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ABSTRACT
We consider a model of nomadic agents exploring and com-
peting for time-varying location-specific resources, arising in
crowdsourced transportation services, online communities,
and in traditional location-based economic activity. This
model comprises a group of agents, and a set of locations
each endowed with a dynamic stochastic resource process.
Each agent derives a periodic reward determined by the
overall resource level at her location, and the number of
other agents there. Each agent is strategic and free to move
between locations, and at each time decides whether to stay
at the same node or switch to another one. We study the
equilibrium behavior of the agents as a function of dynam-
ics of the stochastic resource process and the nature of the
externality each agent imposes on others at the same loca-
tion. In the asymptotic limit with the number of agents and
locations increasing proportionally, we show that an equilib-
rium exists and has a threshold structure, where each agent
decides to switch to a different location based only on their
current location’s resource level and the number of other
agents at that location. This result provides insight into
how system structure affects the agents’ collective ability to
explore their domain to find and effectively utilize resource-
rich areas. It also allows assessing the impact of changing
the reward structure through penalties or subsidies.
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1. INTRODUCTION
We consider a model of nomadic agents exploring and

competing for time-varying stochastic location-specific re-
sources. Such multi-agent systems arise in crowdsourced
transportation services like Uber and Lyft where drivers po-
sition themselves to be close to demand; in online communi-
ties like Twitch and Reddit where webizens choose in which
subcommunities to participate; and in location-specific ac-
tivity in the traditional economy, such as food trucks choos-
ing where to position themselves, fisherman choosing where
to fish, and pastoralists choosing where to graze their an-
imals. In each of these examples, overall social welfare is
determined both by agents’ willingness to explore their do-
main to find and exploit resource-rich locations, the level of
antagonism or synergy inherent to having multiple agents at
the same location, and the equilibrium distribution of agents
across locations that these factors induce.

The model we study comprises a set of locations and a
group of agents. Each location has a resource level that
varies randomly with time. Each agent periodically derives
resource from the location at which she currently resides,
whose amount is determined by the number of other agents
currently residing there, and the location’s current overall
resource level. Based on these quantities, the agent then
decides whether to stay at the same location or switch to
another. The agents are fully strategic and seek to maximize
their total rewards over their lifetime.

We study the equilibrium behavior of the agents in this
system as a function of dynamics of the spatio-temporal re-
source process and the level of synergy or antagonism in the
agents’ sharing of resources. We analyze the system under
the limit where the number of agents and locations both in-
crease proportionally, using the methodology of a mean field
equilibrium. We show that an equilibrium exists, and the
agents’ optimal strategy has a simple threshold structure,
in which it is optimal to leave a location when the num-
ber of other agents exceeds a threshold that depends on the
resource level at that location. In the limit as the system
grows large, this induces a joint probability distribution over
the number of agents and level of resource at each location.

Our results allow us to obtain economic insights into how
the nature of the externality agents impose on others at the
same location affects the exploration of the locations for re-
sources, and consequently the overall welfare of the economy.
In particular, our methodology allows us to analyze settings
where the overall reward at a location either increases or
decreases with the number of agents at the location, and
how these two settings affect the equilibrium exploration.
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Furthermore, our methodology allows us to evaluate engi-
neering interventions, such as providing subsidies to or im-
posing costs on agents to promote or discourage exploration
to improve welfare.

Examples.
The model we study is a simplified version of systems

appearing in real-world settings. It arises in the shared
economy, in crowdsourced transportation services such as
Uber and Lyft, in which drivers choose neighborhoods, and
then earn money (reward) based on the number of riders
requesting service within that neighborhood (the overall re-
source level), and the number of other drivers working there.
This overall resource level varies stochastically over time in
a neighborhood-specific way as demand rises and falls, and
the resource derived by a driver decreases with the number
of other drivers working in her neighborhood.

This model also arises in the internet economy, in online
communities such as Reddit and Twitch, in which partici-
pants choose sub-communities, and then derive enjoyment
depending both on some underlying but transitory societal
interest in the sub-community’s topic of focus (the overall
resource) and the number of other participants in the sub-
community. When the number of other participants is too
small, lack of social interaction prevents enjoyment; when
the number of other participants is too large, crowding di-
minishes the sense of community.

This model also arises in the traditional economy, for ex-
ample in food trucks deciding in which neighborhoods to
locate, in pastoralists deciding where to graze their live-
stock, and in fishermen deciding where to fish. In these
examples, the level of resource derived by each agent from
their location (whether profit from hungry passers by; or
food for livestock provided by the range-land; or profit from
the catch) depends both on the number of other agents at
the location, and on the location’s overall and stochastically
varying resource level.

