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ABSTRACT
We consider the problem of budget feasible mechanism de-
sign proposed by Singer [22], but in a Bayesian setting. A
principal has a public value for hiring a subset of the agents
and a budget, while the agents have private costs for be-
ing hired. We consider both additive and submodular value
functions of the principal. We show that there are simple,
practical, ex post budget balanced posted pricing mecha-
nisms that approximate the value obtained by the Bayesian
optimal mechanism that is budget balanced only in expecta-
tion. A main motivating application for this work is crowd-
sourcing, e.g., on Mechanical Turk, where workers are drawn
from a large population and posted pricing is standard. Our
analysis methods relate to contention resolution schemes in
submodular optimization of Vondràk et al. [26] and the cor-
relation gap analysis of Yan [27].

General Terms
Algorithms, Theory, Economics

Keywords
Bayesian mechanism design, budget feasible mechanism de-
sign, crowdsourcing, posted pricing, submodular optimiza-
tion

1. INTRODUCTION
Consider the problem of hiring workers to complete com-

plex tasks on crowdsourcing platforms such as Mechanical
Turk. A principal must select a set of workers, henceforth
agents, whose contributions will be aggregated to complete
the task. The principal’s value for the task is a function of
the set of agents selected and the principal’s budget limits
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the total payments to agents. We assume that the principal’s
value is submodular, i.e., it exhibits diminishing returns. For
example, the accuracy obtained for the task of labeling im-
ages is improved with more agents, but there are diminishing
returns to recruiting additional agents. The agents have a
private cost for participating and will choose to participate
strategically to optimize their payments received relative to
this cost. The principal seeks a budget feasible mechanism
for selecting agents so as to maximize the value of the com-
pleted task.

The literature on budget feasible mechanism design initi-
ated by Singer [22] studies this problem; however, it primar-
ily considers sealed-bid mechanisms which do not tend to be
seen on crowdsourcing platforms like Mechanical Turk. In-
stead, these platforms use posted pricing mechanisms. We
follow a traditional economics approach where agents’ costs
are drawn from a common prior distribution and a mech-
anism is sought to optimize the principal’s value function
in expectation of this distribution. The Bayesian approach
is especially appropriate for the problem of crowdsourcing
a task as the agents on crowdsourcing platforms are drawn
from a large population of available agents that repeatedly
perform tasks. The prior distribution on the costs of the
population of agents can be learned statistically from past
crowdsourcing tasks. Our model allows asymmetry in the
distribution which may arise, for example, from the agents’
observable skill levels, previous participation in similar tasks,
or demographic.

We show that posted pricing mechanisms give a good ap-
proximation to the optimal sealed-bid mechanism. Addi-
tionally, we give efficient algorithms for calculating the ap-
propriate prices. In comparison to other work in optimiza-
tion of prices in crowdsourcing, our work focuses on the use
of prices to control participation and not the level of effort of
participants. Controlling the level of effort of participants
was studied in online behavioral experiments by Ho et al.
[16], theoretically for crowdsourcing contests by Chawla et
al. [11], and for user generated content by Immorlica et al.
[17].

Overview of Approach.
Our approach follows similarly to that of Alaei [2] and Yan

[27]. The starting point for our analysis is an upper bound
on the performance of the optimal sealed bid mechanism
that relaxes the ex post budget constraint on the mechanism
to hold ex ante, i.e., in expectation over the private costs of
the agents. Via this ex ante relaxation and the Myerson
[19] theory of virtual values, we construct a posted price
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mechanism that is budget feasible in expectation and a 1−
1/e approximation to the optimal ex ante mechanism when
the principal’s value function exhibits decreasing returns,
i.e., is submodular. For the special case where the principal’s
value function is additive, this posted pricing is optimal (for
the ex ante relaxation).

We then consider posting the prices from the solution to
the ex ante relaxation until the budget runs out. The result-
ing mechanism is ex post budget feasible, but suffers a loss
in performance because the budget may run out early. The
main technical contribution of this work is to show that the
performance of such a price posting mechanism compares
favorably to the optimal sealed-bid mechanism. Previous
work in mechanism design gives techniques which are now
well understood to satisfy ex post allocation constraints. Ex
post payment constraints require different techniques and
our analyses follow two basic approaches that combine op-
timization and mechanism design concepts. To analyze the
performance of the posted pricing under any arrival order of
the agents, we solve the ex ante relaxation with a slightly
smaller budget and then, using results from the Vondràk et
al. [26] analysis of contention resolution schemes, show that
it is unlikely for the original ex post budget constraint to
bind. Alternatively, we obtain better bounds for additive
value functions and when the order of agent arrivals can be
specified by the mechanism via the correlation gap approach
of Yan [27]. As a corollary, we obtain new correlation gap
results for integral and fractional knapsack set functions.
Moreover, when the environment is symmetric (both in dis-
tribution of agent costs and the principal’s value function),
the submodular case can be reduced to the additive case.

The prices identified above can be computed or approxi-
mately computed in polynomial time. In particular, for sub-
modular value functions, we reduce the problem of finding
the prices to the well-known greedy algorithm for submodular
optimization. The identified prices approximate the optimal
prices with relative loss in the value function that is within a
factor of 1−1/e. For additive value functions, the optimiza-
tion problem simplifies to a monopoly pricing problem of
classic microeconomics. Similarly to the Myerson and Sat-
terthwaite [20] treatment of welfare maximization subject to
budget balance in a buyer–seller exchange, optimization in
this context is based on Lagrangian virtual surplus. These
optimal prices can be approximated arbitrarily precisely by
solving this problem on a discretized instance.

Related work.
The prior literature on budget feasibility primarily con-

siders a worst-case design and analysis framework that com-
pares the performance of the designed mechanism to the
first-best outcome, i.e., the one that could be obtained if the
agents’ costs were public. See Singer [22], Bei et al. [6],
Badanidiyuru et al. [4], and Anari et al. [3]. Our analysis
compares the designed mechanism, in expectation for the
known prior distribution, to the second-best outcome, i.e.,
the one obtained by the Bayesian optimal mechanism.

The following results are for prior-free mechanisms in com-
parison to the first-best outcome. Singer [22] obtained a
randomized truthful budget feasible mechanism with a con-
stant factor approximation for submodular value functions,
Chen et al. [12] then improved the analysis of this mech-
anism to a 0.13 approximation. In the Bayesian setting,
Bei et al. [6] obtained a constant approximation for sub-

additive functions. More recently, Anari et al. [3] obtained
better bounds by considering large markets, which we also
consider in this paper. Finally, Badanidiyuru et al. [4] also
considered posted pricing mechanisms but when the agents
arrive online. They obtained a constant approximation for
the class of symmetric submodular functions. They also
obtained a O(logn) mechanism for the case of submodular
functions. In comparison to this last paper, we give much
better bounds when the prior distribution on costs is known.

The starting point for our analysis is the solution to the
relaxed problem of budget balance in expectation, i.e., ex
ante. In the additive case, this problem was recently studied
by Ensthaler and Giebe [14]. They show that posted pric-
ing mechanisms solve the relaxed problem and remark that
the same performance can be obtained with ex post budget
balance, but at the expense of relaxing ex post individual
rationality (for the bidders) and not with a posted pricing.
This latter observation follows, for example, by applying a
general construction of Esö and Futo [15]. Our analysis of
the relaxed problem gives a much simpler proof of their main
theorem.

Budget feasibility has also been studied in the context of
crowdsourcing. Among that line of work, the model con-
sidered in Anari et al. [3] is the closest to ours, and will be
compared in detail below. Singla and Krause [24] and Singer
and Mittal [23] consider the special case of our model where
the principal’s value function is the number of tasks per-
formed. The former studies posted pricing for agents with
i.i.d. costs from an unknown distribution, while the latter
studies sealed bid mechanisms without a prior.

Discussion about posted pricing and benchmarks.
Following a line of literature in mechanism design that

was initiated by Chawla et al. [10], the goal of this work is
to show that there exists simple posted pricing mechanisms
that approximate the optimal sealed-bid mechanism. Two
quantities of interest therefore need to be separated. The
first is the cost of incentive compatibility in budget feasible
settings, i.e., the gap between the first-best and second-best
benchmarks. The second is the cost of simplicity, i.e., the
loss of a posted pricing mechanism compared to the Bayesian
optimal mechanism. Prior work with comparisons to a first-
best benchmark has approximations that are a combination
of both of these quantities. Our comparison to the second-
best outcome isolates the loss from a simple decentralized
pricing over the optimal centralized mechanism as the quan-
tity of interest.

Our results.
Our results are summarized in Figure 1. We consider two

main classes of valuation functions, additive and submod-
ular. We use two different methods to satisfy the ex post
payment constraint, one is based on contention resolution
schemes and the other on correlation gap. Contention res-
olution schemes give an oblivious posted price mechanism,
i.e., one that obtains its proven bound under any arrival
order of the agents. The correlation gap approach, for the
case where the principal has an additive value function, gives
a sequential posted price mechanism. Such a mechanism
is specified by an ordering on agents and take-it-or-leave-it
prices to offer each agent. As a special case, we consider
symmetric environments where both the value function and
the distribution is symmetric.
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Figure 1: Our results are approximations to the
Bayesian optimal mechanism. Bounds are param-
eterized by the market size k, a lower bound on
the number of agents that can be simultaneously se-
lected with the given budget (see Definition 4). In
large markets, k grows large. The given results with
the contention resolution approach require k ≥ 4 and
ε ∈ (2/k, 1/2), a result for k < 4 is mentioned in Sec-
tion 4. For the symmetric submodular results, we
also assume symmetric distributions on costs. Our
computational results also have an additional o(1)
loss due to discretization.

