 18.4 million entities in its
database, at a speed of almost 200 entities per second.
Organisation. In Section 2 we show the problems we run
into because of the lack of a formal speci�cation and de�ne
syntax and semantics of JSON Schema. In Section 3 we
prove the existence of e�cient algorithms for the schema
validation problem. Next, in Section 4, using our in-house
validation tool, we analyse the usability of JSON Schema in
practice. We conclude in Section 5.

2. A FORMAL MODEL FOR JSON
SCHEMA

One of the main problems of JSON Schema is the lack
of a formal speci�cation. To illustrate why this is an issue
we created four border-case schemas, and validated them
using �ve di�erent validators. These tests use schemas that
are allowed by the current JSON Schema draft [10], but the
valuation of their features is not fully speci�ed by the draft.
The �rst test (T1) evaluates whether or not a collection
of key-value pairs is considered to be ordered. The second
test (T2) checks the behaviour of validators for a schema
specifying both that the document is an integer and a string.
Next, the test (T3) states that the document is an object,
but also adds an integer constraint to it. Lastly, (T4) uses
de�nitions and references to force an in�nite loop, while also
allowing the object to be a simple string. For space reasons
the full code of the tests and their details are left out from
the paper, but can be found on our web page [1].

V1 V2 V3 V4 V5
T1: N Y Y N Y
T2: Y N Y N Y
T3: N Y N N N
T4: { { N { {

Y valid
N invalid
{ unsupported

Table 1: Validating four documents against four border-case
schemas using �ve di�erent validators. The outcomes stress
the di�erence between the validators’ semantics.

Table 1 shows the outcome of this process, It is impor-
tant to mention that all validators successfully validate the
JSON Schema test-suite [4]. As we can see, no two valida-
tors behave the same on all inputs, which is clearly not the
desired behaviour. This illustrates the need for a formal
de�nition of JSON Schema which will either disallow am-
biguous schemas, or formally specify how these should be
evaluated.

2.1 JSON Documents and JSON Pointer
We start by �xing some notation regarding JSON docu-

ments and introducing JSON Pointer, a simple query lan-
guage for JSON that is heavily used in the JSON Schema
speci�cation. For readability we skip most of the encod-
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ing details with respect to these speci�cations; their formal
de�nition can be found in [5, 18].

JSON Values. The JSON format de�nes the following
types of values. First, true, false and null are JSON val-
ues. Any decimal number (e.g. 3.14, 23) is also JSON value,
called a number. Furthermore, if s is a string of unicode
characters then "s" is a JSON value, called a string value.
Next, if v1, . . . , vn are JSON values and s1, . . . , sn are pair-
wise distinct string values, then o = {s1 : v1, . . . , sn : vn} is
a JSON value, called an object. In this case, each si : vi is
called a key-value pair of o. Finally, if v1, . . . , vn are JSON
values then a = [v1, . . . , vn] is a JSON value called an array.
In this case v1, . . . , vn are called the elements of a.

We sometimes use the term JSON document (or just doc-
ument) to refer to JSON values. The following syntax is
normally used to navigate through JSON documents. If J
is an object, then J [\key"] is the value of J whose key is
the string \key". Likewise, if J is an array, then J [n], for a
natural number n, contains the (n-1)-th element of J .

JSON Pointer. JSON Pointers are intended to retrieve
values from JSON documents. Formally, a JSON pointer is
a string of the form p = /w1/ · · · /wn, for w1, . . . , wn valid
strings using any unicode character.

The evaluation Eval(p, J) of a pointer p over a document
J is a JSON value that is recursively de�ned as follows.
Assume that p = /w/p′. Then Eval(p, J) is:

• the value Eval(/p′, J [n]), if J is an array, w is the base 10
representation of the number n and J has at least n + 1
elements; or

• the value Eval(/p′, J [w]), if J is an object that has a pair
with key "w" (note that we have to put the value of w
between quotes to make it a JSON string); or

• the value null otherwise.

Example 1. Consider now an array storing names J =

[{"name": "Joe"},{"name": "Mike"}]. To extract the
value of the key "name" for the second object in the array,
we can use the JSON pointer p = /1/name which first nav-
igates to the second item of the array (thus obtaining the
object {"name": "Mike"}) and retrieves the value of the
key "name" from here. Therefore Eval(p, J) ="Mike".

