
Reverse Engineering SPARQL Queries∗

Marcelo Arenas
PUC Chile

marenas@ing.puc.cl

Gonzalo I. Diaz
University of Oxford

gonzalo.diaz@cs.ox.ac.uk

Egor V. Kostylev
University of Oxford

egor.kostylev@cs.ox.ac.uk

ABSTRACT
Semantic Web systems provide open interfaces for end-users to ac-
cess data via a powerful high-level query language, SPARQL. But
users unfamiliar with either the details of SPARQL or properties
of the target dataset may find it easier to query by example — give
examples of the information they want (or examples of both what
they want and what they do not want) and let the system reverse
engineer the desired query from the examples. This approach has
been heavily used in the setting of relational databases. We pro-
vide here an investigation of the reverse engineering problem in the
context of SPARQL. We first provide a theoretical study, formal-
ising variants of the reverse engineering problem and giving tight
bounds on its complexity. We next explain an implementation of
a reverse engineering tool for positive examples. An experimental
analysis of the tool shows that it scales well in the data size, number
of examples, and in the size of the smallest query that fits the data.
We also give evidence that reverse engineering tools can provide
benefits on real-life datasets.

1. INTRODUCTION
Semantic Web systems provide open interfaces for end-users to

access data within standard formats. The data model views data as
collections of RDF triples, a fairly low-level representation, but the
Web APIs expose a powerful declarative query language, SPARQL,
which allows users to pose queries that combine and filter infor-
mation. Declarative query languages are powerful, but they are
known to have disadvantages in terms of ease of use. An alter-
native paradigm for querying is “query by example”, where users
present examples of what they want, and the system generalises
them [8, 22, 23]. Querying by example is particularly attractive in
an open data setting, since to harness the power of these interfaces
users must understand the structure of data as well as the features
of SPARQL needed to express their information needs, and this is

∗The authors would like to thank Michael Benedikt for many fruit-
ful discussions about the results presented in this paper. M. Arenas
was funded by Millennium Nucleus Center for Semantic Web Re-
search under Grant NC120004, and G. I. Diaz by Becas Chile of
CONICYT Chile.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2882989 .

frequently not the case. Even users familiar with SPARQL and with
a given dataset may prefer to explore the data via example and have
the system suggest generalisations.

In this paper we give the first study of the problem of querying
via examples for SPARQL. We formalise the problem as “reverse
engineering SPARQL queries from examples”, following a line of
research that has been developed for other problems dealing with
learning from examples [10], including regular languages [1–3],
relational database queries [25], XML queries [9, 20]. and queries
in graph databases [7]. A common baseline for these approaches
lies in the definability problem [4, 6, 14, 24].

We present several variations of the problem, depending on
whether the user presents a dataset with positive examples, a dataset
with positive and negative examples, or a dataset with an exact an-
swer. We also vary the subset of SPARQL that the system is per-
mitted to synthesise, starting with simple graph patterns, appending
the SPARQL operator for obtaining optional information, and fi-
nally considering an extension with SPARQL’s feature for filtering
results according to some conditions.

Our first contribution is theoretical: we isolate the complexity of
all variants of the reverse engineering problem. We provide tight
complexity bounds for the reverse engineering problem with pos-
itive examples, with positive and negative examples, and with an
exact answer, looking at reverse engineering queries in fragments
of SPARQL ranging from very expressive (allowing all the opera-
tors mentioned above) to very limited (allowing only conjunction).

Having completed the picture of the theory of reverse engineer-
ing, we turn to a practical implementation of it. We provide a pa-
rameterised algorithm for reverse engineering from positive exam-
ples, where the parameters allow tuning several features of the tar-
get class. We evaluate our algorithms on real-world and synthetic
queries, showing that it scales well both with the input size and the
complexity of a target query needed to match a set of examples,
that it can reverse engineer complex queries with high accuracy,
and that it can be useful as a supplement to an existing SPARQL
engine.

2. PRELIMINARIES

2.1 RDF and the query language SPARQL
The RDF (Resource Description Framework) data model is used

to represent information about World Wide Web resources, and was
released as a W3C (World Wide Web Consortium) recommenda-
tion in 2004 [12]. Along with RDF, the W3C defined the query
language SPARQL as a recommendation for querying RDF data.
We shall present only a simplified version of the full definitions, in
line with the formalisation given by [15].

Assume two countably infinite disjoint sets U and L of IRIs and
literals, respectively. An (RDF) triple is a tuple (s, p, o) ∈ U ×U ×

239

(U ∪ L), and an (RDF) graph is a finite set of RDF triples. Define
another countably infinite set V of variables, disjoint from U and L
(variables will be denoted with a question mark).

Next we define the fragment of the SPARQL query language that
will be considered in this paper. We start by introducing the notion
of (SPARQL) built-in condition, defined inductively as follows:
● if ?X, ?Y ∈ V and a ∈ (U ∪ L), then ?X = a, ?X = ?Y , and

bound(?X) are built-in conditions,
● ifR1 andR2 are built-in conditions, then (¬R1), (R1∨R2),

and (R1 ∧R2) are built-in conditions.
The notion of (SPARQL) graph pattern is inductively defined next:
● a triple from (U∪ L∪V)× (U∪V)× (U∪ L∪V) is a graph

pattern (called triple pattern),
● if P1 and P2 are graph patterns, then (P1 ANDP2) and

(P1 OPTP2) are graph patterns,
● if P is a graph pattern and R is a built-in condition, then

(P FILTERR) is a graph pattern.

EXAMPLE 1. Assume that ?X ∈ V, {type,Person,age} ⊆ U,
and “32” ∈ L. Then P1 = (?X,type,Person) and P2 =
(?X,type,Person)AND (?X,age,“32”) are graph patterns,
which intuitively ask for the list of people (elements of type per-
son) and for the list of people whose age is 32. Moreover, the
following is also a graph pattern: P3 = [(?X,type,Person)
AND (?X,age,“32”)] OPT (?X,email, ?Y), where the
OPT operator is used to retrieve the email of each person stored
in the variable ?X if this information is available.

The SPARQL query language includes also union, projection
and some additional built-in predicates; these features of SPARQL
are not considered, and are left for future work. To distinguish the
entire SPARQL query language from the fragment considered in
this paper, the latter is denoted by SP[AOF], where A, O and F
stand for the operators AND, OPT and FILTER, respectively.

To define the semantics of graph patterns, we define the notion
of mapping, a partial function from V to U ∪ L with finite do-
main, which is denoted by dom(µ). Two mappings µ1 and µ2

are compatible, denoted µ1 ∼ µ2, if µ1(?X) = µ2(?X) for all
?X ∈ dom(µ1) ∩ dom(µ2) (i.e. when µ1 ∪ µ2 is also a mapping).
Given sets Ω1 and Ω2 of mappings, define the following operations
on them:

Ω1 &Ω2 = {µ1 ∪ µ2 ∣ µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2},
Ω1 −Ω2 = {µ ∣ µ ∈ Ω1 and ∀µ2 ∈ Ω2 ∶ µ1 /∼ µ2}.

We start by defining the semantics of built-in conditions. Given
a built-in condition R and a mapping µ, we say that µ satisfies R,
denoted by µ ⊧ R, if
● R is ?X = a for some ?X ∈ V, a ∈ U ∪ L, and µ(?X) = a,
● R is ?X = ?Y for some ?X, ?Y ∈ V and µ(?X) = µ(?Y),
● R is bound(?X) for some ?X ∈ V and ?X ∈ dom(µ),
● R is (¬R1) for a built-in condition R1 and µ /⊧ R1,
● R is (R1 ∨R2) for some R1, R2 and µ ⊧ R1 or µ ⊧ R2,
● R is (R1 ∧R2) for R1, R2, and both µ ⊧ R1 and µ ⊧ R2.

We now move to the definition of the semantics of graph pat-
terns. Given a graph pattern P , we define var(P) ⊆ V to be
the set of variables which occur in P , and likewise for a built-in
condition R. Given a triple pattern t and a mapping µ such that
var(t) ⊆ dom(µ), we define µ(t) as the RDF triple obtained from
t by replacing every variable ?X occurring in t by µ(?X). Then
given a graph pattern P and an RDF graph D, the evaluation of
P over D, denoted by JP KD , is the set of mappings defined recur-
sively as follows:
● If P is a triple pattern t, then JP KD = {µ ∣ var(t) = dom(µ)

and µ(t) ∈D},

● If P = (P1 ANDP2) for graph patterns P1 and P2, then
JP KD = JP1KD & JP2KD ,

● If P = (P1 OPTP2) for graph patterns P1 and P2, then
JP KD = (JP1KD & JP2KD) ∪ (JP1KD − JP2KD),

● If P = (P1 FILTERR) for a graph pattern P1 and a built-
in condition R, then JP KD = {µ ∈ JP1KD ∣ µ ⊧ R}.