Our results can most directly be compared to those of
Anari et al. [3], but with the following caveats. Their re-
sults are for sealed bid mechanisms while ours are for posted
pricings; their mechanism is prior-free while ours is parame-
terized by the prior distribution on agent costs; their results
compare performance to the first-best outcome, i.e., without
incentive constraints, while ours compare to the second-best
outcome, i.e., that of the Bayesian optimal mechanism (with
incentive constraints). They obtain approximation ratios of
1 − 1/e, 1/3 and 1/2 in large markets respectively for ad-
ditive, submodular (computational), and submodular (non-
computational) value functions. Moreover, they show that
no truthful mechanism can achieve an approximation ratio
better than 1 − 1/e with respect to the first-best outcome
for additive value functions.

Paper Organization.
We start with preliminaries in Section 2 to introduce the

model and different concepts used in this paper. We then
describe posted price mechanisms for the ex ante relaxation,
where the budget holds in expectation, in Section 3. We ex-
plain how to go from an ex ante posted price mechanism
to an ex post posted price mechanism using two different
methods, one inspired by contention resolution schemes in
Section 4 and another based on a correlation gap analysis
in Section 5. We tackle the computation issues of finding
a good ex ante mechanism in Section 6. In Appendix A,
we study symmetric environments. Up to Appendix A, cost
distributions are assumed to be regular and Appendix B
considers the case where some distributions might be irreg-
ular. Throughout the paper, we assume that the principal’s
valuation function is monotone and submodular.

2. PRELIMINARIES
There are n agents N = {1, . . . , n}. Agent i has a private

cost ci for providing a service that is drawn from a distri-
bution Fi (denoting the cumulative distribution function)
with density fi. Indicator variable xi denotes whether or
not i provides service and pi denotes the payment i receives.
Agent i aims to optimize her utility given by pi − cixi. The
cost profile is denoted c = (c1, . . . , cn); the joint distribu-
tion on costs is the product distribution F = F1 × · · · × Fn;
the payment profile is denoted p = (p1, . . . , pn); and the
allocation profile is denoted x = (x1, . . . , xn).

The principal has a value function v : {0, 1}n → R+.
For allocation profile x ∈ {0, 1}n or set of agents S = {i :
xi = 1} who provide service, the value to the principal is
v(x) = v(S). The principal has a budget B and requires
the payments to the agents not to exceed the budget, i.e.,∑
i pi ≤ B. The following mathematical program captures

the principal’s objective.

max
x,p

Ec[v(x(c))] (1)

s.t.
∑

i
pi(c) ≤ B ∀c,

x(·) and p(·) are incentive compatible.

We consider only mechanisms that are incentive compat-
ible. A mechanism is incentive compatible (IC), if truthful
reporting of the agents is a dominant strategy equilibrium.1

We will consider the budget constraint both ex ante, i.e.,
in expectation over realizations of agents’ costs and random
choices of the mechanism, and ex post, i.e., the payments
to the agents never exceed the budget. The main goal of
this paper is to approximate the optimal ex ante budget
feasible mechanism with an ex post budget feasible posted
pricing mechanism. Posted pricing mechanisms are trivially
incentive compatible.

Definition 1. The posted pricing (ĉ,σ), for prices ĉ and
ordering on agents σ, is:

1. The remaining budget is initially B.

2. The agents arrive in order σ.

3. If agent i arrives with cost ci below her offered price ĉi
which is below the remaining budget, then select this
agent for service, pay her ĉi, and deduct ĉi from the
remaining budget. Otherwise, discard this agent.

For (implicit) distribution on costs F , we can equivalently
specify a posted pricing (ĉ,σ) as (q̂,σ) where q̂i = Fi(ĉi) is
the marginal probability that agent i with cost ci ∼ Fi would
accept the price ĉi.

2

Note that the prices ĉ are non-adaptive, i.e., fixed be-
fore the agents arrive. We consider posted pricing mecha-
nisms under two different models for agent arrival. In the
sequential posted pricing model, the ordering σ can be fixed

1The restriction to dominant strategy mechanisms over
Bayesian incentive compatible mechanisms is without loss
for the budget feasibility objective.
2It is common in Bayesian mechanism design to consider
the agents’ private costs in quantile space where i’s quantile
qi = Fi(ci) is the measure of cost lower than ci according
to Fi. Agent quantiles are always uniformly distributed on
[0, 1]. From this perspective, q̂i is agent i’s price in quantile
space.
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in advance by the mechanism and, without computational
considerations, our analysis is for the best case ordering of
the prices. In the oblivious posted pricing model, the order-
ing σ is unconstrained and our analysis is worst case with
respect to this ordering. An oblivious posted pricing is de-
noted ĉ. We compare our mechanisms to an ex ante posted
pricing ĉ where the budget constraint holds in expectation,
i.e.,

∑
i ĉi q̂i ≤ B. The value of an ex ante posted pricing

is ES∼q̂[v(S)] where S ∼ q̂ adds each agent i to S indepen-
dently with probability q̂i.

The paper focuses on value functions that are monotone
and submodular (Definition 2). An important special case,
which we will treat separately, is that of additive value func-
tions where each agent has a value vi and the value function
is v(S) =

∑
i∈S vi.

Definition 2. A set function v : {0, 1}n → R+ is mono-
tone submodular if

• (monotonicity) v(T ) ≤ v(S) for all T ⊂ S, and

• (submodularity) for all T ⊂ S the marginal contribu-
tion of i 6∈ S to T is at least its marginal contribution
to S. In other words,

v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S).

Our analysis is based on the relationship between a set
function and two standard extensions of a set functions from
the domain {0, 1}n to the domain [0, 1]n. For submodular
set functions, these extensions were studied by Calinescu et
al. [8] and Agrawal et al. [1].

Definition 3. Given a set function v : {0, 1}n → R+,

• its concave closure V +(·), or correlated value, is the
smallest concave function that upper bounds the set
function. Alternatively, V +(q̂) = maxD ES∼D[v(S)]
with the maximization taken over all distributions D
with marginal probabilities q̂ = (q̂1, . . . , q̂n); and

• its multilinear extension V (·), or independent value,
is the expected value of the set function when each
element i is drawn independently with marginal prob-
ability q̂i. In other words, V (q̂) = ES∼q̂[v(S)].

For any set function, the concave closure is clearly an up-
per bound on the multilinear extension. For submodular
functions the inequality approximately holds in the oppo-
site direction as well. By the interpretation of the multilin-
ear extension as the expected value of the set function for
independent distribution and the concave closure as the ex-
pected value of the set function for correlated distributions,
their worst case ratio over marginal probabilities q̂ is known
as the correlation gap [1].

Theorem 1. [Calinescu et al. [8], Agrawal et al. [1]] For
monotone submodular set function v(·), the correlation gap
is

min
q̂

V (q̂)

V +(q̂)
≤ 1− 1/e.

Theorem 2. [Yan [27]] For a k-highest-value-elements
set function v(·), which is additive with value vi for element
i up to a capacity of at most k elements, the correlation gap
is

min
q̂

V (q̂)

V +(q̂)
≤ 1− 1/

√
2πk.

Our analysis is parameterized by a measure of the size of
the market. This notion of market size is standard in the
literature, e.g., see Bei et al. [6] and Anari et al. [3]. A
large market analysis considers the market size in the limit.
Although large markets are described as an assumption by
Anari et al. [3], the market size k is a parameter in our
analysis and we obtain results for any market size.

Definition 4. A market is k-large for prices ĉ and budget
B if B/ĉi ≥ k for all agents i.

Note that the market size depends on prices and therefore
on the mechanism, which is inherent to our analysis. These
prices can trivially be upper bounded by the maximum cost
that can be drawn from the distributions.

3. EX ANTE BUDGET FEASIBLE AND
CONCAVE CLOSURE RELAXATIONS

In this section we relax the objective function and the
budget constraint to make the problem more amenable to
optimization. We first relax the budget constraint so that
it only holds in expectation, making it an ex ante feasibility
constraint. We then upper bound the value function by its
concave closure. With an ex ante feasibility constraint, the
objective is to optimize the following ex ante program over
allocation rule x(·) and payment rule p(·) with c ∼ F .

max
x,p

Ec[v(x(c))] (2)

s.t.
∑

i
Ec[pi(c)] ≤ B,

x(·) and p(·) are IC.

When payments are part of the principal’s objective or
constraints, the Bayesian mechanism design problem will
typically rely on the Myerson [19] theory of virtual values or,
in our case where the agents are sellers, virtual costs. The
virtual cost of agent i with cost ci drawn from distribution Fi
is φi(ci) = ci+ Fi(ci)

fi(ci)
. The virtual surplus of an agent i with

virtual cost φi(ci) and allocation indicator xi is φi(ci)xi.