2.2 Formal Grammar for JSON Schema
JSON Schema can specify any of the six types of

valid JSON documents: objects, arrays, strings, numbers,
boolean values and null; and for each of these types there are
several keywords that help shaping and restricting the set
of documents that a schema speci�es. As such, in the space
given it would be cumbersome to de�ne JSON Schema in its
completeness. Instead, we have identi�ed a core fragment
that is equivalent to the full JSON Schema speci�cation,
and present now its formal grammar and semantics. All of
the remaining functionalities in the o�cial JSON Schema
draft can be expressed using the functionalities included in
this paper. The complete de�nition can be found in our
online appendix [25, 1].

The formal grammar is presented in tables (2-5). It is
speci�ed in a visual-based extended Backus-Naur form [28],
where all non-terminals are written in bold (and thus every-
thing not in bold is a terminal). Also, for readability, we
use string to represent any JSON string, n to represent any
positive integer, r to represent any decimal number, Jval to

JSDoc := { (defs , )? JSch }
defs := "definitions": { string : { JSch }

(, string : { JSch })∗}
JSch := strSch | numSch | intSch | objSch |

arrSch | refSch | not | allOf | anyOf | enum
not := "not": { JSch }
allOf := "allOf": [ { JSch } (, { JSch })∗ ]
anyOf := "anyOf": [ { JSch } (, { JSch })∗ ]
enum := "enum": [ Jval (, Jval )∗ ]
refSch := "$ref": "# JPointer"

Table 2: Grammar for JSON Schema Documents

strSch := "type": "string" (, strRes )∗

strRes := minLength | maxLength | pattern
minLength := "minLength": n
maxLength := "maxLength": n
pattern := "pattern": "regExp"

Table 3: Grammar for string schemas

represent any possible JSON document and regExp to rep-
resent any regular expression. Note that when these values
get instantiated they behave as terminals.
Remark . Since every JSON Schema document is also a
JSON document, we assume that duplicate keywords cannot
occur at the same nesting level.

Overall Structure. Table 2 de�nes the overall structure of
JSON Schema document (JSDoc). It consists of two parts:
an optional definitions section (defs), that is intended to
store other schema de�nitions to be reused later on, and a
mandatory schema section (JSch) where the actual schema
is speci�ed. In turn, each schema can be either a string
schema (strSch), a number schema (numSch), an inte-
ger schema (intSch), an object schema (objSch), an array
schema (arrSch), a reference schema (refSch), a boolean
combination of schemas using not, allOf or anyOf, or sim-
ply the enumeration of a set of values (enum). Note how
reference schemas make use of JSON pointer (JPointer).

Strings. String schemas are formed according to Table 3.
We �rst state that we wish to represent a string using the
"type": "string" pair, and then we may add additional
restrictions to bound the length of the strings or to state
that they satisfy a certain regular expression regExp. We
illustrate some of these concepts by means of an example.

Example 2. The following schema S1 specifies strings
according to an email pattern. It has no definitions section.

{
"type": "string",
"pattern": "[A-z]*@ciws.cl"

}
The next schema, S2, includes schema S1 as a definition,

under the "email" key.

{
"definitions": {

"email": {
"type": "string",
"pattern": "[A-z]*@ciws.cl"

}
},
"not": {"$ref": "#/definitions/email"}

}
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numSch := "type": "number" (, numRes )∗

intSch := "type": "integer" (, numRes )∗

numRes := min | exMin | max | exMax | mult
min := "minimum": r
exMin := "exclusiveMinimum": true

max := "maximum": r
exMax := "exclusiveMaximum": true

mult := "multipleOf": r (r ≥ 0)

Table 4: Grammar for numeric schemas

objSch := "type": "object" (, objRes )∗

objRes := prop | addPr | patPr | req
prop := "properties": { kSch (, kSch )∗}
kSch := string : { JSch }
addPr := "additionalProperties": false

req := "required": [ string (, string)∗ ]
patPr := "patternProperties":

{ patSch (, patSch )∗}
patSch := "regExp" : { JSch }

Table 5: Grammar for object schemas

Note that the evaluating the pointer /definitions/email

on S2 yields precisely S1. Intuitively, this schema is intended
to specify all objects that do not conform to S1.

Numeric Values. Integer and number schemas have the
same structure, shown in Table 4. The pair "type": "num-

ber" speci�es any number, while "type": "integer" spec-
i�es integers only1. We can specify maximum and/or mini-
mum values for numbers and integers (these values are not
exclusive unless explicitly stated), and also that numbers
and integers should be multiples of another number.