From now on, we use notation [?X1 ↦ a1, . . . , ?Xk ↦ ak] to
represent a mapping µ such that dom(µ) = {?X1, . . . , ?Xk} and
µ(?Xi) = ai for all i ∈ [1, k].

Note that, as can be shown by simple induction on the structure,
for any graph D and pattern P in SP[AOF] the semantics is such
that any two different mappings in the set of mappings JP KD are
incompatible, and the intersection of the domains of mappings in
JP KD is non-empty. These two properties play an important role in
the paper, and we call sets of mappings satisfying them consistent.

EXAMPLE 2. Continuing with Example 1, consider an RDF
graph D consisting of following triples:

(John,type,Person), (John,age,“26”),
(Peter,type,Person), (Peter,age,“32”),
(Susan,type,Person), (Susan,age,“32”),
(Susan,email,“susan@example.org”).

Then we have that JP1KD consists of the mappings [?X ↦ John],
[?X ↦ Peter] and [?X ↦ Susan], which correspond to the
list of people in D. Moreover, we have that JP2KD = {[?X ↦
Peter], [?X ↦ Susan]}, as the age of John is “26”. Finally, we
have that JP3KD consists of the mappings

µ1 = [?X ↦ Peter],
µ2 = [?X ↦ Susan, ?Y ↦ “susan@example.org”].

On the one hand, we do not have the email of Peter in D, so only
variable ?X is assigned with a value in the mapping µ1. On the
other hand, the email of Susan is in D, so we have a value for
variable ?Y in the mapping µ2.

Finally, the size of a graph pattern P , denoted by size(P), is the
number of triple patterns and atomic filter conditions in P .

2.2 Well-designed patterns
Previous work on SPARQL has identified some anomalies that

arise when the OPT operator can be used arbitrarily, and [15]
showed that one can avoid these anomalies by making a natural
restriction on the use of OPT. A graph pattern P is said to
be safe if for every sub-pattern (P1 FILTERR) of P , it holds
that var(R) ⊆ var(P1). A graph pattern P is said to be well-
designed if P is safe and for every sub-pattern P1 of P of the form
(PLOPTPR), and for every variable ?X ∈ var(PR), if ?X is
mentioned outside of P1 in P , then ?X ∈ var(PL). We denote
SP[AOFwd] the class of all the well-designed graph patterns.

EXAMPLE 3. The graph pattern P3 defined in Example 1 is
well-designed. On the other hand, if

P4 = ((?Y,type,Publication)OPT (?X,email, ?Z)),

then the graph pattern P5 = (?X,type,Person)ANDP4 is not
well-designed. To see why this is the case, notice that the variable
?X is mentioned in the right-hand side of P4 and outside P4 in the
triple (?X,type,Person), but it is not mentioned in the left-hand
side of P4. What is unnatural about the graph pattern P5 is that the
triple (?X,email, ?Z) has been placed to give optional informa-
tion to the triple (?Y,type,Publication), but it is actually giv-
ing optional information to the outside triple (?X,type,Person).

240

Empirical studies have shown that well-designed graph patterns
are commonly used in practice [16]. Well-designed patterns have
many desirable properties. First, the complexity of the query eval-
uation problem for well-designed graph patterns is lower than for
the entire language [15] (coNP versus PSpace), even if only the
OPT operator is considered [19]. Second, well-designed graph
patterns are suitable for query optimisation [11, 15, 17]; in particu-
lar, this restriction allows the definition of some simple reordering
and optimisation rules [11, 15, 19]. Third, this class of graph pat-
terns captures the intuition behind the OPT operator, which is to
allow information to be added to an answer whenever it is available,
and not to reject such an answer if the information is not present.
This intuition, which is formalised in the following paragraph, does
not hold for an arbitrary query in SP[AOF].

A mapping µ1 is subsumed by a mapping µ2, denoted by µ1 ⊑
µ2, if dom(µ1) ⊆ dom(µ2) and µ1(?X) = µ2(?X) for every
variable ?X ∈ dom(µ1). Assume that we have two RDF graphs
D1 and D2 such that D1 ⊆ D2. If a SPARQL pattern P mention-
ing only the operators AND and FILTER is evaluated over D1

and D2, then we have that JP KD1 ⊆ JP KD1 . Thus, such a query P
is monotone in the sense that if new information is added to an RDF
graph then no answer is lost. If we are also allowed to use the OPT
operator in P , then we would expect a similar behaviour, which is
referred to as weak monotonicity [5]. More precisely, given that
D1 ⊆D2, it should be the case that for every mapping µ1 ∈ JP KD1 ,
there exists a mapping µ2 ∈ JP KD2 such that µ1 ⊑ µ2, as the OPT
operator was designed only to add information to an answer when-
ever it is available. However, there exist patterns in SP[AOF] that
are not weakly monotone [5]; in fact, P5 in Example 3 is such a
query. Well-designed graph patterns come as a solution to this fun-
damental problem, as shown in the following proposition.

PROPOSITION 1 ([5]). Every SP[AOFwd] graph pattern is
weakly monotone.

Last but not least, the semantics of well-designed graph patterns
can be characterised in terms of the notion of subsumption of map-
pings, which is a useful property that will be utilised in this paper.
A graph pattern P ′ is a reduction of a graph pattern P if P ′ can
be obtained from P by replacing a sub-pattern (P1 OPTP2) of
P by P1, that is, if P ′ is obtained by deleting some optional part
of P . The reflexive and transitive closure of the reduction relation
is denoted by ⊴. Moreover, and(P) is the graph pattern obtained
from P by replacing every OPT operator in P by the AND op-
erator. Then the set of partial answers of a graph pattern P over
an RDF graph D, denoted by partials(P,D), is the set of all map-
pings µ for which there exists P ′ ⊴ P such that µ ∈ Jand(P ′)KD .
As shown in the following proposition, partial answers and the no-
tion of subsumption of mappings can be used to characterise the
evaluation of a well-designed graph pattern.

PROPOSITION 2 ([15]). For every RDF graph D, graph pat-
tern P in SP[AOFwd] and mapping µ, it holds that µ ∈ JP KD
if and only if µ is a maximal mapping (with respect to ⊑) in
partials(P,D).

Well-designed patterns also admit OPT normal form, in which
arguments of AND and FILTER do not use OPT [15]; this
normalisation can be performed in polynomial time. Moreover, in
well-designed patterns the bound operator is moot, as in OPT
normal form it can be always replaced by True [26]. In this paper
we assume normalised well-designed patterns without bound.

Besides the class SP[AOFwd] of all well-designed patterns,
we also study the reverse engineering problem for the frag-
ment SP[AOwd] of well-designed graph patterns formed using

only AND and OPT, and the fragment SP[AOF∧,=,≠wd] of
SP[AOFwd] obtained by disallowing the use of disjunction in filter
expression and restricting the use of negation to only inequalities.

2.3 Complexity classes
In the study of the computational complexity of the reverse

engineering problems, we consider the usual complexity classes
PTime, NP and coNP, along with the complexity classes Σp2 and
DP. Recall that if C is a complexity class, then NPC is the class
of decision problems that can be solved in polynomial time by a
non-deterministic Turing machine with an oracle (or subroutine)
for a problem L ∈ C. Then the second level of the polynomial hi-
erarchy [21] consists of the complexity classes Σp2 = NPNP and
Πp

2 = coΣp2 . A prototypical complete problem for Σp2 is ∃∀3SAT,
that is, the problem of verifying, given a quantified Boolean for-
mula φ of the form ∃x̄∀ȳ ¬ψ with ψ a propositional formula (with-
out quantifiers) in conjunctive normal form with each clause using
exactly three literals, whether φ is valid. DP is the class of prob-
lems L for which there exist languages L1 and L2 in NP such that
L = L1 − L2 [13] (or, for which there exist L1 in NP and L2 in
coNP such that L = L1 ∩L2). The problem 3SATUNSAT of decid-
ing validity of a quantified formula φ of the form ∃x̄ ψ1 ∧ ∀ȳ ¬ψ2,
where ψ1 and ψ2 are in conjunctive normal form with three literals
per clause, is DP-complete. NP ⊆ DP, coNP ⊆ DP and DP ⊆ Σp2 ,
and these inclusions are believed to be proper.

3. REVERSE ENGINEERING PROBLEMS
We now formally define the reverse engineering problems con-

sidered in this paper. Informally, reverse engineering problems ask
whether there exists a query, or realizer, which fits the examples.
Let F be any of the SPARQL fragments defined in Section 2.2
(e.g. SP[AOFwd]). Then the positive examples reverse engineer-
ing problem is defined as:

REVENG
+(F) = {(D,Ω) ∣D is a nonempty RDF graph,

Ω is a set of mappings and ∃P ∈ F ∶ Ω ⊆ JP KD}.

Moreover, the positive-and-negative examples reverse engineering
problem is defined as:

REVENG
±(F) = {(D,Ω, Ω̄) ∣D is a non-empty RDF graph,

Ω, Ω̄ are sets of mappings and

∃P ∈ F ∶ Ω ⊆ JP KD and Ω̄ ∩ JP KD = ∅}.