Lemma 1. [Myerson and Satterthwaite [20]] In any in-
centive compatible mechanism, any agent i’s expected pay-
ment is equal to her expected virtual surplus, i.e., for c ∼ F ,

Ec[pi(c)] = Ec[φi(c)xi(c)] .

The definition of virtual costs and Lemma 1 allows the ex
ante program (2) to be rewritten in terms of the allocation
rule only. To do so, we invoke the following characterization
of incentive compatible mechanisms of Myerson [19].

Lemma 2. [Myerson [19]] There exists an incentive com-
patible mechanism with allocation rule x(·) if and only if
x(·) is monotone in the cost of any agent.

We now rewrite the optimization program (2) by substi-
tuting in virtual costs for payments to obtain the following
virtual surplus program,

max
x

Ec[v(x(c))] (3)

s.t.
∑

i
Ec[φi(c)xi(c)] ≤ B,

x(·) is monotone in the cost of any agent.
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For the general case of submodular value functions, the
expected value of the set function v(·) is upper bounded by
its concave closure (Definition 3) as follows. The allocation
rule x(·) that optimizes this virtual surplus program induces,
for c ∼ F , a distribution over sets of winning agents. Denote
this distribution byD and denote by q̂ the profile of marginal
probabilities, i.e., with q̂i = PrS∼D[i ∈ S]. By the definition
of the concave closure of the set function v(·), Ec[v(x(c))] =
ES∼D[v(S)] ≤ V +(q̂).

The payment to an agent is lower bounded by the payment
from price posting. As above, the optimal mechanism selects
agent i with probability q̂i. When virtual costs are mono-
tonically increasing, i.e., in the case of regular distributions,
the expected payment to an agent i selected with probability
q̂i is minimized if agent i is served if and only if ci ≤ F−1

i (q̂i)
by Lemma 1 since these costs minimize φi(c).

3 Thus, the
mechanism that minimizes expected payments and serves
each agent i with probability q̂i is the mechanism that posts
price ĉi = F−1

i (q̂i) to each agent i.

Lemma 3. For any agent with cost drawn from regular
distribution Fi and any incentive compatible mechanism that
selects agent i with probability q̂i, the expected payment of
agent i is at least q̂iĉi where ĉi = F−1

i (q̂i).

Combining the relaxation of the value function and the
relaxation of the payments we obtain the following concave
closure program,

max
q

V +(q) (4)

s.t.
∑

i
qiF
−1
i (qi) ≤ B.

Lemma 4. Let q̂+ be the optimal solution to the concave
closure program (4), then V +(q̂+) upper bounds the perfor-
mance of the optimal ex ante mechanism in the case of reg-
ular cost distributions.

Posted price mechanisms are trivially incentive compati-
ble. Since the distributions of agents’ costs are independent,
the set of agents who will accept their offer with a posted
price mechanism is a set which will contain each agent with
some probability qi independently. Therefore the perfor-
mance of a posted price mechanism where agents accept
their offer with probabilities q is the multilinear extension
V (q). This motivates us to rewrite the concave closure pro-
gram (4) as the following multilinear extension program,

max
q

V (q) (5)

s.t.
∑

i
qiF
−1
i (qi) ≤ B.

Maximizing the multilinear extension program gives us an ex
ante posted price mechanism that is approximately optimal.

Theorem 3. In the case of monotone submodular value
functions and regular cost distributions, the ex ante mech-
anism that posts price ĉi = F−1

i (q̂i) to each agent i is an
1 − 1/e approximation to the optimal ex ante mechanism,
where q̂ is the optimal solution to the multilinear extension
program (5).

3The case of irregular distributions is considered in Ap-
pendix B.

Proof. Let q̂+ be the optimal solution to the concave
closure program (4). Then, by Theorem 1, V (q̂+) ≥ (1 −
1/e)V +(q̂+). By the optimality of q̂, V (q̂) ≥ V (q̂+). Since
the performance of posting price F−1

i (q̂i) to each agent i is
V (q̂) and since V +(q̂+) upper bounds the performance of
the optimal ex ante mechanism by Lemma 4, posting price
F−1
i (q̂i) to each agent is an 1 − 1/e approximation to the

optimal ex ante mechanism.

Note that in the additive case where each agent has value
vi, V (q) = V +(q) =

∑
i viqi and we get the following corol-

lary.

Corollary 1. In the case of additive value functions and
regular cost distributions, the ex ante mechanism that posts
price ĉi = F−1

i (q̂i) to each agent i is an optimal mechanism,
where q̂ is the optimal solution to the multilinear extension
program (5).

We discuss the computational issues of finding a good so-
lution q to the multilinear extension program (5) in Sec-
tion 6. For the case of submodular functions, we reduce the
problem to submodular function maximization (with a car-
dinality constraint) for which the greedy algorithm gives an
1 − 1/e approximation. In the additive case, we will show
that the optimal ex ante budget feasible mechanism can be
found by taking the Lagrangian relaxation of the virtual
surplus program (3).

4. SUBMODULAR VALUE AND
OBLIVIOUS POSTED PRICING

In the previous section, we obtained an ex ante mechanism
by optimizing the multilinear extension program (5). In
this section we analyze the performance of oblivious posted
pricing (with an ex post budget constraint).

The approach of this section is the following: lower the
budget by some small amount and optimize the multilinear
extension program (5) so that the lowered budget is sat-
isfied ex ante. With the budget sufficiently lowered, with
high probability the cost (sum of prices) of the set of agents
who would accept their offer is under the original budget
(regardless of their arrival order and ex post).

This approach is a special case of that taken by the con-
tention resolution schemes of Vondràk et al. [26] and we
first review some known bounds. The first comes from the
submodularity of the value function; the second comes from
the Chernoff bound.

Theorem 4. [Bansal et al. [5]] Given a non-negative
monotone submodular function v(·), a random set R which
contains each agent i independently with probability q̂i, and
a (possibly randomized) procedure π that maps (possibly in-
feasible) sets to feasible sets such that,

• (marginal property) for all i,

PrR∼q̂;π[i ∈ π(R) | i ∈ R] ≥ γ,

and

• (monotonicity property) for all T ⊆ S and i ∈ T ,

Prπ[i ∈ π(T )] ≥ Prπ[i ∈ π(S)] ,

then ER∼q̂;π[v(π(R))] ≥ γ ·ER∼q̂[v(R)].
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Theorem 5. [Vondràk et al. [26] 4] Given ε ∈ (0, 1/2),
budget B, independent variables pi that are the payments to
each agent such that,

• (scaled ex ante budget constraint)
∑
i E[pi] ≤ (1−ε)B,

• (k-large market) pi is bounded by [0, B/k] for all i, and

• k > 2/ε,

then the probability that the sum of costs of selected agents
does not exceed the budget less the cost of any agent, i.e.,

Pr
[∑

i pi ≤ (1− 1/k)B
]
, is at least 1− e−ε

2(1−ε)k/12.

We now connect these two results by relating the proba-
bility that the sum of costs does not exceed (1 − 1/k)B of
Theorem 5 to γ of Theorem 4 and then show that posted
pricings satisfy the conditions of Theorem 4.

Lemma 5. For sequential posted pricing (ĉ,σ) that sat-
isfy the scaled ex ante budget constraint and k-large market
conditions, the probability that an agent is offered her price is
lower bounded by PrR∼q̂

[∑
i∈R ĉi ≤ (1− 1/k)B

]
, the prob-

ability that the sum of the prices of agents who would accept
their offered price is at most (1− 1/k)B.

Proof. If the total cost of all agents who would accept
their price is at most (1 − 1/k)B then this budget remains
at the time an agent i is considered in the sequence σ. By
the definition of k ≥ B/ĉi it is feasible to serve this agent
and so she is offered her price ĉi by the sequential posted
pricing mechanism.

Lemma 6. For sequential posted pricing (q̂,σ), if each
agent is offered her price with probability at least γ, then the
expected value of the mechanism is at least γV (q̂).

Proof. It suffices to show, for sequential posted pric-
ing (q̂,σ) with an ex post budget constraint B, that the
marginal and monotonicity properties of Theorem 4 hold.

In our case, R ∼ q̂ is the random set of agents who would
accept their offer if the budget never runs out. Given a set
of agents R who accept their offer, define π(R) to be the set
of agents who accept their offer and who arrive before the
budget runs out. In our case, π is deterministic given the
ordering σ. Note that PrR∼q̂;π[i ∈ π(R) | i ∈ R] is equal to
the probability that an agent gets offered her price, meaning
that she arrives before the budget runs out. Thus, by the
assumption of the lemma the marginal property holds.

For the monotonicity property, consider two sets T ⊆ S.
When an agent i arrives in the posted price mechanism, the
mechanism has spent less if the set of agents who accept their
offer is T than if this set is S. Therefore i ∈ π(S) implies
that i ∈ π(T ) and the monotonicity property holds.

By combining the previous results, we obtain the main
theorem for this section.