Objects. We specify object schemas with the "type":

"object" pair, according to the grammar in Table 5. Within
objects schemas we may use additional restrictions to con-
trol the key-value pairs inside objects. The keyword re-

quired speci�es that a certain string needs to be a key of
one of the pairs inside an object, and properties is used
to state that the value of a key needs itself to satisfy a cer-
tain schema. The keyword patternProperties works like
properties, except we bound all key-value pairs whose key
satis�es a regular expression, and �nally additionalProp-

erties controls whether we allow any additional key-value
pair not de�ned in properties or patternProperties.

Example 3. Recall the schema from the Introduction de-
scribing an API call to the weather app. As the API is ex-
pecting a JSON containing a country name and a city name,
but nothing else, our schema specifies that these two keys
must be present and they have to be of type string. We also
use required and additionalProperties to specify that the
JSON we are sending to the app will contain precisely those
two keys and nothing else.

Arrays. Finally, array schemas are speci�ed with the
"type": "array" pair, and according to Table 6. There are
two ways of specifying what kind of documents we �nd in ar-
rays. If a single schema follows the "items" keyword, then

1JSON Schema treats integers as a di�erent type.

arrSch := "type": "array" (, arrRes )∗

arrRes := itemo | itema | minIt | maxIt | unique
itemo := "items": { JSch}
itema := "items": [{ JSch} (, {JSch})∗]
minIt := "minItems": n
maxIt := "maxItems": n
unique := "uniqueItems": true

Table 6: Grammar for array schemas

every document in the array needs to satisfy this schema.
On the other hand, if an array follows the "items" key-
word, then it is one-by-one: the i-th document in the speci-
�ed array needs to satisfy the i-th schema that comes af-
ter the "items" keyword. We can also set a minimum
and/or a maximum number of items, and �nally we can use
uniqueItems to specify that all documents inside an array
need to be di�erent.

Example 4. To illustrate how array schemas work, con-
sider again the API described in the Introduction. Imagine
now that our API also allows us to ask information about
the weather for several places simultaneously. An obvious
way to model such requests is by using JSON arrays, where
each item of the array is a single call as in Example 3. To
check that the requests we send are using the correct format
we could validate them against the following schema (The
reference is assumed to return the schema of Example 3):

{
"type": "array",
"items": {"$ref": "#/definitions/basic_call"}

}

2.3 Semantics
The idea is that a JSON document satis�es a schema if

it satis�es all the keywords of this schema. Formally, given
a schema S and a document J , we write J |= S to denote
that J satis�es S. We separately de�ne |= for string, num-
ber, integer, object and array schemas, as well as for their
combinations or enumerations.

Combinations and References. Let S be a boolean com-
bination of schemas, an enumeration or a reference schema.
We say that J |= S, if one of the following holds.

• S is "enum":[J1, . . . , Jm] and J = J`, for some 1 ≤ ` ≤ m.

• S is "allOf":[S1, . . . , Sm] and J |= S`, for all 1 ≤ ` ≤ m.

• S is "anyOf":[S1, . . . , Sm] and J |= S`, for some 1 ≤ ` ≤
m.

• S is "not":S′ and J 6|= S′.

• S is "$ref":"#p" for a JSON pointer p; Eval(p,D) is a
schema and J |= Eval(p,D), with D the JSON document
containing S.

Note that if Eval(p,D) returns null then "$ref":"#p"

is not satis�able, and likewise if Eval(p,D) returns a JSON
value that is not a schema.

Strings. Let S be a string schema. Then J |= S if J is a
string, and for each key-value pair p in S that is not "type":

"string" one of the following holds:

• p is "minLength":n and J is a string with at least n char-
acters.

266



• p is "maxLength":n and J is a string with at most n char-
acters.

• p is "pattern":e and J is a string that belongs to the
language of the expression e.

Example 5. Consider again schemas S1 and S2 from
Example 2. Furthermore, let J be \admin@ciws.cl". We
then have that J |= S1, because J is a string that belongs
to the regular expression in S1. On the other hand, since
the pointer /definitions/email retrieves once again S1,
schema S2 is actually equivalent to

{
"not": {

"type": "string",
"pattern": "[A-z]*@ciws.cl"

}
}

and thus J 6|= S2.

Numeric Values. Let S be a number (respectively, inte-
ger) schema. Then J |= S if J is a number (resp. integer),
and for each key-value pair p in S whose key is not "type",
"exclusiveMinimum" or "exclusiveMaximum" one of the fol-
lowing holds:

• p is "minimum":r and J is strictly greater than r.

• p is "minimum":r, J is equal to r and the pair "exclu-

siveMinimum": "true" is not in S.

• p is "maximum":r and J is strictly lower than r

• p is "maximum":r, J is equal to r and S the pair "exclu-

siveMaximum": "true" is not in S.