In this case, without loss of generality we always silently assume
that Ω ∩ Ω̄ = ∅, since otherwise the problem is trivial. Finally, the
exact-answers reverse engineering problem is defined as:

REVENG
E(F) = {(D,Ω) ∣D is a non-empty RDF graph,

Ω is a set of mappings, and ∃P ∈ F ∶ Ω = JP KD}.

We will call (D,Ω) (and (D,Ω, Ω̄)) an instance of the problem
and P a realizer for the instance.

In order to study the complexity of these reverse engineering
problems, we first must understand the corresponding problem of
verifying that a given pattern (a.k.a. query) fits some example data.
Hence, the positive examples verification problem is defined as:

VERIFY
+(F) = {(D,P,Ω) ∣D is a nonempty RDF graph,

Ω is a set of mappings, P ∈ F and Ω ⊆ JP KD}.

241

The positive-and-negative examples verification problem is:

VERIFY
±(F) = {(D,P,Ω, Ω̄) ∣D is a non-empty RDF graph,

Ω, Ω̄ are sets of mappings,

P ∈ F ,Ω ⊆ JP KD and Ω̄ ∩ JP KD = ∅}.
Finally, the exact-answers verification problem is defined as:

VERIFY
E(F) = {(D,P,Ω) ∣D is a non-empty RDF graph,

Ω is a set of mappings, P ∈ F and Ω = JP KD}.
Alongside the general versions of the reverse engineering and ver-
ification problems, we will consider the case where the number
of variables mentioned in Ω (and Ω̄) is bounded by a fixed con-
stant. An upper bound on the complexity of the verification prob-
lem when the number of variables is fixed will imply the same up-
per bound when the pattern is fixed but the data is scaled, i.e. an
upper bound in the data complexity of verification.

Note that the problems with both positive and negative exam-
ples are clearly at least as difficult as their counterparts with only
positive examples. However, the exact-answers problems are not
immediately reducible to others.

4. COMPUTATIONAL COMPLEXITY
OF REVERSE ENGINEERING

Having defined the decision problems to be studied, we now turn
to their computational complexity. In this section we will first study
the complexity of the auxiliary verification problems. While inter-
esting in their own right, the verification problems will be impor-
tant mainly for their role in obtaining complexity results for the
reverse engineering problems. We first give a general overview of
the strategy to be used to decide a reverse engineering problem:
given a fixed SPARQL fragment F and a set of example mappings,
we may divide the problem into two main challenges:

● Since the fragment F will usually permit infinitely many
queries, we cannot test every query in the fragment as a can-
didate. Thus, we seek to bound the set of queries to be con-
sidered. In fact, we will seek to show that if there is any
query realising the input, then there is a canonical realizer.

● Given a “candidate query” in the fragment, we must decide
if it fits the example instance by solving the corresponding
verification problem. Then, once we obtain a set of candidate
queries it becomes a matter of verifying them one by one.

The algorithmic strategy, then, will be to first construct the canon-
ical query, and then verify that it in fact fits the examples. In what
follows we first study the verification problems, and then define the
canonical queries in order to study the reverse engineering prob-
lems.

4.1 Verification problems
We now examine the complexity of the verification problems,

starting with the upper bounds, and progressing towards the re-
sults summarised in Table 1. The positive-and-negative examples
problem for SP[A] admits a straightforward polynomial-time al-
gorithm:

PROPOSITION 3. VERIFY±(SP[A]) is in PTime.

PROOF. For VERIFY±(SP[A]), given an input (D,Ω, Ω̄, P),
we must first check that Ω ⊆ JP KD . Thus, for each µ ∈ Ω we first
confirm that dom(µ) = var(P) and that µ(t) ∈ D for every triple
pattern t in P—a simple nested loop. Ω̄ is handled similarly.

Note that this trivially implies that VERIFY+(SP[A]) is in
PTime. We defer the case of VERIFYE(SP[A]) for the moment.
If we now allow the OPT operator, the problem becomes harder.
We give an upper bound for VERIFY+(SP[AOFwd]); here check-
ing each example mapping µ involves showing that it is maximal,
generating the added complexity. In what follows we use the no-
tation µ ⋤ ν to indicate that mapping µ is properly subsumed by
mapping ν, that is µ ⊑ ν and µ ≠ ν:

PROPOSITION 4. VERIFY+(SP[AOFwd]) is in coNP.

PROOF. Consider the following NP algorithm for the comple-
ment of VERIFY+(SP[AOFwd]). Given input (D,P,Ω) we must
decide whether Ω /⊆ JP KD , for which we use the characterisation
provided in Proposition 2. More precisely, for each µ ∈ Ω, first
check whether µ ∈ partials(P,D); if not return accept (this can
be done in polynomial time, as shown in [15]). Otherwise, we
now attempt to verify that µ is not a maximal partial solution by
guessing a (polynomially-sized) mapping ν, and checking whether
ν ∈ partials(P,D) and µ ⋤ ν. If these conditions are all true, then
µ /∈ JP KD and we accept.

Interestingly, if the number of variables in Ω is assumed to be
bounded by a fixed constant, then guessing is not necessary and the
problem is in PTime. In particular, this implies that the verifica-
tion problem can be solved in polynomial time in data complex-
ity. Also, note that as a corollary of Proposition 4 we have that
VERIFY+(SP[AOF∧,=,≠wd]) and VERIFY+(SP[AOwd]) are also
in coNP, as these two fragments are contained in SP[AOwd].

We now show that VERIFYE(SP[AOFwd]) is also in coNP, for
which the following characterisation will be useful:

LEMMA 1. Given an RDF graph D, a set of mappings Ω and
a pattern P ∈ SP[AOFwd], it holds that JP KD /⊆ Ω if and only if
there exists a mapping µ ∈ partials(P,D) such that (i) µ /∈ Ω and
(ii) for every ν ∈ Ω, if µ ⋤ ν then ν /∈ partials(P,D).

PROOF. First assume that there is a mapping µ ∈ partials(P,D)
such that both items hold. There are two options for µ:

● Suppose µ ∈ JP KD . Then, due to the first item, we have that
JP KD /⊆ Ω.

● Suppose µ /∈ JP KD . In this case, since µ ∈ partials(P,D),
there exists a mapping µ∗ ∈ JP KD such that µ ⋤ µ∗. There
are two cases to consider for µ∗:

– if µ∗ ∈ Ω then, due to the second item, we have that
µ∗ /∈ partials(P,D). Thus, µ∗ /∈ JP KD , which leads to
a contradiction.

– if µ∗ /∈ Ω then we also conclude that JP KD /⊆ Ω.

To prove the other direction of the lemma, assume that JP KD /⊆
Ω. Then there exists a mapping µ ∈ JP KD such that µ /∈ Ω. By
definition we have that µ ∈ partials(P,D) and, thus, we only have
to show that the second item of the lemma holds for µ to conclude
the proof. Now consider a mapping ν ∈ Ω such that µ ⋤ ν. If ν ∈
partials(P,D), then we obtain a contradiction with the fact that µ ∈
JP KD , as µ is a maximal partial mapping in partials(P,D).

Lemma 1 is the key ingredient to obtaining an upper bound for
VERIFYE(SP[AOFwd]):

PROPOSITION 5. VERIFYE (SP[AOFwd]) is in coNP.

PROOF. We prove that VERIFYE(SP[AOFwd]) ∈ coNP by
showing that the complement of VERIFYE(SP[AOFwd]) is in NP.
On input (D,Ω, P), we first check in NP whether Ω /⊆ JP KD as

242

in Proposition 4. If this holds, accept. Otherwise, check whether
JP KD /⊆ Ω. Now by Lemma 1, we must guess a mapping µ such
that µ /∈ Ω, dom(µ) consists of variables used in Ω, the range of
µ consists of the constants used in D and µ ∈ partials(P,D); in
particular, notice that µ is of polynomial size in the size of the in-
put. Then, for every ν ∈ Ω such that µ ⋤ ν, we verify whether ν
/∈ partials(P,D), which can be done in polynomial time. If this
verification succeeds, then we accept.

As before, if the number of variables in Ω is bounded by a fixed
constant, then the resulting problem is again in PTime. Further-
more, as a corollary we have that VERIFYE(SP[AOF∧,=,≠wd]),
VERIFYE(SP[AOwd]), and VERIFYE(SP[A]) are also in coNP.
Our final upper bound is for VERIFY±(SP[AOFwd]):

PROPOSITION 6. VERIFY±(SP[AOFwd]) is in DP.