Theorem 6. For ε ∈ (0, 1/2), if the oblivious posted pric-
ing ĉ corresponding to the optimal solution q̂ to the mul-
tilinear extension program (5) with budget (1 − ε)B (i.e.,
with ĉi = F−1

i (q̂i) for each agent i) satisfies 2/ε ≤ k ≤
B/maxi ĉi, then this posted pricing mechanism is a (1 −
1/e)(1 − ε)(1 − e−ε

2(1−ε)k/12) approximation to the optimal

4The formulation of this theorem is slightly different than
in [26] but follows easily from their analysis.

mechanism for submodular value functions and (1 − ε)(1 −
e−ε

2(1−ε)k/12) for additive value functions in the case of reg-
ular cost distributions.

Proof. The proof starts with the ex ante mechanism
from the previous section and then applies results from this
section to modify it into an ex post mechanism.

Let q̂ be the optimal solution to the multilinear extension
program (5) with budget (1 − ε)B, q̂+(1−ε)B be the optimal

solution to the concave closure program (4) with budget
(1 − ε)B, and q̂+B be the optimal solution to the concave
closure program (4) with budget B.

By the optimality of q̂ and Theorem 1,

V (q̂) ≥ V (q̂+(1−ε)B) ≥ (1− 1
e
)V +(q̂+(1−ε)B).

Note that the solution (1− ε)q̂+B has cost at most (1− ε)B
since F−1

i (·) is increasing. So by the optimality of q̂+(1−ε)B
and by the concavity of the concave closure V +(·),

V +(q̂+(1−ε)B) ≥ V +((1− ε)q̂+B) ≥ (1− ε)V +(q̂+B).

Since V +(q̂+B) is an upper bound on the performance of the
optimal ex ante mechanism by Lemma 4, the ex ante posted
pricing mechanism defined for each agent by ĉi = F−1

i (q̂i) is
a (1− 1/e)(1− ε) approximation to the optimal mechanism.

We now consider the posted pricing mechanism defined
by ĉ that is no longer ex ante. Since the budget has been
lowered by a factor 1 − ε, each agent is offered her price
with probability at least PrR∼q̂

[∑
i∈R ĉi ≤ (1− 1/k)B

]
by

Lemma 5, regardless of the ordering σ of agents. By Theo-

rem 5, this probability is at least 1 − e−ε
2(1−ε)k/12. There-

fore, by Lemma 6, the expected value of this mechanism

is at least (1 − e−ε
2(1−ε)k/12)V (q̂) and this mechanism is a

(1− ε)(1− 1/e)(1− e−ε
2(1−ε)k/12) approximation to the op-

timal mechanism in the case of submodular value functions.
In the case of additive functions, there is no loss from the
multilinear extension to the concave closure, so the mecha-

nism is a (1− ε)(1− e−ε
2(1−ε)k/12) approximation.

Note that as the size of the market k grows to infinity,
this approximation ratio approaches 1−1/e. Also note that
this mechanism requires the market to be at least 4-large.
Using another result from Vondràk et al. [26] and a similar
analysis to the one from this section, a (1 − 1/e)/8 posted
pricing mechanism can easily be obtained for any market
size. This posted pricing attains its performance guarantee
when agents with cost at least B/4 arrive before all others,
but otherwise the order is oblivious.

5. ADDITIVE VALUE AND SEQUENTIAL
POSTED PRICING

In this section we give improved bounds for sequential
posted pricing, i.e., where the mechanism orders the agents,
and when the value function is additive, i.e., v(S) =

∑
i∈S vi.

In particular, we analyze the sequential posted pricing (ĉ,σ)
with ĉi = F−1

i (q̂i) from the solution to the multilinear ex-
tension program (5) with the full budget B and the ordering
σ by decreasing bang-per-buck, i.e., vi/ĉi for agent i.

Our results in this section are based on the analysis of the
correlation gap of fractional and integral-knapsack set func-
tions (to be defined subsequently). The fractional-knapsack
set function is a submodular function, so a correlation gap of
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1−1/e can be directly obtained (Theorem 1). In this section,

we improve this bound to 1 − 1/
√

2πk for k-large markets,
i.e., with k = B/maxi ĉi. From this bound we observe that
the correlation gap for fractional-knapsack in large market
is asymptotically one. We show that the integral-knapsack
correlation gap is nearly the same. Following the approach
of Yan [27], the factor by which sequential posted pricing
approximates the ex ante relaxation is equal to the integral-
knapsack correlation gap.

Definition 5. The fractional-knapsack set function corre-
sponding to additive set function v(S) =

∑
i∈S vi, sizes ĉ,

and capacity B is denoted vB(S) and equals the maximum
value solution to the corresponding fractional-knapsack prob-
lem on elements S.5 The integral-knapsack set function can
be defined analogously to the fractional one, but it cannot
add elements fractionally.

Most of this section analyzes the ratio of the independent
value of fractional-knapsack to the correlated value of v(·)
(see Definition 3 for the definition of independent and corre-
lated values) in the case where the budget constraint is met
ex ante, i.e., ES∼q̂[vB(S)] /ES∼D[v(S)] when

∑
i ĉiq̂i ≤ B.

We then show that this ratio is equal to the approximation
ratio of the sequential posted pricing mechanism. Finally,
we use this ratio to bound the integral, and fractional, knap-
sack correlation gap.

The main idea to derive a bound on this ratio is to show
that it is minimized when all agents have equal cost B/k, in
which case, when the budget constraint is met ex ante, we
can then apply the result from Yan [27] for the correlation
gap of the k-highest-value-elements set function.

Lemma 7. For any additive value function v(·) and bud-
get B, over marginal probabilities q̂ and prices ĉ that (a)
satisfy the ex ante budget constraint, i.e.,

∑
i ĉi q̂i ≤ B, and

(b) satisfy the k-large market condition, i.e., ĉi ≤ B/k, the
ratio of the independent value of the fractional-knapsack and
the correlated value of v(·) is minimized when ĉi = B/k for
all i.

Proof. For the first part of the proof, we assume that
v = ĉ, i.e., that the bang-per-buck is one for all elements.
The last step of the proof is to generalize this special case
to any values. Observe that with this assumption, vB(S) =
min(B,

∑
j∈S ĉj).

Assume that there is some ĉi such that ĉi < B/k. We show
that when vi = ĉi, increasing ĉi to any ĉ′i > ĉi and decreasing
q̂i to q̂′i = ĉiq̂i/ĉ

′
i preserves the correlated value while only

lowering the independent value. Let ĉ′j = ĉj and q̂′j = q̂j
for j 6= i. The correlated value of v(·) is ES∼D[v(S)] =∑
j ĉj q̂j =

∑
j ĉ
′
j q̂
′
j so it is preserved. Similarly, the ex ante

budget constraint is still satisfied.
The argument for the independent value decreasing is

the following. Let v′B(S) be defined similarly as vB(S),
but where agents have values and costs equal to ĉ′. Con-
dition on the subset of other agents S who accept their
prices and consider the marginal contribution to the ex-
pected value of vB(·) and v′B(·) from agent i. In the case that
C =

∑
j∈S ĉj > B, this contribution is zero for both ĉi and

5This value is given by sorting the elements of S by vi/ĉi
and admitting them greedily until the first element that does
not fit with the remaining capacity, that element is admitted
fractionally (providing a fraction of its value).

ĉ′i. When C < B, these contributions are q̂i min(B − C, ĉi)
and q̂′i min(B − C, ĉ′i). By the definition of q̂′i = ĉiq̂i/ĉ

′
i and

concavity of min(B − C, ·), the former is greater than the
latter. This inequality holds for all sets S, so removing the
conditioning on S, it holds in expectation and the indepen-
dent value of fractional-knapsack is lowered.

It remains to extend this result to any v. Fix v and assume
without loss of generality that v1/ĉ1 ≥ · · · ≥ vn/ĉn. Then
the fractional-knapsack set function can be rewritten as

vB(S) =
∑
i∈N

(vi/ĉi − vi+1/ĉi+1) min(B,
∑

j∈S∩{1,...,i}

ĉj)

and the additive set function as

v(S) =
∑
i∈N

(vi/ĉi − vi+1/ĉi+1)(
∑

j∈S∩{1,...,i}

ĉj)

since these sums telescope.
So the ratio of independent value of vB(S) to the cor-

related value of v(S) is minimized when the ratios of the
independent value of min(B,

∑
j∈S∩{1,...,i} ĉj) to the cor-

related value of
∑
j∈S∩{1,...,i} ĉj are minimized for all i.

We conclude by observing that min(B,
∑
j∈S∩{1,...,i} ĉj) and∑

j∈S∩{1,...,i} ĉj are the fractional-knapsack set function and

the additive set function when vi = ĉi over ground set
{1, . . . , i}, and that their ratio is minimized when ĉi = B/k
for all agents i.

Next, we use the result from Yan [27] to bound the ra-
tio of the independent value of fractional-knapsack to the
correlated value of v(·).

Lemma 8. For any distribution over sets D with marginal
probabilities q̂ satisfying the ex ante budget constraint, i.e.,∑
i ĉi q̂i ≤ B, the ratio of the independent value of fractional-

knapsack to the correlated value of v(·) is at least 1−1/
√

2πk
when the market is k-large.