• p is "multipleOf":r and J is a multiple of r.

Objects. Let S be an object schema. Then J |= S if J
is an object, and for each key-value pair p in S that is not
"type": "object" one of the following holds:

• p is "properties":{k1 : S1, . . . , km : Sm} and for every
key-value pair k : v in J such that k = kj for some 1 ≤
j ≤ m we have that v |= Sj .

• p is "patternProperties":{"e1": S1, . . . , "em": Sm} and
for every key-value pair k : v in J and every ej , with
1 ≤ j ≤ m, such that k is in the language of ej we have
that v |= Sj .

Remark . If the keyword matches more than one pattern
property then it has to satisfy all the schemas involved.

• p is "required":[k1, . . . , km] and for each 1 ≤ j ≤ m we
have that J has a pair of the form kj : v.

• p is "additionalProperties": false and for each pair
k : v in J , either S contains "properties":{k1 :
S1, . . . , km : Sm} and k = kj for some 1 ≤ j ≤ m, or S
contains "patternProperties":{"e1": S1, . . . , "em": Sm}
and k belongs to the language of ej , for some 1 ≤ j ≤ m.

Arrays. Let S be an array schema. Then J |= S if J is an
array, and for each key-value pair p in S that is not "type":

"array" one of the following holds:

• p is "items":{S′} and for each item J ′ ∈ J we have that
J ′ |= S′.

• p is "items":[S1, . . . , Sm], J = [J1, . . . , J`] and Ji |= Si

for each 1 ≤ i ≤ min(m, `).

• p is "minItems":n and J has at least n items.

• p is "maxItems":n and J has at most n items.

• P is "uniqueItems": true and all of J ’s items are pair-
wise distinct.

Example 6. As our final example consider the schema

{
"definitions": {
"S": {
"anyOf": [
{"enum": [null]},
{"allOf": [

{"type": "array",
"minItems": 2,
"maxItems": 2,
"items": [
{"$ref": "#/definitions/S"},
{"$ref": "#/definitions/S"}]

},
{"not": {"type": "array", "uniqueItems": true}}

]}
]},
"$ref": "#/definitions/S"

}
}

This schema defines a nesting of arrays where each ele-
ment is itself a json document that conforms to S: either the
null JSON or an array with exactly two elements that again
must conform to S. We can look at these objects as binary
trees, where arrays represent inner nodes and null JSONs
represent leafs. For example, here is a tree representation of
a JSON document that satisfies to this schema.

[
[null, null],
[null, null]

] null null null null

It is straightforward to show that any document vali-
dating against this schema has to be a description of a
complete binary tree. The latter constraint is enforced by
having the "not": {"type": "array", "uniqueItems":

true} clause in the object description, thus guaranteeing that
if a node has a child, it has to have precisely two children
that are equal to each other.

Well Formedness. The formal grammar still allows for
problematic schemas, such as the following.

{

"definitions": {

"S": {"not": {"$ref": "#/definitions/S"}}

},

"$ref": "#/definitions/S"

}

The above de�nes a schema that is both S and the nega-
tion of S, and is therefore ill-designed. What is worse, the
majority of the validators we tested run into an in�nite loop
when trying to resolve the references of this schema. In fact,
one of the tests in Table 1 used a schema similar to this one.

To avoid these problematic cases we introduce the notion
of a well-formed schema. Formally, let S be a JSON schema
document and S1



corresponds to a JSON Pointer that retrieves Sj . For in-
stance, the graph of the document above has only the node
S and the only edge is a self loop on S. Edges are only
added if Si is a combination of schemas, not if for example
Si is an object schema and the reference for Sj is under a
"properties" keyword.

We then say that S is a well formed schema if such a graph
is acyclic. For the rest of the paper we consider only well
formed schemas, and we propose to add this condition to
the standard as well. Note also that well formedness can be
checked in linear time.
Remark . We stress again that our de�nition does not cover
all of the syntactic nuances of the JSON Schema speci�ca-
tion [20]. What it can do, however, is to provide a reformu-
lation of any JSON Schema document as speci�ed in [20] in
a concise syntax and such that the original schema and its
reformulation de�ne the same set of JSON documents.

3. FORMAL ANALYSIS
In this section we show several results regarding the ef-

�ciency of working with JSON Schema and its expressive
power. We begin with the computational cost of checking if
a document conforms to a schema. We then compare JSON
Schema to several well established theoretical formalisms
such as nondeterministic �nite state automata, tree walk-
ing automata and monadic second order logic.