PROOF. Let VERIFY−(SP[AOFwd]) be the following deci-
sion problem: on input (D, Ω̄, P), return true if and only if
Ω̄ ∩ JP KD = ∅. This problem is easily seen to be in NP:
for each mapping µ̄ ∈ Ω̄, verify that either µ̄ /∈ partials(D,
P) (which can be checked in polynomial time) or, if µ̄ ∈
partials(D,P), guess a mapping ν and check that µ̄ ⋤ ν and
ν ∈ partials(D,P), rejecting if this does not hold. Now note
that an input (D,Ω, Ω̄, P) is in VERIFY±(SP[AOFwd]) if and
only if (D,Ω, P) ∈ VERIFY+(SP[AOFwd]) and (D, Ω̄, P) ∈
VERIFY−(SP[AOFwd]), from which it is straightforward to con-
clude that VERIFY±(SP[AOFwd]) ∈ DP.

As a corollary of Proposition 6, we have that
VERIFY±(SP[AOF∧,=,≠wd]) and VERIFY±(SP[AOwd]) are also
in DP. Having established complexity upper bounds for all the
verification problems, we now turn to the matching lower bounds.
We will first show coNP-hardness for VERIFYE(SP[A]), which
is also the matching lower bound for VERIFYE(SP[AOwd]),
VERIFYE(SP[AOF∧,=,≠wd]), and VERIFYE(SP[AOFwd]).

PROPOSITION 7. VERIFYE(SP[A]) is coNP-hard.

PROOF SKETCH. This can be shown via a polynomial-
time many-to-one reduction from the complement of the 3-
COLOURABILITY problem, which checks if an undirected graph
(not an RDF graph) is 3-colourable. Given an input G = (V,E)
to the complement of the 3-colouring problem (where V is a set of
nodes and E is a set of edges), we construct an input (D,Ω, P) to
the verification problem, with D = ⋃i,j∈[1,3],i≠j{(ci, e, cj)} en-
coding permitted edges between colours, P encoding the edges
of graph G (each edge (a, b) ∈ E becoming a triple pattern
(?Xa, e, ?Yb) in P), and Ω = ∅. The graph is non-3-colourable
if and only if there is no assignment of variables from the triple
patterns in P to the colours in D, resulting in JP KD = ∅, whereby
Ω ⊆ JP KD will hold.

The proposition above completes the picture for the complex-
ity of verification problems for SP[A], as well as the VERIFYE

problem for all the fragments considered. We now continue with
the lower bounds on verification problems for SP[AOwd] and
SP[AOFwd]:

PROPOSITION 8. VERIFY+(SP[AOwd]) is coNP-hard.

The proof is a variant of Claim 4.7 in [15], which shows that
the evaluation problem (given (D,µ,P), check whether µ ∈
JP KD) for SP[AOwd] is coNP-hard, and is thus omitted here.
Again, as a corollary we have that VERIFY+(SP[AOF∧,=,≠wd])
and VERIFY+(SP[AOFwd]) are also coNP-hard.

We conclude this section with the matching lower bound for
the problem VERIFY±(SP[AOwd]) (and, hence, for the fragments
with filter), followed by Theorem 1 which summarises the results:

SP[A] SP[AOwd] SP[AOF∧,=,≠wd] SP[AOFwd]

VERIFY+ in PTime coNP-c coNP-c coNP-c
VERIFY± in PTime DP-c DP-c DP-c
VERIFYE coNP-c coNP-c coNP-c coNP-c

Table 1: Complexity of verification problems

PROPOSITION 9. VERIFY±(SP[AOwd]) is DP-hard.

PROOF SKETCH. By Proposition 8, VERIFY+(SP[AOwd]) is
coNP-hard. This implies, in particular, that there exists a
polynomial-time many-to-one reduction R from the complement
of 3SAT to VERIFY±(SP[AOwd]). In fact, we may guaran-
tee that for any input ϕ to 3SAT, the pattern P in the result
R(ψ) = (D,Ω, Ω̄, P) is always of the form P = P ′OPTP ′′ for
P ′, P ′′ ∈ SP[A], where P ′ does not depend on the input. A reduc-
tion is then defined from 3SATUNSAT to VERIFY±(SP[AOwd]),
where given φ = ∃x̄1 ψ1 ∧ ∀x̄2 ¬ψ2 an instance (D,Ω, Ω̄, P) is
built, making use of (Di,Ωi, Pi) =R(∀x̄i¬ψi), i = 1,2.

THEOREM 1. Complexity bounds for the verification problems
are as stated in in Table 1.

4.2 Complexity upper bounds for reverse
engineering

We now turn to the reverse engineering decision problems, and
progress towards the results summarised in Table 2. In this sec-
tion we provide complexity upper bounds for the different variants.
As mentioned previously, the algorithms which witness these upper
bounds follow a common pattern, which consists in first construct-
ing a candidate query (or realizer) with the property that if it does
not correctly fit the input examples, then there does not exist any
query which does, and then verifying that it fits the input examples.

We first consider the SP[A] fragment, and thus the
REVENG+(SP[A]), REVENG±(SP[A]) and REVENGE(SP[A])
decision problems. Intuitively, given an input (D,Ω) to the
REVENGE(SP[A]), the candidate query will be the set of all triple
patterns which are true in D over all the positive examples in Ω.
More precisely, given an RDF graph D and a mapping µ, define
the atomic type of µ in D, denoted by atype(D,µ), as

{t ∈ (U ∪V) × (U ∪V) × (U ∪ L ∪V) ∣ µ(t) ∈D},
Essentially, the atomic type is the set of triple patterns that are true
in D under µ. We now generalise this notion to a set of map-
pings Ω, however, for this fragment of SPARQL we restrict to sets
of mappings Ω which are homogeneous, that is, for every pair of
mappings µ, ν ∈ Ω it is the case that dom(µ) = dom(ν). For a
homogeneous set of mappings Ω, define the atomic type of Ω in
D, denoted atype(D,Ω), as ⋂µ∈Ω atype(D,µ). Abusing notation,
we identify the set atype(D,Ω) and the AND-combination of its
triple patterns (i.e. an SP[A] pattern). In the case of SP[A], the
atomic type is precisely the desired candidate query, as can be seen
in the following result:

PROPOSITION 10. Given an RDF graph D and sets of map-
pings Ω and Ω̄ the following holds:
1. if (D,Ω) ∈ REVENG+(SP[A]) then Ω ⊆ Jatype(D,Ω)KD ,
2. if (D,Ω, Ω̄) ∈ REVENG±(SP[A]) then Ω ⊆ Jatype(D,Ω)KD
and Ω̄ ∩ Jatype(D, Ω̄)KD = ∅, and
3. if (D,Ω) ∈ REVENGE(SP[A]) then Ω = Jatype(D,Ω)KD .

PROOF SKETCH. For the REVENG+(SP[A]) decision problem
(item 1), assume that there exists a query P ∈ SP[A] such that
Ω ⊆ JP KD , and note that P may be interpreted as a set of triple pat-
terns. For every triple pattern t in P and every mapping µ ∈ Ω

243

we have that µ(t) ∈ D, which implies t ∈ atype(D,Ω), by
definition. Therefore, P is a subset of atype(D,Ω), and thus
atype(D,Ω) ≠ ∅ (note also that var(P) = var(atype(D,Ω))).
For any mapping µ ∈ Ω, µ ∈ Jatype(D,Ω)KD by construction,
whereby Ω ⊆ Jatype(D,Ω)KD . The other cases are similar.

EXAMPLE 4. Let Ω = {µ1, µ2} with µ1 = [?X ↦ a] and µ2 =
[?X ↦ b], and let D = {(a,1,1), (b,1,1), (a,2,2), (b,2,2)}.
Then atype(D,Ω) = {(?X,1,1), (?X,2,2)}, as t1 = (?X,1,1)
and t2 = (?X,2,2) are the only triple patterns t for which both
µ1(t) ∈ D and µ2(t) ∈ D hold. Therefore, the corresponding
candidate query P = (?X,1,1)AND(?X,2,2) defines the input
pair. This is not the only possible realizer though; for example, the
query Q = (?X,2,2) also has the property that Ω ⊆ JP KD .

Proposition 10 leads to the following algorithm template for
reverse-engineering in the SP[A] case: first build the atomic type
of Ω—which can be done in polynomial time in this case—and then
check if it works. Combining this with our results on the verifica-
tion problem, we obtain the following complexity upper bounds:

COROLLARY 1. REVENG+(SP[A]) and REVENG±(SP[A])
are in PTime, while REVENGE(SP[A]) is in coNP.

Next, we generalise the previous process for the SP[AOwd]
fragment. To build intuition, first consider, as an example, a
query P = P1 OPTP2 where both P1 and P2 are in SP[A].
For every variable ?X ∈ var(P) there are two possibilities: if
?X ∈ var(P1), then for every mapping µ ∈ JP KD it will be the
case that ?X ∈ dom(µ); if not, and we have that ?X ∈ var(P2)
and ?X /∈ var(P1), then there may exist mappings µ ∈ JP KD
such that ?X /∈ dom(µ). Thus, a hierarchy of variables exists.
In fact, for two variables ?X, ?Y such that ?X ∈ var(P1) and
?Y ∈ var(P2) ∖ var(P1) it will be the case that for every mapping
µ ∈ JP KD , if ?Y ∈ dom(µ) then ?X ∈ dom(µ) (in this example
this statement is trivial, as ?X is in the domain of every mapping).