Proof. Consider the case where each agent i has cost
ĉi = B/k and assume that the ex ante budget constraint
is satisfied, so

∑
i q̂i ≤ k. Since any set of size at most k

is feasible and since
∑
i q̂i ≤ k, there is a distribution such

that the budget constraint is always met ex post. There-
fore, the correlated value of v(·) is equal to the correlated
value of fractional-knapasck. The ratio of the independent
value of fractional-knapsack to the correlated value of v(·)
is thus equal to the correlation gap of fractional-knapsack.
Since all agents have cost B/k, the fractional-knapsack set
function is equal to the k-highest-value-elements set func-
tion. By Theorem 2, the ratio of the independent value of
fractional-knapsack to the correlated value of v(·) is there-

fore 1− 1/
√

2πk.
The ratio of the independent value of fractional-knapsack

to the correlated value of v(·) when the ex ante budget con-
straint is satisfied is minimized when all agents have cost
B/k by Lemma 7, so this ratio is at least 1− 1/

√
2πk.

We now prove the main theorem of this section which
relates the approximation factor of sequential posted pricing
(with ex post budget feasibility) to the optimal mechanism
with ex ante budget feasibility.

Theorem 7. The sequential posted pricing mechanism
(q̂,σ), where q̂ is the solution to the multilinear extension
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program (5) and where the order σ is decreasing in vi
ĉi

, is a

(1− 1/
√

2πk)(1− 1/k) approximation to the optimal mech-
anism in the case of regular cost distributions.

Proof. Denote q̂ the optimal solution to the multilinear
extension program (5). For additive value functions, linear-
ity of expectation implies that the multilinear extension is
equal to the concave closure and the optima of the multilin-
ear extension program (5) and concave closure program (4)
are the same. Their performance upper bounds that of the
optimal mechanism that satisfies ex post budget feasibility
by Lemma 4. The objective value of these programs with
optimal solution q̂ is

∑
i viq̂i, which is equal to the corre-

lated value of the additive set function v(·) on distributions
with marginals q̂. So by Lemma 8, the ratio of the indepen-
dent value of fractional-knapsack to the upper bound of the
optimal mechanism is at least 1− 1/

√
2πk

The random set of agents who accept their offer in the
sequential posted pricing is equal to the set of agents who
are admitted by the fractional-knapsack set function on an
independent random set of agents with marginals q̂, with-
out including the fractional agent. The loss from this frac-
tional agent is at most a factor 1 − 1/k. This posted pric-
ing mechanism therefore has an approximation ratio of (1−
1/
√

2πk)(1− 1/k).

As a corollary of Lemma 8, we get new correlation gap re-
sults for the fractional, and integral, knapsack set functions.

Theorem 8. The correlation gaps of fractional-knapsack
and integral-knapsack are at least 1 − 1/

√
2πk and (1 −

1/
√

2πk)(1− 1/k) respectively, in a k-large market.

Proof. We first show the correlation gap of fractional-
knapsack, the correlation gap of integral-knapsack will then
follow easily. We start by showing that the correlation gap
is minimized when the budget constraint is satisfied. Then,
we upper bound the fractional-knapsack correlated value by
the correlated value of v(·). Finally, we apply Lemma 8.

We claim that the correlation gap of fractional-knapsack
is minimized when the budget constraint is satisfied. Ob-
serve that if the budget constraint is not satisfied, then it is
possible to decrease some q̂i such that the correlated value
of fractional-knapsack remains the same. Since decreasing
some q̂i only decreases the independent value of fractional-
knapsack, the ratio of the independent value to the corre-
lated value also decreases.

Clearly, the fractional-knapsack correlated value is upper
bounded by the correlated value of v(·). Therefore, the cor-
relation gap of fractional-knapsack is at least the ratio of
the independent value of fractional-knapsack to the corre-
lated value of v(·) when the budget constraint is satisfied,

so at least 1− 1/
√

2πk by Lemma 8.
Finally, observe that the correlated value of fractional-

knapsack upper bounds the correlated value of integral- knap-
sack and that the independent value of integral-knapsack is a
1−1/k approximation to the independent value of fractional-
knapsack. Therefore, the correlation gap of integral-knapsack
is at least (1− 1/

√
2πk)(1− 1/k).

Comparison of Sequential and Oblivious posted pric-
ing.

We now compare the approximation ratio for additive
value functions achieved using the sequential posted pricing

Figure 2: Comparison of the approximation ratios
obtained for additive value functions by the two dif-
ferent approaches. On the horizontal axis is k, the
size of the market.

mechanism with the bang per buck order, (1−1/
√

2πk)(1−
1/k), and using oblivious posted pricing where the budget is

lowered, (1− ε)(1− e−ε
2(1−ε)k/12). Figure 2 shows that the

approximation ratio with the sequential ordering approaches
1 much faster than with the oblivious ordering as the size of
the market increases. To obtain these results for oblivious
posted pricing, we numerically solved for the best ε. We
emphasize that we are comparing the theoretical bounds of
these approaches, and not empirical performances.

6. COMPUTING PRICES
In the two previous sections, we gave conditions under

which optimal prices from the multilinear extension pro-
gram (5) perform well when offered sequentially or oblivi-
ously. In this section, we consider the computational prob-
lem of finding these prices. For submodular value functions,
we reduce the problem to the well-known greedy algorithm
for submodular optimization. For additive value functions,
we use a simple method based on the Lagrangian relaxation
of the budget constraint.

6.1 The Lagrangian Relaxation for Additive
Value Functions

Consider the case of additive value functions where the
principal has a value vi for each agent i and the value func-
tion is v(S) =

∑
i∈S vi. Recall the virtual surplus pro-

gram (2) from Section 3:

max
x

Ec[v(x(c))] (2)

s.t.
∑

i
Ec[φi(c)xi(c)] ≤ B,

which can be rewritten for additive value functions as:

max
q

∑
i
Ec[vi xi(c)] (6)

s.t.
∑

i
Ec[φi(c)xi(c)] ≤ B.

We show that the ex ante optimal mechanism can be found
directly by taking the Lagrangian relaxation of the budget
constraint (with parameter λ) of the following Lagrangian
program:

max
x

λB +
∑

i
Ec[(vi − λφi(ci))xi(c)] . (7)

For any Lagrangian parameter λ, this objective can be
optimized by pointwise optimizing

∑
i(vi − λφi(ci))xi(c),
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a.k.a., the Lagrangian virtual surplus. This pointwise opti-
mization picks all the agents such that vi ≥ λφi(ci). If the
virtual cost functions are monotone, i.e., in the so-called reg-
ular case, then this optimization gives a monotone allocation
rule where an agent is picked whenever ci ≤ φ−1

i (vi/λ)
Notice that as the Lagrangian parameter increases, the

payments of the agents, as represented by virtual costs, be-
come more costly in the objective of the lagrangian pro-
gram (7). Thus, the expected payment of the mechanism
is monotonically decreasing in the Lagrangian parameter.
With λ = 0 the Lagrangian virtual surplus optimizer simply
maximizes v(x) and pays each agent selected the maximum
cost in the support of her distribution. If this payment is
under budget then it is optimal, otherwise, we can increase
λ until the budget constraint is satisfied. For example, with
λ =∞ the empty set of agents is selected and no payments
are made. The optimal mechanism is the one that meets
the budget constraint with equality. In the case that the
expected payment is discontinuous then mixing between the
least over-budget and least under-budget mechanism is op-
timal. For further discussion of Lagrangian virtual surplus
optimizers, see Devanur et al. [13].

Proposition 1. The Lagrangian virtual surplus optimizer
(or appropriate mixture thereof) that meets the budget con-
straint with equality is the Bayesian optimal ex ante budget
feasible mechanism.

Lagrangian virtual surplus optimization suggests select-
ing an agent i when her private cost ci is below φ−1

i (vi/λ).
The mechanism that achieves this outcome posts the price
of ĉi = φ−1

i (vi/λ) to agent i. Denote by q̂i = Fi(ĉi) the
probability that i accepts the price ĉi. For the prices ĉ,
the total expected payments are

∑
i ĉi q̂i. When the virtual

cost functions are monotone and strictly increasing, there
is a Lagrangian parameter for which the budget constraint
is met with equality, i.e., with

∑
i ĉi q̂i = B. The optimal

ex ante mechanism is therefore the posted price mechanism
that posts ĉi to each agent i for the Lagrangian parameter λ
that satisfies

∑
i ĉi q̂i = B. Note that such a Lagrangian pa-

rameter λ can be arbitrarily well approximated since
∑
i ĉi q̂i

is decreasing as a function of λ.

Example 1. Consider n agents with costs drawn uniformly
and i.i.d. from [0, 1] and uniform additive value function
vi = 1 for all i, i.e., the cardinality function. The virtual cost

function is φ(c) = c+ F (c)
f(c)

= 2c. The Lagrangian parameter

λ = 1
2

√
n/B induces a uniform posted price of ĉ =

√
B/n

which is accepted with probability q̂ =
√
B/n for an ex-

pected payment of B/n. Summing over all n agents, the
budget is balanced ex ante.