3.1 Validation
The most important problem related to JSON schema is

to determine if a JSON document J conforms to a schema
S. This problem is called JSON Schema validation and is
formally de�ned as follows.

Problem: JSchValidation(J, S)
Input: JSON document J and schema S.
Question: Does J |= S?

Since most of JSON is used to transfer data between
web applications, developing e�cient algorithms for JSON
Schema validation is of critical importance. It is thus im-
portant to understand the computational complexity of the
schema validation problem, as this gives us a good starting
point for the design of e�cient validation algorithms.

We show that the problem is always in PTIME, and can
be solved in linear time with respect to both the schema
and the document as long as the schema does not use
the uniqueItems keyword. However, the problem remains
PTIME-hard, even for schemas using a very limited set of
keywords. This illustrates that although it is possible to
solve the validation problem e�ciently, it is still harder than
for example checking if two nodes in a graph are connected
by a path, or determining whether a word belongs to the
language speci�ed by a regular expression.

Let us begin with the PTIME upper bound. Given a
schema S and a JSON document J , we derive a simple al-
gorithm that runs in time O(|J | · |S|) as long as the schema
does not contain the uniqueItems keyword. The algorithm
works as follows: we process the document restriction by re-
striction, while checking conformance to the corresponding
subschema in S. The running time is linear because corre-
spondence to each keyword in JSON Schema can be checked
in linear time (except for uniqueItems). If S does contain
uniqueItems, then we may now need to check whether all

the elements of a given array J are unique. This check can
be performed in time O(|J | · log |J |) by �rst sorting the array
J , thus raising the total bound to O(|J |·log|J |·|S|). One can
in fact show that this bound is tight, as it is equivalent to
computing the lower bound of any comparison based sorting
algorithm [7]. We do note that the O(|J | · |S|) bound should
remain in most practical scenarios even in the presence of
uniqueItems, since the uniqueness is likely to be performed
using a hash table. Regardless, we obtain the following:

Proposition 7. The problem JSchValidation(J, S) is
in PTIME.

And as promised, the matching lower bound is obtained
using very simple schemas.

Proposition 8. The problem JSchValidation(J, S) is
PTIME-hard even if S contains just the restrictions allOf,
anyOf and enum.

Proof Sketch. The proof is by reduction from the
Monotone Circuit Value problem, which is known to be
PTIME-complete [11]. Given a circuit C and a valuation τ
for the gates of C, we provide a LOGSPACE reduction that
traverses the circuit in a depth-�rst fashion, starting from
the root. If we encounter an AND gate, we add an allOf re-
striction to the schema, with a number of subschemas equal
to the number of inputs the gate has. If the gate is an OR we
add an anyOf restriction. In both cases we repeat the pro-
cess until we reach the leafs of C. At this point, we force the
JSON instance to have either the value true or false, de-
pending on τ , by using the enum restriction. Our document
J is simply the value true. We illustrate how the reduction
works in Figure 1.

∧

∨ ∨

x1 x2 x3

{"allOf":[
{"anyOf":[

{"enum":[false]},
{"enum":[false]}]},

{"anyOf":[
{"enum":[false]},
{"enum":[true]}]}

]}

Figure 1: Schema for the circuit C with input values τ(x1) =
τ(x2) = false and τ(x3) = true.

In Figure 1 the allOf construct corresponds to the AND

gate of the circuit, while the two anyOf subschemas simulate
the OR gates. The input values are coded using enum in order
to equal constants true and false.

It is easy to see that J � S ⇐⇒ τ(C) = true.

3.2 Expressive Power
So far we have seen many examples of how JSON Schema

can be used in practice, but we still do not know much
about the classes of JSON documents that the JSON Schema
speci�cation can express, and which ones it cannot. To an-
swer these questions it is convenient to study whether JSON
Schema can simulate any of the well established formalisms
for de�ning languages. We provide two such comparisons:
with respect to automata and with respect to logic.

Automata. Most schema de�nitions for other semistruc-
tured data paradigms are heavily based on automata. In
the case of XML, for example, there has been a lot of study
in linking schema de�nitions to di�erent versions of tree au-
tomata (c.f. [23]). It is therefore useful to compare with
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automata formalisms, if only to understand how much does
JSON Schema depart from XML schema formalisms.

We begin by showing that JSON schema can de�ne any
standard non-deterministic �nite automaton (NFA). Obvi-
ously we can do this since we have the pattern keyword to
de�ne strings that satisfy any regular expression. However,
we show that even if we are left with just a few keywords
(and no pattern) we can still simulate automata, with the
help of a very simple coding. This shows that JSON Schema
is inherently as expressive as NFAs, and we later use these re-
sults to argue that the power of JSON Schema is, in essence,
at least comparable to most XML schema speci�cations.