The previous reasoning can now be used to outline the problem
from a reverse engineering perspective. Consider an RDF graph
D and a set of mappings Ω as inputs to REVENG+(SP[AOwd]),
where Ω can be divided into two subsets Ω1 and Ω2 such that Ω =
Ω1∪Ω2, for every mapping µ ∈ Ω1 we have dom(µ) = {?X, ?Y },
and for every mapping ν ∈ Ω2 we have dom(ν) = {?X}. In this
case, the form of a candidate query P can be determined by ob-
serving the variable hierarchy, concluding that P = P1 OPTP2

for some P1 such that var(P1) = {?X} and some P2 such that
var(P2) ⊆ {?X, ?Y }. Crucially, it will be determined that no fur-
ther OPT operators are necessary, i.e. P1, P2 ∈ SP[A]. The pre-
cise triple patterns in P1 and P2 will be determined by a construct
analogous to the atomic type.

In the following we formalise the previous intuition, showing
that the relation among variables in the set of mappings Ω can be
used to determine the form of the candidate query P , and that a
generalisation of the atomic type can be used to determine the triple
patterns in each subquery of P .

For every variable ?X mentioned in Ω define the coverage of
?X in Ω, denoted CovΩ(?X) as the set {µ ∈ Ω ∣ ?X ∈ dom(µ)}.
Define the structure of Ω as the set C(Ω) = {CovΩ(?X) ∣ ?X ∈
dom(Ω)}, containing the coverage of each variable in Ω. The sub-
set relation naturally defines a partial order on the structure C(Ω).

EXAMPLE 5. Consider the set of mappings Ω in Figure 1(a).
The corresponding structure C(Ω) is shown in Figure 1(b), where
arrows represents the minimal proper superset relation. The top-
most node corresponds to the coverage of variable ?X , which is
present in all mappings. The two nodes at the second level corre-
spond to the coverages of ?Y1 and ?Y2, respectively, while the lone
node at the third level represents the coverage of ?Z.

�1 = [?X ↦ 1;]

�2 = [?X ↦ 2; ?Y1 ↦ a]

�3 = [?X ↦ 3; ?Y2 ↦ b]

�4 = [?X ↦ 4; ?Y2 ↦ c; ?Z ↦ d]

{�1; �2; �3; �4}

{�2} {�3; �4}

{�4}

(a) (b)

Figure 1: (a) Set of mappings and (b) its structure.

Intuitively, the structure of Ω defined above restricts the possible
OPT structures of a candidate query. We say that C(Ω) (and, by
extension, Ω) is tree-like if and only if for every set Λ ∈ C(Ω) there
is at most one minimal proper superset (i.e. parent) of Λ in C(Ω).
Note that since Ω is consistent, there exists only one set in C(Ω)
without proper supersets and this set is Ω itself.

EXAMPLE 6. While the set of mappings in Figure 1 is tree-
like, consider replacing mapping µ4 by µ′4 = [?X ↦ 4, ?Y1 ↦
e, ?Y2 ↦ c, ?Z ↦ d]. In this case, the coverage of ?Y1 changes
to {µ2, µ4} and the node {µ4} becomes a subset of both {µ2, µ4}
and {µ3, µ4}. The resulting set of mappings {µ1, µ2, µ3, µ

′
4} is

not tree-like, as µ′4 has two minimal proper supersets (i.e. parents):
µ2 and µ3.

For tree-like sets of mappings we can give a detailed process for
constructing a candidate query, and we turn to this now. Given a
set of mappings Ω and a set of variables S, let ΩS consist of all
µ ∈ Ω such that S ⊆ dom(µ). Finally, for a set Λ in C(Ω), let
VarsOf(Λ) be the set of variables ?X with CovΩ(?X) = Λ.

We can now define a canonical query for tree-like sets of map-
pings. To do this we will recursively define a pattern Pcan(Λ,D,Ω)
for each Λ in C(Ω). If Λ has k maximal proper subsets (i.e. chil-
dren) Λ1, . . . ,Λk, then Pcan(Λ,D,Ω) is the graph pattern

(⋯((atype(D,ΩVarsOf(Λ))OPTPcan(Λ1,D,Ω)) (1)
OPTPcan(Λ2,D,Ω)) ⋯ OPTPcan(Λk,D,Ω)).

Note that if Λ has no children then Pcan(Λ,D,Ω) is just
atype(D,ΩVarsOf(Λ)). For Ω tree-like, we define Pcan(D,Ω) to
be Pcan(Ω,D,Ω).

In the construction above the order of the children Λ1, . . ., Λk
is arbitrary, so the canonical pattern is not unique. However, all of
them are equivalent, since (P1 OPTP2)OPTP3 is equivalent to
(P1 OPTP3)OPTP2 for all well-designed queries. This allows
us to blur the order of the children and look at canonical queries as
pattern trees [11], whose tree structure is the same as that of C(Ω).

For tree-like sets of mappings we can now formulate a generali-
sation of Proposition 10, where the subscript tree means that Ω in
instances is restricted to tree-like sets.

THEOREM 2. Given an RDF graph D, tree-like set of map-
pings Ω and set of mappings Ω̄,
1. if (D,Ω)∈REVENG+tree(SP[AOwd]) then Ω⊆JPcan(D,Ω)KD ,
2. if (D,Ω, Ω̄) belongs to REVENG±tree(SP[AOwd]) then Ω ⊆
JPcan(D,Ω)KD and Ω̄ ∩ JPcan(D,Ω)KD = ∅,
3. if (D,Ω)∈REVENGE

tree(SP[AOwd]) then Ω = JPcan(D,Ω)KD .

In fact, the notion of canonical query for tree-like sets
of mappings can be straightforwardly adapted to the case of
SP[AOF∧,=,≠wd]. Here, instead of atype(D,Ω) we can consider
its generalisation atype=,≠(D,Ω), containing, besides the triple
patterns that are true in D under the mappings, all equalities and
inequalities on the variables and IRIs that are true in D. When
seen as a query, this set is the AND-combination of its triple
patterns, filtered by the conjunction of all its equalities and in-
equalities that mention only variables in the triple patterns. The

244

analog of Theorem 2 for this notion of canonical query holds for
SP[AOF∧,=,≠wd].

The above constructions, combined with the results on verifica-
tion in the previous section, give us the following bounds on the
restricted reverse-engineering problems:

COROLLARY 2. REVENGxtree(F) with x ∈ {+,±,E} and F ∈
{SP[AOwd],SP[AOF∧,=,≠wd]} are all in coNP.

Note that the statements above do not mention our most general
class SP[AOFwd], which allows for arbitrary filters. We could
generalise the atomic type further to obtain the same coNP up-
per bound for this fragment as well, but it would not be optimal.
The class SP[AOFwd] is so powerful that a realizer query for tree-
like instances always exists, as long as the set of mappings satisfies
some simple consistency checks:

PROPOSITION 11. Problems REVENGxtree(SP[AOFwd]) with
x ∈ {+,±,E} are all in PTime.

PROOF SKETCH. We claim that an instance (D,Ω) (or
(D,Ω, Ω̄)) has a realizer query if and only if Pcan(D,Ω) mentions
all the variables in Ω. Indeed, if the canonical query for SP[AOwd]
satisfies this, then every µ ∈ Ω is a partial solution of Pcan(D,Ω)
over D. We can ensure the maximality of each µ by construct-
ing a custom FILTER expression which only admits the desired
mappings.

We now return to the general case of reverse engineering,
i.e. where C(Ω) is not necessarily tree-like. In this case, there exist
many different candidate SP[AOwd] queries for an input (D,Ω).
Intuitively, these candidates still conform to the structure C(Ω), yet
in a more relaxed sense: these are queries whose SP[A] subqueries
can be “merged” to obtain the structure C(Ω).

To formalise the previous idea, first recall that a query P ∈
SP[AOwd] is assumed to be in OPT normal form, whereby it
is possible to consider P to be formed by SP[A] queries, com-
bined with the OPT operator. Given a query P ∈ SP[AOwd], a
subquery Q ∈ SP[A] of P is left-most in P if and only if Q is such
that there does not exist any subquery (P1 OPTP2) of P such
that Q is a subquery of P2. Furthermore, given two subqueries
P1, P2 ∈ SP[A] of P , P1 is an ancestor of P2 in P if and only if
either P1 = P2 or there exists a subquery P ′

1 OPTP ′
2 of P such

that P1 is the left-most subquery of P ′
1 and P2 is a subquery of

P ′
2. Finally, given a subquery Q of P , a variable ?X is top-most in
Q if ?X is present in the left-most subquery of Q yet absent out-
side of Q in P . With this, an SP[AOwd] query P is a candidate
for (D,Ω) if there exists a surjective function h from its SP[A]
subqueries to C(Ω) that:
1. each variable ?X ∈ dom(Ω) can be associated to an SP[A]
subquery Q?X of P such that h(Q?X) = CovΩ(?X) and ?X is
top-most in Q?X ,
2. preserves the query’s tree structure: given P1, P2 ∈ SP[A] sub-
queries of P , if P1 is an ancestor of P2 in P , then h(P1) is a
superset (i.e. ancestor) of h(P2) in C(Ω),
3. for each Λ in C(Ω) and R in the pre-image h−1(Λ), R consists
of all triple patterns in atype(D,ΩS), where S is the set containing
every variable ?X for which Q?X is an ancestor of R in P .