6.2 A Reduction to the Greedy Algorithm for
Submodular Optimization

For general submodular value functions we reduce the op-
timization of the multilinear extension program (5), restated
below, to the problem of optimizing a submodular function
subject to a cardinality constraint. This problem of optimiz-
ing a submodular function under cardinality, knapsack, or
matroid constraints is well studied and the greedy algorithm
gives a 1− 1/e approximation for knapsack and cardinality
constraints; see Nemhauser et al. [21], Khuller et al. [18],

and Sviridenko [25].

max
q

V (q) (5)

s.t.
∑

i
qiF
−1
i (qi) ≤ B.

Define the cost curve of agent i to be the expected pay-
ment to agent i, i.e., qiF

−1
i (qi) in our case. The main dif-

ference between the multilinear extension program (5) and
the knapsack setting considered in the literature is that the
cost curves in the knapsack setting are linear in qi. Our
reduction to the greedy algorithm is the following. We di-
vide each agent i, called a big agent, in cost space into m
discrete agents ij of equal cost, called the small agents. An
agent ij corresponds to the jth increase of qi, starting from
qi = 0, that has cost B/m. We set 1/m as a fraction of
the total budget B which fixes the number of steps in the
algorithm to be m. With large m, the reduction becomes a
finer discretization.

Before formally describing the reduction, we introduce
some notation. For each i and j, let δij be the jth increase
in qi, starting from qi = 0, that has cost B/m, i.e., δij satis-
fying B/m = F−1

i (
∑
k≤j δik) · (

∑
k≤j δik)−F−1

i (
∑
k<j δik) ·

(
∑
k<j δik). Given a set S of small agents, the continuous

solution corresponding to S is q(S) with qi(S) =
∑
j:ij∈S δij .

The reduction.

1. For each agent i, create m small agents ij where 1 ≤
j ≤ m so that the reduced instance has mn agents.

2. For each small agent ij , its cost is B/m.

3. For each small agent ij , its marginal contribution VS(ij)
in value to a set S is the marginal contribution of in-
creasing the fraction of agent i corresponding to S by
δij , i.e., V (q′) − V (q(S)) where q′i = qi(S) + δij and
q′j = qj(S) for j 6= i.

We show that the solution to the reduced problem that
we obtained with the greedy algorithm for cardinality con-
straint corresponds to a solution for the multilinear exten-
sion program (5) that is a 1 − 1/e − o(1) approximation,
almost matching the performance of the greedy algorithm
for knapsack constraint with integral agents and linear cost
curves. We start by showing that if a solution is feasible
in the reduced problem, then the continuous solution corre-
sponding to it is a feasible solution to the multilinear exten-
sion program (5). Then, with access to exact values of the
increases δij and of the marginal contributions VS(ij), the
approximation ratio is 1 − 1/e − o(1). Finally, in the ap-
pendix, we show that it is possible to approximate δij and
VS(ij) with estimates that cause an additional loss of o(1)
to the approximation ratio.

From a set of small agents to a continuous solution for
the big agents.

Previously, we defined a distribution to be regular if the
virtual cost function is monotonically increasing. An alter-
nate definition is that a distribution F is regular if the cost
curve q · F−1(q) is convex. This definition is the analogue
to the revenue curve being concave for regular distributions
when the agents are buyers, and not sellers, from Bulow and
Roberts [7].
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Recall that given a set S of small agents, the continuous
solution corresponding to S is q(S) with qi(S) =

∑
j:ij∈S δij

and that δij is the jth increase in qi that has cost B/m.
Therefore, given a set S of small agents of size at most m
such that for any δij ∈ S, δik ∈ S for all k < j, then q(S) has
cost at most B. The condition that if δij ∈ S, then δik ∈ S
for all k < j, is equivalent to the condition that greedy
always picks small agents corresponding to lower quantiles
before small agents corresponding to higher quantiles, which
we show formally.

Lemma 9. Given two small agents ik and ij such that
k < j, the greedy algorithm with a cardinality constraint
picks ik before ij for regular distributions Fi.

Proof. Since all small agents have equal cost, we need
to show that ik has a larger marginal contribution than ij
to any set S of small agents such that ik, ij 6∈ S. Since V (·)
is monotone, it suffices to show that δik > δij . In quantile
space, the cost of increasing some quantile qi by a fix amount
is increasing in qi since qi ·F−1(qi) is convex by definition of
regular distributions. Therefore, in cost space, the increase
in quantile δi that is obtained by increasing the cost curve
by a fix amount is decreasing, so δik > δij .

The case of irregular distributions is considered in Ap-
pendix B.

With exact values of δij and VS(ij).
We consider the case where the exact values of the in-

creases in q and marginal contributions are given by an or-
acle. We show that finding a good solution to this reduced
problem with small agents gives us a good solution to the
problem with big agents.

Lemma 10. The optimal solution S? to the reduced prob-
lem satisfies V (q(S?)) ≥ (1 − o(1))V (q̂) where q̂ is the op-
timal solution to the multilinear extension program (5).

Proof. We pick the step size to be m = n2. The proof
shows that there exists a set S that is close to a feasible
solution in the reduced problem and such that q(S) is a
better solution than q̂. Let S be the set of small agents
such that q(S) is maximized subject to q(S) ≤ q̂. Define
S+1 to be the set containing all small agents in S and one
additional small agent for each big agent i. Observe that
V (q(S+1)) ≥ V (q̂) since V (·) is non-decreasing. So there
is a feasible solution to the discretized problem such that if
we add one small agent for each big agent i, then we obtain
a better solution than the optimal solution to the original
problem.

Greedily remove agents by minimal marginal contribution
from S+1 until we get a feasible solution S. The number of
small agents who need to be removed is n since S is feasible.
Since S contains n2 small agents, by the greediness and the
fact V (·) is concave along any line of positive direction, (1+
1/n)V (q(S)) ≥ V (q(S+1)).

Therefore,

(1 + o(1))V (q(S?)) ≥ (1 + o(1))V (q(S))

≥ V (q(S+1))

≥ V (q̂).

Next, we show that the reduced problem can be optimized.

Lemma 11. Let S be the set returned by the greedy al-
gorithm for submodular functions under a cardinality con-
straint on the reduced problem, then

V (q(S)) ≥ (1− 1/e)V (q(S∗))

where S∗ is the optimal solution to the reduced problem.

Proof. Observe that the objective function in the re-
duced problem is a submodular function. This follows di-
rectly from the concavity of V (·) along any positive line of
direction. In addition, since all small agents have cost B/m,
the constraint is a cardinality constraint. Since the greedy
algorithm for submodular functions under a cardinality con-
straint is a 1−1/e approximation for submodular functions,
we get the desired result.

We now have the tools to show that if we had an oracle for
the increases and marginal contributions, the greedy algo-
rithm on the reduced instance would give us a 1−1/e−o(1)
approximation.

Lemma 12. Let S be the output of the greedy algorithm on
the reduced instance, where exact values of δij and VS(ij)
are given by an oracle at each iteration, then V (q(S)) ≥
(1− 1/e− o(1))V (q̂), where q̂ is the optimal solution to the
multilinear extension program (5).

Proof. We combine the results from the discretization
that causes a o(1) loss with the greediness of the algorithm
that is a 1− 1/e approximation to obtain the desired result.

By Lemma 11 and Lemma 10,

V (q(S)) ≥ (1− 1/e)V (q(S∗)) ≥ (1− 1/e− o(1))V (q̂)

where S∗ is the optimal solution to the reduced problem.

The analysis which shows that it is possible to approxi-
mate δij and VS(ij) with estimates that cause an additional
loss of o(1) to the approximation ratio is deferred to the
appendix.

7. CONCLUSION
We consider questions of budget feasibility in a Bayesian

setting. We show that simple posted pricing mechanisms
are ex post budget feasible and approximate the Bayesian
optimal mechanism. Our analysis first considers the ex ante
relaxation where the budget constraint is allowed to hold
in expectation. Good approximations are obtained when
this ex ante relaxation is optimized for a slightly reduced
budget or when the agents are ordered by bang-per-buck
(value divided by offered price). The latter approach, in the
case of additive value functions when it applies, gives better
bounds.

Another method for designing posted pricing mechanisms
from the literature comes from the generalized magician’s
problem from Alaei [2]. Unfortunately, this approach does
not satisfy the monotonicity property of Theorem 4 needed
to apply known results that give a good approximation in the
case of submodular functions. Thus, it is unclear whether
this approach can be adapted to budget feasibility questions.
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APPENDIX
A Symmetric Costs and Values

In this section we study symmetric environments where
both the distribution of costs and the value function are
symmetric. A submodular value function is symmetric if
the value of a set only depends on the cardinality of that
set, i.e., v(S) = g(|S|) for some function g(·). In this set-
ting, we obtain an oblivious posted pricing that achieves an
approximation ratio of (1−1/

√
2πk)(1−1/k) where k is the

size of the market, which is identical to the approximation
obtained in the additive case with sequential posted pricing.
We assume that the distribution of costs is regular.

The following technicalities are used for this section only.
We overload the notation and denote by v(·) : R+ → R+ the
concave hull of the points {(i, v(Si))}ni=0 where Si is any set
of size i. The posted prices in this section are symmetric and
are defined by a single price ĉ, i.e., ĉ = (ĉ, · · · , ĉ) and q̂ =
(q̂, · · · , q̂). Note that the market size k in such a symmetric
setting is k = B/ĉ.

We start with two lemmas that highlight symmetric prop-
erties of the optimal solution to the concave closure program
in this symmetric setting.