To formally state this result consider the coding of a word
w over a �nite alphabet � into a JSON document J(w), that
treats each letter as a property and the following letters
as its subproperties until it reaches the end of the word,
which is represented by a null value. For example, the word
abc is coded as a JSON document {"a": {"b": {"c":

null}}}. Similarly, ad is coded as {"a": {"d": null}}.
The idea is to show that for every NFA A one can con-

struct a schema SA such that a word w belongs to the lan-
guage of A if and only if J(w) |= SA. To illustrate this claim
consider the automaton A in Figure 2.

q0start q1 q2

b

a c

Figure 2: The automaton A recognising ab* | ab*c.

To obtain a schema that will accept (up to our coding)
only the words in the language of the automaton from Fig-
ure 2 we proceed as follows. First, in the "definitions"

section of our schema we de�ne each state of the automa-
ton. Figure 3 illustrates how is this done for the automaton
above. Namely, we have a schema for q0, q1 and q2. Each
of these schemas is intended to code the transition from
the state it describes. This is achieved by declaring that
each state is an object whose properties code the transitions
leaving the state. For instance, in order to simulate that
we can move from the state q0 to the state q1 reading the
letter a, we add "a": {"$ref": "#/definitions/q1"} to
the properties of the schema for q0. Note that here we use
$ref to switch to the schema of q1 and follow the transi-
tion. Likewise, to reect that a non deterministic choice is
available, we use the anyOf keyword. For instance, this is
reected in Figure 3 when describing the transitions of q1.
Finally, in order to signal that a sate is accepting, we allow
it to be of type null, such as e.g. for q1 and q2. The full
transformation is given in Figure 3.

It is now straightforward to see that a word w belongs to
the language of the automaton A from Figure 2 if and only
if J(w) validates against the schema from Figure 3. Note
that the documents conforming to the schema above are
not allowed to have additional properties, so the document
J(ad) will not validate against the schema. On the other
hand, J(abc) does validate as desired.

Although the procedure described above treats one partic-
ular automaton, it also shows how to construct a schema for
an arbitrary automaton. We therefore obtain the following.

Proposition 9. JSON Schema can simulate finite state
automata even when it only uses definitions, references, sin-
gle enumeration and combinations of schemas.

{
"definitions": {

"q0": {
"type":"object",
"properties": {

"a": {"$ref": "#/definitions/q1"}
},

"additionalProperties": false},
"q1": {

"anyOf": [
{"enum": [null]},"aroperties": {

"ab: {"$ref": "#/definitions/q1"}

"a,



what we call simpli�ed schemas, where only object schemas
and strings schemas are allowed (but not integer, number
or array schemas). However, one can show that our results
continue to hold for any fragment of the full JSON Schema
speci�cation [1, 25, 20] that does not use the uniqueItems

keyword (which we show not to be de�nable in MSO).
To understand the connection with logic it is best to con-

sider every JSON instance J as an unranked unordered tree
T (J) (recall that we do not consider arrays here), whose
leafs are either empty object instances or strings. For ex-
ample, Figure 4 shows a simple JSON document and its
representation as a tree structure.

{
"player": "Joe",
"club": {

"name": "Chelsea",
"league": "Premier"
}

}

0

00

"Joe"

01

010

"Chelsea"

011

"Premier"

"player" "club"

"name" "league"

Figure 4: A JSON J and its tree representation T (J).

We then represent these trees as MSO structures using
binary relations Child, Key and Value, and an unary relation
Root. The interpretation of Child and Root is the usual one;
additionally we use Key to store the key of the key-value
pairs in the document (such as "player" or "name" in Figure
4), and Value to store the value of a given string node (such
as "Joe" or "Chelsea").

The key observation is that each simpli�ed schema can
be described using an MSO formula over T (J). Instead of
giving the full translation we illustrate how it works using
the following example. Consider �rst the schema S below.

{
"type": "object",
"properties": {"player": {"type": "string"}},
"required": "player"
}

This schema speci�es all objects that have a player at-
tribute whose value is a string. In particular, the document
from Figure 4 validates against this schema. An MSO for-
mula equivalent to this schema would be:

∃x∃y
(

Root(x) ∧ Child(x, y)∧

Key("player", y) ∧ ∃z
(
Value(y, z)

))
Intuitively, this formula checks the existence of a child of
the root that is accessible via an edge labelled "player"

whose value is a string. Using the codi�cation from Figure
4 this is equivalent to saying that the JSON document has
a key-value pair with the key being "player" and the value
a string, as desired. Other JSON Schema constructs can be
simulated by MSO operators in a similar way. Note that we
need to use second order properties only to deal with de�-
nitions and references, and to simulate regular expressions
(here we use the Value relation in a non trivial way); all
other keywords are expressible in �rst order logic. General-
ising this construction in a similar way as done in [22], we
obtain the following.