Note that if Ω is tree-like, then there is exactly one candidate
query, which is the canonical query.

EXAMPLE 7. Consider the set of mappings Ω′ =
{µ1, µ2, µ3, µ

′
4} from Example 6. Depending on the graph

D, a candidate query for the input (D,Ω′) may follow either of
two distinct OPT structures, both arising by choosing a parent
for the {µ′4} element of C(Ω′).

We obtain the following generalisation of Theorem 2:

THEOREM 3. Given an RDF graph D and sets Ω, Ω̄,
1. if (D,Ω) ∈ REVENG+(SP[AOwd]) then there is a candidate
query P for (D,Ω) such that Ω ⊆ JP KD;
2. if (D,Ω, Ω̄) ∈ REVENG±(SP[AOwd]) then there is a candi-
date query P for (D,Ω) with Ω ⊆ JP KD and Ω̄ ∩ JP KD = ∅;
3. if (D,Ω) ∈ REVENGE(SP[AOwd]) then there is a candidate
query P for (D,Ω) such that Ω = JP KD .

If we replacing atype with atype=,≠ in the definition of candi-
date queries above, we can prove a similar result to Theorem 3 for
SP[AOF∧,=,≠wd]. Note also, that candidate patterns are always of
polynomial size, so the above result leads to an upper bound for the
complexity of the corresponding reverse engineering problems:

COROLLARY 3. REVENGx(F) with x ∈ {+,±,E} and F ∈
{SP[AOwd],SP[AOF∧,=,≠wd]} are all in Σp2 .

PROOF SKETCH. By Theorem 3 and its adaption to the case
of SP[AOF∧,=,≠wd] it suffices to guess a (polynomially-sized)
candidate query and verify that it realises the input. By Propo-
sitions 4 this verification can be done in DP for all cases. As
we have provided a non-deterministic, polynomial time algorithm
which makes use of an oracle for a problem in DP, we have that
the problems (all the mentioned problems) are in Σp2 (recall that
NPDP = NPNP = Σp2).

We conclude this section with the upper bound for the most gen-
eral fragment SP[AOFwd].

PROPOSITION 12. The problems REVENGx(SP[AOFwd])
with x ∈ {+,±,E} are all in NP.

PROOF SKETCH. Given an instance (D,Ω), it is enough to
check that Ω is consistent (in polynomial time) and that there ex-
ists a candidate query for (D,Ω) that mentions all variables in Ω.
The latter requires guessing of this candidate and checking that all
variables are mentioned, which is in NP (recall that ensuring the
maximality of the examples may be achieved by constructing cus-
tom FILTER expressions).

4.3 Matching lower bounds
on reverse engineering problems

In this section we provide complexity lower bounds for the re-
verse engineering decision problems, thus closing the exact com-
plexities for these problems.

Recall that for our smallest language, SP[A], we have PTime
upper bounds for the positive and positive-and-negative examples
reverse engineering problems, but only a coNP upper bound for the
exact variant. Given that the problem of verifying that an SP[A]
query exactly fits a set of example mappings is coNP-hard, it is
not surprising that the corresponding reverse engineering problem
is also coNP-hard:

PROPOSITION 13. REVENGE(SP[A]) is coNP-hard.

PROOF SKETCH. This can be shown via a polynomial-time re-
duction from 3-COLOURABILITY. Given an undirected graph G
we construct an instance (D,Ω) such thatD consists of a coloured
triangle, as in the proof of Proposition 7, along with two disjoint
copies of G, while Ω has a mapping to only the two copies, each
sending a variable to the IRI representing each vertex of G. To
prevent mappings corresponding to automorphisms on G, the two
copies have triples representing a strict total order on the vertices,
while the triangle allows for any order. We can show that there ex-
ists a third mapping from the canonical pattern to the triangle if and
only if there is a 3-colouring of G.

245

SP[A] SP[AOwd] SP[AOF∧,=,≠wd] SP[AOFwd]

REVENG+ in PTime Σp2-c Σp2-c NP-c
REVENG± in PTime Σp2-c Σp2-c NP-c
REVENGE coNP-c Σp2-c Σp2-c NP-c

REVENG+tree in PTime coNP-c coNP-c in PTime

REVENG±tree in PTime coNP-c coNP-c in PTime

REVENGE
tree coNP-c coNP-c coNP-c in PTime

Table 2: Complexity of reverse engineering problems

We move to lower bounds for SP[AOwd] for tree-like cases.

PROPOSITION 14. The problems REVENGxtree(F) for x ∈
{+,±,E} and F ∈ {SP[AOwd],SP[AOF∧,=,≠wd]} are coNP-
hard.

The proof of this is similar to that of Proposition 13, and has
been omitted. Next we consider the general cases of the problems
and start with REVENG+(SP[AOwd]).

THEOREM 4. REVENG+(SP[AOwd]) is Σp2-hard.

PROOF SKETCH. The proof is by reduction of ∃∀3SAT and it is
a generalisation of the one for Proposition 13 to the case when Ω in
the instance is not tree-like. Given φ of the form ∃x̄∀ȳ ¬ψ we con-
struct an instance (D,Ω) such that there are 2∣x̄∣ different candidate
patterns. This corresponds to the ∃ part of φ. The optional part of
each of these candidates can be potentially matched by a part of the
RDF graph corresponding to ȳ, in this way extending a mapping
in Ω (in the same way as the new mapping in Proposition 13 could
be extended to the triangle); this corresponds to the ∀ part of φ.
This enforces the necessity of going through all the candidates and
looking for a possible extension in the worst case.

Theorem 4 gives a lower bound for REVENG±(SP[AOwd]).
Moreover, a careful inspection of the proof shows that it works for
REVENGE(SP[AOwd]) as well, while a small modification of the
proof (as in Proposition 14) gives us the same lower bounds for the
case of SP[AOF∧,=,≠wd].

COROLLARY 4. The problems REVENGx(SP[AOF∧,=,≠wd])
with x ∈ {+,±,E} are all Σp2-hard.

Finally, we have the NP-hardness for the problems with arbitrary
filter, and Theorem 5, which summarises the results of this section:

PROPOSITION 15. The problems REVENGx(SP[AOFwd])
with x ∈ {+,±,E} are all NP-hard.

PROOF SKETCH. The proof is again based on the fact that there
may be exponentially many candidate patterns, and in this case we
need to check whether there exists one that uses all variables or not.
This proof can be done by a reduction from the 3SAT problem.

THEOREM 5. The complexity results in Table 2 hold.

5. ALGORITHMS FOR REVERSE ENGI-
NEERING

In this section we discuss the algorithms that can be
used to solve the REVENG+tree(SP[AOwd]) and REVENG+tree
(SP[AOF∧,=,≠wd]) reverse engineering problems. Although the
core ideas for these algorithms were presented in the complexity
upper bounds results of Section 4.2, we now describe the algo-
rithms and discuss modifications for returning more desirable re-
verse engineered queries.

Given an input (D,Ω), if Ω is an arbitrary set of mappings
(i.e. not necessarily tree-like), then the structure C(Ω) (as defined
in Section 4.2) does not clearly indicate an OPT structure for
the reverse engineered query, in which case the algorithm must
iterate over all possible OPT structures and construct a candi-
date query for each such structure. In what follows, we focus
our attention on the tree-like cases (REVENG+tree(SP[AOwd]) and
REVENG+tree(SP[AOF∧,=,≠wd])), where the structure C(Ω) of Ω
immediately gives the OPT-structure, from which we construct
the unique candidate query (with the additional requirement of de-
ciding which triple patterns to include in the query) in polynomial
time. The complexity lower bound results, however, indicate that
even once the candidate query P is constructed, we must check
that Ω ⊆ JP KD actually holds (this is due to the fact that the can-
didate query has the property that (D,Ω) ∈ REVENG+ if and only
if Ω ⊆ JP KD). However, this clean separation between the poly-
nomial time construction of the candidate query and the coNP-
complete verification of said query will allow us to use a state-of-
the-art SPARQL engine for the final step.