Lemma 13. For symmetric submodular value function v(·)
and symmetric distributions of costs, the optimal solution
q̂ to the concave closure program (4) is symmetric, i.e.,
q̂+i = q̂+j for all i, j.

Proof. By the concavity of the concave closure and the
convexity of cost curves (since the distribution of costs is
regular), the program we wish to optimize is symmetric and
convex, so the optimal solution is symmetric.

Lemma 14. For symmetric monotone submodular value
function v(·) and symmetric distributions of costs, there ex-
ists a distribution D over sets of agents with marginals q̂+ =
(q̂+, · · · , q̂+) such that ES∼D[v(S)] = V +(q̂+) and such that
all sets S and T that can be drawn from D have size either
bkc or dke.

Proof. First, note that B = ĉ · n · q̂+ since q̂+ is the
optimal solution to the concave closure program and since
v(·) is monotone, which implies that k = n·q̂+ since k = B/ĉ.

The expected value of a set of expected size n · q̂+ drawn
from a distribution is at most v(n · q̂+) by the definition of
concave hull. By taking a distribution D that is a mixture
of sets of size bn · q̂+c = bkc and dn · q̂+e = dke such that
the marginals are q̂+, the expected value of a set drawn
from D is v(n · q̂+) since v(S) is submodular. Combining
the two previous observations, ES∼D[v(S)] = V +(q̂+) since
the concave closure is the maximum expected value over
distributions with some marginals q̂.

Given quantiles q̂ = (q̂, · · · , q̂), the value of the concave
closure V +(q̂) can be computed easily by Lemma 14 and
symmetricity. The concave closure program can therefore
be approximated arbitrarily well and efficiently when there
is symmetry, by using binary search to get arbitrarily close
to the optimal quantile q̂. Our approach for obtaining the
desired approximation is to construct an additive function
that lower bounds the symmetric submodular function on
feasible sets and that upper bounds it otherwise.

Theorem 9. In the case of symmetric monotone submod-
ular value functions and symmetric regular cost distribu-
tions, the oblivious posted pricing ĉ = (ĉ, · · · , ĉ) with ĉ =

F−1(q̂+) is an (1− 1/
√

2πk)(1− 1/k) approximation to the
optimal ex ante mechanism, where q̂+ = (q̂+, · · · , q̂+) is the
optimal solution to the concave closure program (4) and k is
the size of the market.

Proof. By Lemma 14, there exists a distribution D over
sets of agents with marginals q̂+ such that ES∼D[v(S)] =
V +(q̂+) and such that sets drawn from D have size bkc or
dke. We consider the additive value function vadd(·) defined
as follow:

vadd(S) = |S|v(bkc)
bkc

and overload the notation for vadd(·) similarly as for v(·).
We make the following observations about vadd(·):

• vadd(i) ≤ v(i) for i ≤ bkc and vadd(i) ≥ v(i) otherwise,
by submodularity.

• ES∼D
[
vadd(S)

]
≥ ES∼D[v(S)], since vadd(dke) ≥ v(dke)

and vadd(bkc) = v(bkc).
• v(·) is an additive set function with values vi = 1

bkcv(bkc)
for each element.

Since the feasible sets are sets of size at most bkc and
by the first observation on vadd(·), the performance of the
posted pricing mechanism is at least the independent inte-
gral knapsack value of vadd(·). The independent integral
knapsack value of vadd(·) is at most a factor (1− 1/k) away
from ES∼q̂+

[
vaddB (S)

]
, its independent fractional knapsack

value. By Lemma 8 and the third observation on vadd(·),
ES∼q̂+

[
vaddB (S)

]
≥ (1 − 1√

2πk
)ES∼D

[
vadd(S)

]
. By the sec-

ond observation on vadd(·), ES∼D
[
vadd(S)

]
≥ V +(q̂+). Since

V +(q̂+) is an upper bound on the optimal mechanism by
Lemma 4, we get the desired result.

Note that in previous settings, we used the solution to the
multilinear extension program to define the posted pricing
mechanisms. In this setting, we used the solution to the
concave closure program in order to take advantage of the
concavity of the objective function for computational pur-
poses. Finally, note that in the symmetric case, sequential
posted pricing offers no advantage compared to oblivious
posted pricing.

B Irregular Distributions
In this section, we consider irregular distributions. Recall

that a distribution F is regular if the virtual cost function is
increasing, or equivalently, if the cost curve q ·F−1(q) is con-
vex. The ironing method introduced by Myerson [19] gives
monotone ironed virtual costs and convex cost curves. With
these convex cost curves, we construct randomized posted
pricing mechanisms that enjoy the same approximation ra-
tios as the deterministic mechanisms, albeit with a general-
ized definition of the market size k for randomized posted
pricings. Additionally, in the case of additive objective func-
tions, the sequential posted pricing is derandomized.

Denote the cost curve of agent i by Ci(qi) = qiF
−1
i (qi).

Bulow and Roberts [7] observed that the derivative of the
cost curve with respect to quantile is equal to the virtual
cost function, C′i(qi) = φi(ci). The ironing method con-
structs the convex hull C̄i(qi) of the cost curve Ci(·). For
qi = Fi(ci), the ironed virtual costs are φ̄i(ci) = C̄′i(qi). By
taking the convex hull of the cost curves, we have convex

200



cost curves and monotone ironed virtual costs as desired.
The next two lemmas show that expected payments C̄i(q̂i)
are feasible while serving each agent with probability q̂i, and
that no incentive compatible mechanism can do better.

Lemma 15. [Myerson [19], Bulow and Roberts [7]] For
any agent with cost drawn from distribution Fi and any in-
centive compatible mechanism that selects agent i with prob-
ability q̂i, the expected payment to agent i is at least C̄i(q̂i).

We give the proof of the following known lemma since it
exhibits how to pick the prices and the probabilities of the
randomized mechanisms.

Lemma 16. [Myerson [19]] Expected payment C̄i(q̂i) while
serving agent i with probability q̂i is achievable using a ran-
domized posted pricing with at most two prices.

Proof. Fix a seller i and an ex ante sale probability q̂i.
If q̂i = Ci(q̂i), then it suffices to post price F−1

i (q̂i). Other-
wise, let a be the largest quantile smaller than q̂i such that
C̄i(a) = Ci(a). Similarly, let b the smallest quantile larger
than q̂i such that C̄i(b) = Ci(b). The interval [a, b] corre-
sponds to the ironed interval in which q̂i falls in. By the
definition of convex hull, we get

C̄i(q̂i) = (1− q̂i − a
b− a )C̄i(a) + (1− b− q̂i

b− a )C̄i(b)

= (1− q̂i − a
b− a )Ci(a) + (1− b− q̂i

b− a )Ci(b).

Therefore, posting price F−1
i (a) with probability 1− q̂i−a

b−a
and F−1

i (b) with probability 1− b−q̂i
b−a has expected payment

C̄i(q̂i) and the ex ante probability that seller i accepts the
price is q̂i.

By Lemma 15 and Lemma 16, the ex ante results also hold
for the irregular case using randomized posted pricing. The
following definition generalizes the notion of posted prices
to allow for randomization.

Definition 6. For a randomized posted pricing q̂,

• Prices ĉi1 and ĉi2 with probabilities of picking each
price are induced by q̂i.

• Randomly pick ĉi1 or ĉi2.

• In the case of sequential posted pricing, set the ordering
to be in decreasing order of bang-per-buck.

Definition 7. With randomized posted pricing, a market
is k-large if B/ĉij ≥ k for all agents i and j ∈ {1, 2}.

B.1 From Ex Ante to Ex Post with Additive Value
Functions

For the additive case, we first show that the ex post ran-
domized posted pricing performs well and then derandomize
the mechanism.

Theorem 10. The randomized sequential posted pricing
mechanism (q̂,σ(·)) that serve agents with probability q̂,
where q̂ is the solution to the multilinear extension pro-
gram (5) and where the order σ(·) is decreasing in vi

ĉi
, is a

(1− 1/
√

2πk)(1− 1/k) approximation to the optimal mech-
anism in a k-large market.

Proof. We start by showing that the randomized se-
quential posted pricing performs better than a deterministic
sequential posted pricing with the same ex ante performance
and a market that is k-large. Consider a randomized agent
i who is offered ĉi = ĉi1 with probability ρ and ĉi = ĉi2
otherwise. Remove agent i and replace it with two deter-
ministic agents i1 and i2 with value vi, who are offered ĉi1
and ĉi2 and who accept their price with probability ρFi(ĉi1)
and (1− ρ)Fi(ĉi2) respectively. Call this new posted pricing
the deterministic instance and the original posted pricing
the randomized instance.

Both instances have the same ex ante performance since
the expected total cost remains the same and since agent
i accepts his offer with probability equal to the sum of the
probabilities that agents i1 and i2 accept their offer. Fix a
set S of agents who accept their offer that does not include i
and fix these offers. Notice that in both the randomized and
deterministic instance, there is an expected increase in the
total cost of ĉi1ρFi(ĉi1) + ĉi2(1− ρ)Fi(ĉi2) caused by agent
i to S. However, in the randomized instance, this increase
in cost is either ĉi1 or ĉi2 and in the deterministic instance,
this increase in cost can also be ĉi1 + ĉi2. Since agents are
ordered by decreasing bang-per-buck, the loss from agents
that do not fit in the ex post budget constraint is greater in
the deterministic case. Therefore, the loss of the fractional
knapsack value with respect to the ex ante performance of
the mechanism is greater in the deterministic instance.