Theorem 10. For any simplified schema S there exists
an MSO formula FS such that for every JSON document J
we have that J |= S if and only if T (J) |= FS.

Observe now that, since simpli�ed schemas can be de-
scribed using MSO formulas, and since for each JSON doc-
ument J the structure T (J) has bounded tree width (as it is
essentially a tree), Courcelle’s theorem [8] applies. This once
again gives us that the validation problem can be solved in
time that is linear in the size of the input JSON document.

As we have mentioned, one can extend this result to ap-
ply for every JSON schema not using the uniqueItems key-
word. On the other hand, for the case of schemas using
uniqueItems we can also show that these schemas are not
de�nable in MSO. To see this, recall Example 6, that ex-
presses documents representing complete binary trees. It is
not di�cult to show that this property cannot be accepted
by a non-deterministic tree automata, and thus it cannot be
expressed in MSO, as tree automata and MSO are equivalent
in expressive power [6]. This also explains why uniqueItems

keyword cannot be validated in time that is linear in the size
of the input document, as discussed previously.

4. PRACTICAL CONSIDERATIONS
In this section we conduct an experimental analysis on the

e�ciency and applicability of JSON schema. We �rst run
a series of experiments in which we test our own validator
under JSON documents of increasing sizes; the results are
summarized in Subsection 4.1. We then show in Subsection
4.2 a real use case where JSON Schema can be naturally
applied in practice, namely the Wikidata database [32].

4.1 Experimental Analysis
To evaluate how the validating process fares when fac-

ing more involved features of JSON schema we conducted
four sets of experiments covering a wide range of features:
recursive calls using references, objects with a high num-
ber of nesting or additional properties, and the validation of
uniqueItems for arrays with a big number of items.

We implemented our own validator that works exactly as
described in the formalisation of this paper. For each ex-
periment we created a schema, and measured the time that
it takes to validate documents of increasing size against this
schema. We wanted to see how our validator performs on a
typical personal computer, so we used a machine with 8 GB
of RAM and a 2.9 GHz Intel Core i5 processor.

We begin by testing how our validator performs when
dealing with recursive calls that use JSON references. The
�rst schema we test against checks if our JSON document
is a binary tree, so we validate binary trees of increasing
depth2. The results of this experiment are displayed in Fig-
ure 5 (a). Observe that this �gure uses a logarithmic scale
for time, which is only fair, since the number of nodes in the
tree increases exponentially with the depth (for instance, for
depth 20 we have around 2 million nodes, while for depth
22 this raises to over 8 million).

The second schema we test against uses $ref in order
to reach a basic type in a nested JSON object. The doc-
uments we are validating against this schema will be ob-
jects with increasing nesting depth (i.e. objects of the type
{"x":{"x":{"x": true}}}) and the results are presented
in Figure 5 (b). As expected from the results of Section 3.1
the validator displays linear behaviour.

The third schema simply tests that each property of an
object is of a certain type, against JSON objects that contain

2Test data can be found at [1].
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Figure 5: Performance of di�erent tests on documents of increasing size.

an increasing number of key-value pairs. As we can see from
Figure 5 (c), the validation is very e�cient, even when we
are dealing with hundreds of thousands of key-value pairs.

The �nal schema tests if an array has unique items, val-
idating arrays that contain a varying number of complete
binary trees with around four thousand nodes. The perfor-
mance, shown in Figure 6, con�rms the results from Section
3.1 which state that we can not expect linear time validation
when dealing with schemas using the uniqueItems keyword.
The running time however is quite reasonable, even when
dealing with a large quantity of complicated objects.
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Figure 6: Testing uniqueItems for arrays of varying size.

It is important to note that these experiments use very de-
manding documents (e.g. complete binary trees). This gives
us realistic upper bounds on the performance, but running
times in practice should be much faster.

As we can see the results we obtain are encouraging and
suggest that even when �les weighing up to a hundred MB
are validated against non trivial schemas we can get the
answer in at most a few minutes using a typical developer
machine. This additionally illustrates that JSON Schema
validation is a process that does not require server side sup-
port and can thus be done locally when working with the
JSON data format. Therefore our experimental results im-
ply that including JSON Schema validation in the applica-
tion development process is already a viable option.