Algorithm 1 outlines a framework for solving the REVENG+

(SP[AOwd]) decision problem. Firstly, if Ω is not consistent
then there is no query P ∈ SP[AOF] such that Ω ⊆ JP KD (see
Section 2.1). Function CheckCanon(D,Ω) simply verifies that
the candidate reverse-engineered query P is in SP[AOwd] (note
that if the candidate query is not in SP[AOwd], then we have
that the input is not definable). Function BuildCanon(D,Ω)
uses the structure C(Ω) to build the candidate query P , and corre-
sponds to the recursive function P = Pcan(D,Ω) = Pcan(Ω,D,Ω)
which was described in detail in Equation 1 of Section 4.2. No-
tice that for each leaf element Λ in the structure C(Ω) we set
Pcan(Λ,D,Ω) = atype(D,ΩVarsOf(Λ)), which by definition in-
cludes all existing triple patterns which satisfy the mappings in
ΩVarsOf(Λ). For this reason, we call this the maximal algorithm.
Finally, once built, the candidate query P must be checked, return-
ing P if Ω ⊆ JP KD and null otherwise. This final check can be
delegated to an external SPARQL engine.

Now we consider a greedy version of the algorithm, which
differs from the maximal algorithm only in the construction
of the candidate P . Intuitively, for an element Λ ∈ C(Ω)
it is not necessary for Pcan(Λ,D,Ω) to include all triple pat-
terns in atype(D,ΩVarsOf(Λ))—merely enough triple patterns from
atype(D,ΩVarsOf(Λ)) to ensure the the positive examples µ ∈ Ω
will in fact be answers µ ∈ JP KD . More precisely, for each ele-
ment Λ ∈ C(Ω) we define a relaxed P greedy

can (Λ,D,Ω), which must
be a subset of atype(D,ΩVarsOf(Λ)) such that (i) every variable
?X ∈ VarsOf(Λ) is mentioned in at least one triple pattern of
P greedy
can (Λ,D,Ω) (this is a requirement for P to be in SP[AOwd]),

and (ii) if Λ′ is the parent of Λ in C(Ω) (i.e. the unique minimal su-
perset of Λ in C(Ω)), then for each mapping µ ∈ Λ′∖Λ, for every ν
such that µ ⋤ ν there must exist a triple pattern t ∈ P greedy

can (Λ,D,Ω)
such that ν(t) /∈ D. The previous condition (ii) effectively ensures
that µ is a maximal partial answer.

We may now implement BuildCanon(D,Ω) to find, for each
element Λ ∈ C(Ω), all triple patterns t ∈ atype(D,ΩVarsOf(Λ)),
adding them to P greedy

can (Λ,D,Ω) until all variables ?X ∈
VarsOf(Λ) have been mentioned at least once, and the maximality
of each µ ∈ Λ′∖Λ has been assured. We call the resulting modified
algorithm the greedy algorithm.

The greedy algorithm generates an interesting tradeoff between
the quality of the reverse engineered query and complexity. On
one hand, as we only add enough triple patterns to the query to
justify the positive examples, the resulting query will be relatively
small (at the very least, not larger that the query produced by the

246

maximal algorithm). On the other hand, the process of checking
the maximality of a positive example µ ∈ Ω when adding each
triple pattern t to P greedy

can (Λ,D,Ω) takes exponential time, as every
possible extension mapping ν such that µ ⋤ ν must be checked (the
number of such extensions is exponential in the size of Ω).

Finally, we briefly comment on the modifications required for
the REVENG+(SP[AOF∧,=,≠wd]) problem. In this case, the con-
struction in Equation 1 can be modified to add a filter expression
for each Λ ∈ C(Ω). In essence, each Pcan(Λ,D,Ω) now consists
of a set of triple patterns and a set of filter comparisons, which can
be of the form ?X =?Y , ?X ≠?Y , ?X = a, and ?X ≠ a, for some
variables ?X, ?Y ∈ V, and some a ∈ U ∪ L. In this scenario, the
atype(D,ΩVarsOf(Λ)) can be generalised to include all filter com-
parisons R for which µ ⊧ R for each µ ∈ ΩVarsOf(Λ).

Algorithm 1: Outline for deciding REVENG+tree(SP[AOwd]).
Input: RDF graph D, set of mappings Ω.
Output: A query P ∈ SP[AOwd] such that Ω ⊆ JP KD if such

a query exists and Ω is tree-like; null otherwise.
1 if Ω is not consistent and tree-like then return null;
2 P ← BuildCanon(D,Ω);
3 if CheckCanon(P,Ω) = false then return null;
4 if Ω ⊆ JP KD then return P else return null ;

6. EXPERIMENTAL EVALUATION
In this section we describe the experimental settings with which

we have studied the implementation of the reverse engineering al-
gorithms. More precisely, we first perform a study on synthetically
generated inputs, and then we attempt to reverse engineer SPARQL
queries in a real-world setting. For the second scenario, as we do
not have access to positive examples provided by users, we indi-
rectly obtain these through the use of query logs. All algorithms
have been implemented in Java and run on a machine with a 2.3
GHz Intel Core i7 processor and 16 GB of main memory.

6.1 Reverse engineering random inputs
To test the efficiency and usefulness of our approach for reverse

engineering SPARQL queries, we tested Algorithm 1 over synthet-
ically generated inputs. Although generating a random RDF graph
D and a random set of mappings Ω is possible, in practice the
pair will usually not be definable. For this reason, we opt to first
generate a random query Q ∈ SP[AOwd], and construct the pair
(DQ,ΩQ) from Q. We now discuss the generation of these inputs.

Random queries are generated as linear pattern trees, i.e. queries
of the form (P0 OPT(P1 OPT⋯(Pn−1 OPTPn)⋯)), where
each Pi ∈ SP[A]. The depth n of each query Q is varied as a
parameter. In each node Pi we place a set of triple patterns of the
form t = (s, p, o), where p ∈ U and s, o ∈ U∪V. We aim to include
joins between variables in these queries, and to this end, for each
subquery Pi and each variable v which is mentioned in Pi but not
in any Pj for j < i, we include a triple pattern of the form (u,c, v),
where u is a variable mentioned in Pi−1 and c is a random IRI (no-
tice that u is taken from Pi−1 to obtain a well-designed graph pat-
tern). In total, ∼900 random queries were generated, where ∼100
queries are generated with each depth n ∈ [0,8].

For each random query Q we next generate two distinct inputs
(D1,Ω) and (D2,Ω) to be submitted to the learning algorithm.
First, we generate an RDF graph DQ by freezing the query Q: for
each prefix Q′ ⊴ Q,1 we convert the set of triple patterns in Q′ into
a set of triples by replacing the variables with fresh constants.
1Recall that such prefixes are formed by replacing a subquery
(R OPT S) by R, as defined in Section 2.2.

EXAMPLE 8. Assume that Q = (?X,type, Country)OPT
(?X,label, ?Y). Then for the prefix Q1 = (?X,type,Country)
of Q, we generate the triple (X0,type,Country) by replacing
variable ?X by constant X0. Moreover, for the prefix Q2 =
Q, we generate the triples (X1,type,Country), (X1,label,Y1)
by following the same approach, where X1 and Y1 are fresh
constants (different from X0). Thus, we have that DQ =
{(X0,type,Country), (X1,type,Country), (X1,label,Y1)}.

The RDF graph DQ is now used to obtain the full set of answers
ΩQ = Q(DQ). For both the inputs (D1,Ω) and (D2,Ω) to the al-
gorithm, we extract samples fromDQ and ΩQ. First, let Ω ⊆ ΩQ be
a uniform sample of ΩQ containing at most 100 mappings. Second,
let D1 = DQ and D2 ⊆ DQ be a uniform sample of DQ, where
each triple in DQ has a 75% chance of being included in D2. The
first input (D1,Ω) is the full frozen RDF graph DQ and a sample
of the answers in ΩQ as positive examples, and it is thus expected
to be definable by construction. The second input (D2,Ω) uses a
reduced RDF graph (and the same positive examples), whereby it
is possible that this pair will no longer be definable.

For each random query Q, both pairs (D1,Ω) and (D2,Ω) are
input into a Java implementation of Algorithm 1, for a total of
∼1800 distinct runs of the algorithm. Of these, 1064 definable
cases and 761 non-definable cases are reported. Figure 2 shows
the results of these experiments. The left plot in Figure 2 shows the
runtime of the algorithm in milliseconds versus the size of the input
(defined to be the sum of the number of triples in the RDF graph
and the number of mappings in the set of mappings). As this is a
logarithmic plot, the exponential dependency is clear, both for the
definable and undefinable cases. On the other hand, the right plot
in Figure 2 shows the runtime versus the size of the random query
itself, exhibiting a very similar (and exponential) performance be-
haviour. The average runtime for this set of examples was ∼516ms.
For the definable examples, the average ratio between the size of
the reverse-engineered query P and the original randomly gener-
ated queryQwas 0.79; this reflects the fact that reverse-engineered
queries tend to be relaxed versions of the original query, and thus
contain less triple patterns. Similarly, the average difference be-
tween the OPT-depth of the learned query and the original ran-
dom query is -1.33, indicating that learned queries tend to use less
OPT operators. This actually depends on the positive examples,
as the OPT-depth of the learned query will be exactly the depth
of the structure of the set of mappings Ω. Finally, note that merely
32 of the 1064 definable cases learned a query which mentioned a
constant that was not originally included in the random query. This
eases a concern of the greedy approach, which in principle could
add many superfluous triple patterns to the learned query.