Now note that this argument can be repeated inductively
until all the agents left are deterministic. So the approxi-
mation ratio obtained by the randomized mechanism is (1−
1/
√

2πk)(1− 1/k), by combining Lemma 8 and the 1− 1/k
loss from dropping the fractional agent.

We now show that the mechanism can be derandomized.

Theorem 11. Any sequential randomized posted pricing
(q̂,σ(·)) can be modified into a sequential deterministic posted
pricing in the case of additive value functions.

Proof. The proof proceeds in two steps. The first re-
duces the number of randomized agents until there is one
left by using properties of ironed intervals. The second step
is to simply pick the best of the two prices that are offered
to the last randomized agent.

Consider a randomized posted pricing (q̂,σ(·)) with at
least two agents i and j that are randomized. The marginal
cost per unit value of these two agents are C̄′i(q̂i)/vi =
φ̄i(ci)/vi and φ̄j(cj)/vj . Without loss of generality, assume
φ̄i(ci)/vi ≤ φ̄j(cj)/vj . Since both of these agents are ran-
domized, q̂i and q̂j are within ironed intervals and their
ironed virtual costs are constants within these intervals. With
no loss in the objective function, we can therefore increase
q̂i and decrease q̂j such that the budget still binds and such
that either q̂i or q̂j is at the extremity of the ironed inter-
val it is in, and therefore not randomized anymore. This
construction can be repeated until one randomized agent is
left.

Consider a randomized posted pricing with a unique ran-
domized agent i who is offered ĉi = ĉi1 with probability
ρ and ĉi = ĉi2 otherwise. The proof of Theorem 10 shows
that the ratio between the performance of the optimal mech-
anism and the expected fractional knapsack value is at least
1−1/

√
2πk. Agent i is either offered ĉi1 or ĉi2, so by expec-

tations, with at least one of these two offers, the previous
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ratio is at least 1− 1/
√

2πk. Dropping the fractional agent
and keeping the best price to offer to agent i, we therefore
get a (1− 1/

√
2πk)(1− 1/k) approximation for a determin-

istic mechanism.

Corollary 2. Any sequential randomized posted pricing
(q̂,σ(·)) can be modified with high probability into a sequen-
tial deterministic posted pricing in the case of additive value
functions with an additional o(1) loss in polynomial time.

Proof. We need to compute which offered price between
ĉi1 and ĉi2 performs better in terms of fractional knapsack
value. Fractional-knapsack is a submodular function and
the multilinear extension of submodular functions can be
approximated arbitrarily well by sampling using Chernoff
bounds. Therefore, with high probability, it is possible to
compare arbitrarily well the fractional knapsack value ob-
tained with the two offered prices to agent i.

B.2 From Ex Ante to Ex Post with Submodular Value
Functions

With submodular value functions, the analysis for the
oblivious randomized posted pricing is identical as the anal-
ysis for the oblivious deterministic posted pricing. In Sec-
tion 4, Theorem 5 shows that by lowering the budget by
some small amount, we get that the sum of the costs does
not exceed the budget with high probability. Note that this
results does not only hold for deterministic agents but also
for randomized agents since the payment pi to an agent i
only need to be bounded by B/k and is not restricted to
be either 0 or ĉi. Therefore, the sum of the costs does not
exceed the budget with high probability in the randomized
case as well and the remaining of the analysis of section 4
also holds.

Theorem 12. For ε ∈ (0, 1/2), if the randomized oblivi-
ous posted pricing q̂, where q̂ is the optimal solution to the
multilinear extension program (5) with budget (1− ε)B, sat-
isfies 2/ε ≤ k ≤ B/maxi ĉi, then this posted pricing mecha-

nism is a (1−1/e)(1−ε)(1−e−ε
2(1−ε)k/12) approximation to

the optimal mechanism for submodular value functions and

(1− ε)(1− e−ε
2(1−ε)k/12) for additive value functions.

C Computing prices with estimates of δij and
VS(ij)

We show that we can use the greedy algorithm with esti-
mates of the increases and the marginal contributions, that
we can compute. Let q̃(S) be defined similarly to q(S) but

with estimates δ̃ij . The first lemma shows that the value
of the optimal solution to the reduced problem has almost
the same value as when the increases δij are estimated. The
second lemma extends Lemma 11 to the case where greedy
is run with estimated marginal contributions ṼS(ij) and any

δ̃ij .

Lemma 17. Let S∗ be the optimal solution to the reduced
problem with exact value of δij and VS(ij), then V (q̃(S∗)) ≥
(1− o(1))V (q(S∗)).

Proof. We need to find the increase satisfies B/m =
F−1
i (

∑
k≤j δik ) · (

∑
k≤j δik ) − F−1

i (
∑
k<j δik ) · (

∑
k<j δik ).

To approximate it, we find δ̃ij such that (1 − 1/n3)δij ≤
δ̃ij ≤ δi, which can be done easily since the weight functions
are increasing.

Recall that q̃(S) is defined similarly to q(S) but with es-

timates δ̃ij . Let S? be the optimal solution of the problem

with small agents without noise. Since (1−1/n3)δij ≤ δ̃ij ≤
δij for all i, j, we get that q̃(S?) ≥ (1− 1/n)q(S?). By the
concavity of V (·) along positive lines of direction, we get
that V (q̃(S?)) ≥ (1− 1/n)V (q(S?)).

Lemma 18. Let S̃ be the set returned by the greedy algo-
rithm on the reduced problem with estimates δ̃ij and ṼS(ij),

then V (q̃(S̃)) ≥ (1 − 1/e − o(1))V (q̃(S∗)) w.h.p., where S∗

is the optimal solution to the reduced problem with estimates
δ̃ij and exact values VS(ij).

Proof. First note that the objective function for the re-
duced instance is a submodular function regardless of the
values of δ̃ij . So since we are comparing ourselves with
q̃(S∗), it remains to show that the greedy algorithm with
a noisy oracle on marginal contribution of agents performs
well.

Let g(·) be the objective function of the reduced instance.
The marginal contributions are estimated by taking 10

δ4
(1 +

lnn) samples of the random set with independent marginal
probabilities q. By using basic Chernoff bounds as in Ca-
linescu et al. [9], we get that with high probability, all the
estimates that are computed during the algorithm have an
additive error of at most δ2g(S?).

Let S be the set of small agents returned by the algorithm.
Let Si = {e1, . . . , ei} be the value of S after i iterations. Now
since g(·) is submodular,

g(S?) ≤ g(Si−1) +
∑

e∈S?\Si−1

gSi−1(e)

By the greediness of the algorithm, g̃Si−1(ei) ≥ g̃Si−1(e) for

all e ∈ S? \ Si−1. So, gSi−1(ei) + 2δ2g(S?) ≥ gSi−1(e), and

g(S?) ≤ g(Si−1) +
1

δ
(gSi−1(ei) + 2δ2g(S?))

(1− 2δ)g(S?) ≤ g(Si−1) +
1

δ
gSi−1(ei)

Then, by following identically the remaining of the proof for
the e/(e − 1) approximation for greedy subject to a cardi-
nality constraint, but by replacing g(S?) by (1 − 2δ)g(S?),
we get that (1− 1/e)g(S) ≥ (1− 2δ)g(S?), which concludes
the proof.

Combining the previous results, we obtain the main result
of this section.

Theorem 13. Let S̃ be the output by the greedy algorithm
on the reduced instance with estimates of δij and VS(ij),

then V (q̃(S̃)) ≥ (1− 1/e− o(1))V (q̂) w.h.p., where q̂ is the
optimal solution to the multilinear extension program (5).

Proof. This proof follows similarly to the one for Lemma 12,
the difference is that this proof adds the loss from the esti-
mates.

By Lemma 17 and Lemma 18,

V (q̃(S̃)) ≥ (1−1/e−o(1))V (q̃(S∗)) ≥ (1−1/e−o(1))V (q(S∗))

where S∗ is the optimal solution to the reduced problem.
Using Lemma 10 that connects the discretized reduced in-
stance to the original continuous problem, we conclude that

V (q̃(S̃)) ≥ (1−1/e−o(1))V (q(S∗)) ≥ (1−1/e−o(1))V (q̂).
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Note that in the case of additive value functions, the
greedy algorithm is optimal when the optimization is subject
to a cardinality constraint and the marginal contributions
can be computed exactly. We therefore get the following
result.

Lemma 19. Assume v(·) is an additive value function.
Let S be the set returned by the greedy algorithm on the
reduced problem with estimates δ̃ij , then V (q̃(S)) ≥ (1 −
o(1))V (q̂) w.h.p., where q̂ is the optimal solution to the mul-
tilinear extension program (5).

Therefore, all the results in previous sections suffer an ex-
tra 1 − 1/e − o(1) factor in the general case of submodular
value function and an extra 1 − o(1) factor in the case of
additive value function that are due to computational con-
straints.
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