4.2 Use Case: Wikidata
JSON is also used for storing data, and is the format

of choice for several document-oriented databases such as
MongoDB [24] and CouchDB [27]. The advantages of hav-
ing a schema de�nition in a classical database scenario have
long been recognised by the community, and we believe that
JSON databases would bene�t from JSON Schema in the
same way. To analyse these advantages we choose to study
Wikidata and show how JSON Schema can be used to de-
scribe the structure of its documents.

Wikidata is a free linked database that acts as central
storage for the data of its Wikimedia sister projects includ-
ing Wikipedia, Wikivoyage, Wikisource, and others [32]. As
far as we know, Wikidata has the biggest JSON database on
the web with more than 60GB of information. The data is
constantly made available in the form of JSON data dumps,
and there is also a wide range of APIs and tools available for
connecting to Wikidata. As of today, consuming this data
is a complicated process, as users need to learn the details
of the data format by trial and error, and small changes
in the underlying structure of the �les usually 2uref JSat



"claims": {
"P610": [
{...

"value": {
"entity-type": "item",
"numeric-id": 43105

}, ...
} ...

This object tells us that entity Q46 is connected with the
item Q43105 (\Mount Elbrus") through the property P610
(\Highest Point"), or that the highest point of Europe is
Mount Elbrus. Each key-value pair in claims represents a
particular statement about the entity (or an array of state-
ments using the same property). These pairs have the prop-
erty as the key, and the value of these pairs contains the rest
of the statement (among other things).

Schema. As we have mentioned, the outermost structure is
an object with at least four key-value pairs. The keys are id,
type, labels and claims. The value of id is a string that starts
with P or Q, the type can be either item or property, and
labels and claims are more complex objects; we de�ne their
schemas under the de�nitions section and then reference it
using the $ref keyword. The following schema describes the
class of objects we have discussed.

{
"definitions": {
"labels": {...},
"claims": {...}

},
"type": "object",
"required": ["type","id","labels","claims"],
"additionalProperties": false,
"properties": {
"id": {

"type": "string",
"pattern": "^(P|Q)[0-9]+$"

},
"type": { "enum": ["item","property"] },
"labels": {"$ref": "#/definitions/labels"},
"claims": {"$ref": "#/definitions/claims"}

}
}

The value of labels is captured by the following schema:

"labels": {
"type": "object",
"additionalProperties": {
"type": "object",
"required": ["language","value"],
"properties": {

"language": {"type": "string"},
"value": {"type": "string"}

}
}

}

Note the nesting under the additionalProperties key-
word. This states that the outermost object may have any
number of pairs, but all of them need to satisfy the schema
stated under the additional properties keyword.

The incomplete schema below conveys the most important
information regarding claims: each pair in claims needs to
have a key that starts with P (i.e. a property), and the value
of each of these statements lies further inside the document.

"claims": {
"type": "object",
"patternProperties": {

"^P[0-9]+$": {
...
"entity-type": {"type": "string"},
"numeric-id": {"type": "integer"}
...

}

Note that each of the keys mentioned under claims is
an entity on its own, and therefore it has its own document.
For instance, we can �nd the document for property P610 on
the Wikidata database, with further statements about this
property (such as the statement \see also": \deepest point").
It is important to keep these references up to date, as it is
easy to loose these links when data is deleted or modi�ed.
Unfortunately JSON Schema is not designed to enforce this
type of constraints. We believe this is an important direction
for future work on JSON Schema.

Validation. Wikidata publishes a regular dump of their
data [31]. This dump is a JSON array, and each of the
items in this array is a di�erent Wikidata entity.

To show the practical applicability of JSON Schema we
decided to run a complete validation of Wikidata’s more
than 18 million entities. To treat each entity as a separate
JSON document we created a simple script that extracts
each entity of the document and validates it against our
schema. We used a computer with 4 GB of RAM and a
Quad-Core Intel Xeon E5 3.7 GHz processor. The results of
our validation are given in the table below.

Entities validated: 18375981
Total time: 27.251 hours

Entities per second 187.312
Average time per entity: 0.005 seconds

The size of the database is almost 60 gigabytes, so any
sequential algorithm is going to need some time to process
this data. However, the total running time can easily be
shortened by running several validations in parallel; what is
important for us is that validating a single JSON document
in practice takes just a few milliseconds, and our validator
can handle nearly 200 documents per second. We believe
this is a strong indicator of the feasibility of implementing
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