6.2 Reverse engineering DBpedia query logs
In order to test our implementation of the reverse engineering

algorithm on real-world examples, we turn to the public DBpedia
SPARQL endpoint. DBpedia (version 2014) was downloaded and
installed locally into the Virtuoso Open Source database manager
(version 7.1.0). The DBpedia RDF graph contains over 860 mil-
lion triples, and the contents is extracted from the Wikipedia and
Wikimedia websites. DBpedia provides a public SPARQL end-
point where users may perform SPARQL queries, and the logs for
this endpoint are made publicly available as well. To access and
study these query logs, we turn to the LSQ project [18], which has
extracted and organised the DBpedia query logs.

Although our main goal is to obtain sets of positive examples
which can then be input into our reverse engineering algorithm,
such sets of positive examples are not available, as no SPARQL re-
verse engineering or query-by-example systems exists which pub-

247

Figure 2: Runtimes for ∼2000 randomly generated examples. Left: runtime versus input size; circles (black) represent definable
inputs and crosses (red) represent undefinable inputs. Right: runtime versus random query size.

lish these data. Hence, we use the DBpedia query logs to indirectly
obtain positive examples. For a query Q from the query logs, we
execute the query on the DBpedia RDF graph, which we denote by
DDbpedia, to obtain Ω = JQKDDBpedia . This set of mappings represents
the full set of examples that the user was supposedly interested in
when executing query Q, and a random sample Ω′ ⊆ Ω of Ω can
serve as a hypothetical set of positive examples from said user.

Of the ∼740,000 queries in the query logs (queries which
were executed on the DBpedia SPARQL endpoint), there are
∼220,000 queries which make use of the OPT operator but not the
FILTER or UNION operators, and ∼34,000 which use both the
OPT and FILTER operators but not UNION. To understand
the sets of mappings which are to be expected, ∼124,000 of the
220,000 queries onDDBpedia were selected, and for each such query
Qwe obtain the full set of results JQKDDBpedia . Of these sets of map-
pings, none had a structure whose depth was greater than 1; more
precisely, 116 of these queries produced an answer set of depth 1,
and the rest produced depth 0 (i.e. they were homogeneous). This
suggests that a reverse engineering algorithm may be parameterised
to produce queries whose OPT-depth is limited to 1.

We next selected ∼30,000 queries and replicated the procedure
from the previous section for randomly generated queries. That is,
each query Q was executed on DDBpedia to obtain Ω = JQKDDBpedia ,
and a random sample Ω′ ⊆ Ω was used as the set of positive ex-
amples (in many cases the query has exactly one mapping as an
answer, in which case we simply use this mapping as the sole pos-
itive example). The pair (DDBpedia,Ω

′) then was used as the input.
In this experimental setting the average runtime for all queries was
35ms and the average ratio between the learned query size and the
original query size was 0.28. These low values can be explained by
the fact that many learned queries only have one triple pattern.

To illustrate the behaviour of the algorithm on a slightly more
complicated query, we manually prepare the following query Q2:

SELECT * WHERE {
?country type Country .
?country usesTemplate Infobox_country .
OPTIONAL { ?country languages ?language }
OPTIONAL {

?country2 type Country .
?country wikiLink ?country2 .
?country2 usesTemplate Infobox_country .
?country2 subject Former_Spanish_colonies } }

The answer set Ω = JQ2KDDBpedia has ∼860 results, and its struc-
ture is tree-like of depth 1. A sample Ω′ ⊆ Ω from Ω is extracted
and the pair (DDBpedia,Ω

′) are input into the algorithm. The query
learned by the greedy algorithm was similar to Q2, but without the

two triple patterns which mention the IRI Infobox_country.
The similarity between learned query and original query is an indi-
cation that the algorithm in general gives high quality results.

Finally, we showcase the algorithm for the REVENG+

(SP[AOF∧,=,≠wd]) decision problem by slightly altering the query
Q2 and adding a single FILTER expression, resulting in:

SELECT * WHERE { ?country type Country .
OPTIONAL { ?country languages ?language }
OPTIONAL {
?country2 type Country .
?country2 subject Former_Spanish_colonies .
?country wikiLink ?country2 .
FILTER (?country != ?country2) } }

The following is the query learned by the algorithm:

SELECT * WHERE { ?country type Country .
OPTIONAL { ?country languages ?language }
OPTIONAL {
?country2 type Country .
?country2 subject Former_Spanish_colonies .
?country wikiLink ?country2 .
?country2 usesTemplate RefList .
FILTER (?country != ?country2) } }

Note that the algorithm was able to successfully learn the query,
although in this case an extra triple pattern has been added.

7. CONCLUSION
We have shown that the implementation of the greedy reverse

engineering algorithm for the positive-examples case is able to cor-
rectly learn queries from a set of positive example mappings. An
experimental setting with synthetically generated inputs reveals the
exponential dependency of the runtime on the input size, which was
to be expected given our complexity results. However, an impor-
tant component of the complexity of the algorithms originates from
the final check of the candidate query (see Line 4 in Algorithm 1).
Hence, it is in principle possible to produce a candidate query to the
user early, while the final check is completed in the background.

The reverse engineering problem has been studied for various
fragments of the SPARQL query language. Our study of the com-
plexity of the problem indicates that restricting the examples so
that the associate lattice is tree-like has significant benefits to the
complexity of reverse engineering. Based on this study we devel-
oped a reverse engineering procedure that proceeds by building a
single candidate query and checking its correctness via a call to a
SPARQL query engine. We have examined the performance of this
algorithm both on synthetically generated and real-world query ex-
amples, profiling both performance and quality of the results.

248

8. REFERENCES
[1] D. Angluin. Inductive inference of formal languages from

positive data. Information and Control, 45(2):117–135, 1980.
[2] D. Angluin. Learning regular sets from queries and

counterexamples. Inf. Comput., 75(2):87–106, 1987.
[3] D. Angluin. Queries and concept learning. Machine

Learning, 2(4):319–342, 1987.
[4] T. Antonopoulos, F. Neven, and F. Servais. Definability

problems for graph query languages. In Joint 2013
EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa,
Italy, March 18-22, 2013, pages 141–152, 2013.

[5] M. Arenas and J. Pérez. Querying semantic web data with
SPARQL. In PODS, 2011.

[6] F. Bancilhon. On the completeness of query languages for
relational data bases. In Mathematical Foundations of
Computer Science 1978, Proceedings, 7th Symposium,
Zakopane, Poland, September 4-8, 1978, pages 112–123,
1978.

[7] A. Bonifati, R. Ciucanu, and A. Lemay. Learning path
queries on graph databases. In EDBT, 2015.

[8] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive join
query inference with JIM. PVLDB, 7(13):1541–1544, 2014.

[9] S. Cohen and Y. Y. Weiss. Learning tree patterns from
example graphs. In ICDT, 2015.

[10] E. M. Gold. Language identification in the limit. Information
and Control, 10(5):447–474, 1967.

[11] A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static
analysis and optimization of semantic web queries. ACM
Trans. Database Syst., 38(4):25, 2013.

[12] F. Manola and E. Miller. RDF Primer, W3C
Recommendation 10 February 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210.

[13] C. H. Papadimitriou and M. Yannakakis. The complexity of
facets (and some facets of complexity). J. Comput. Syst. Sci.,
28(2):244–259, 1984.

[14] J. Paredaens. On the expressive power of the relational
algebra. Inf. Process. Lett., 7(2):107–111, 1978.

[15] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst., 34(3),
2009.

[16] F. Picalausa and S. Vansummeren. What are real SPARQL
queries like? In SWIM, 2011.

[17] R. Pichler and S. Skritek. Containment and equivalence of
well-designed SPARQL. In PODS, 2014.

[18] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A.-C. N.
Ngomo. LSQ: The linked SPARQL queries dataset. In ISWC,
2015.

[19] M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In ICDT, 2010.

[20] S. Staworko and P. Wieczorek. Learning twig and path
queries. In ICDT, 2012.

[21] L. J. Stockmeyer. The polynomial-time hierarchy. Theor.
Comput. Sci., 3(1):1–22, 1976.

[22] Q. T. Tran, C. Chan, and S. Parthasarathy. Query by output.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29 - July 2, 2009,
pages 535–548, 2009.

[23] Q. T. Tran, C. Y. Chan, and S. Parthasarathy. Query reverse
engineering. VLDB J., 23(5):721–746, 2014.

[24] R. Willard. Testing expressibility is hard. In Principles and
Practice of Constraint Programming - CP 2010 - 16th
International Conference, CP 2010, St. Andrews, Scotland,
UK, September 6-10, 2010. Proceedings, pages 9–23, 2010.

[25] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join queries. In
SIGMOD, 2013.

[26] X. Zhang and J. V. den Bussche. On the satisfiability
problem for SPARQL patterns. CoRR, abs/1406.1404, 2014.

249