This model even arises among scientific researchers, who
must choose a research area in which to work, and derive
value from this choice based both on the underlying level
of societal interest and funding in their chosen area, and
in the number of other researchers working in it. As with
online communities, the number of other researchers should
be neither too large nor too small too maximize the value
derived.

Related Work.
Our paper adds to the growing literature on mean field

equilibrium [1, 16, 19, 21, 26], that studies complex systems
under a large system limit and obtains insights about agent
behavior that are hard to obtain from analyzing finite mod-
els. The main insight behind this line of literature, that
in the large system limit, agents’ behavior are character-
ized by their (private) state and an aggregate distribution
of the rest of system, has been used to study settings that
include industry dynamics and oligopoly models [15, 26, 25],
repeated dynamics auctions [5, 18], online labor markets [2],
and queueing systems [27].

Our model can be seen as an extension of the Kolkata
Paise Restaurant Problem [7]. In this game, each agent
chooses (simultaneously) a restaurant to visit, and earns a
reward that depends both on the restaurant’s rank, which
is common across agents, and the number of other agents

at that restaurant. This reward is inversely proportional to
the number of agents visiting the restaurant.

The Kolkata Paise Restaurant Problem is itself a gener-
alization of the El Farol bar problem [3, 8]. The Kolkata
Paise Restaurant Problem is studied both in the one-shot
and repeated settings, with results on the limiting behav-
ior of myopic [7] and other strategies [12], although we are
not aware of existing results on mean-field equilibria in this
model. Our model is both more general, in that we allow
general reward functions and allow location’s resource to
vary stochastically, and more specific, in that our locations
are homogeneous. Our model also differs in that our agents’
decisions are made asynchronously.

Our model is also related to congestion games [22, 24], in
which agents choose paths on which to travel, and then incur
costs that depend on the number of other agents that have
chosen the same path. One may view paths as being synony-
mous with locations in our model, and observe that in both
cases the utility/cost derived from a path/location depends
on the number of other agents using that path, or portion
thereof. The main difference between our model and conges-
tion games is the stochastic time-varying nature of our over-
all level of resource (making our model more complex), and
the lack of interaction between locations contrasting with
the interaction between paths (making our model simpler).

Our model has within it an exploration vs. exploitation
tradeoff, in which an agent faces the decision of whether to
stay at his current node, exploiting its resource and obtain-
ing a known reward, or to leave and go to another randomly
chosen location with unknown reward. Visiting this new
location provides information upon which future decisions
may be based. Similar tradeoffs between exploration and
exploitation appear widely, and have been studied exten-
sively in the single-agent setting [4, 13, 20, 23]. Exploration
and learning in multi-agent settings has been considered by
[9, 17].

2. MODEL
We consider a setting with N agents, each situated at

each time t ≥ 0 in one of K locations. Each location
k has a stochastic dynamic resource process, denoted by

{Z(k)
t : t ≥ 0}, that determines the reward obtained by each

agent at that location, as we describe below. We assume

that each process {Z(k)
t : t ≥ 0} is a finite state continu-

ous time Markov chain, that is distributed identically and
independently from the rest of the system. For the pur-

pose of analysis, we assume that each Z
(k)
t takes values in

{0, 1}, with holding time at state z ∈ {0, 1} distributed as
Exp(µz,1�z) for some fixed µz,1�z > 0.

Agents may switch between locations to explore for re-
sources. Formally, each agent i has an associated indepen-
dent Poisson process Xi

t with rate λ > 0, at whose jump
times {T i` : ` ≥ 0} the agent makes the decision to either
stay in her current location or switch instantaneously to a
different location that is chosen uniformly at random. Let

kit denote the location of agent i at time t ≥ 0 and let N
(k)
t

denote the number of agents at location k at time t.
The agents in the model are short-lived, and at each jump

time T i` , the agent i departs the system with probability
1 − γ > 0. Thus, each agent i lives in the system for a
random time τ i which is distributed according to Exp(λ(1−
γ)). For each agent i that leaves the system, a new agent
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(with the same label i) arrives at a location chosen uniformly
at random. We make this modeling assumption to ensure
that the number of agents in the system is always positive;
this assumption can be relaxed to allow for random arrivals
and departures, with the arrival rate equal to the departure
rate.

We now describe the decision problem faced by an agent
i in more detail. At each jump time t = T i` , an agent i

at location k = kit receives a reward Rit = F (Z
(k)
t , N

(k)
t )

that depends on the state of the resource process Z
(k)
t and

the overall number of agents N
(k)
t at the location k. In

the following, we assume that the function F governing the
reward at each location is given by F (z, n) = zf(n) for
some function f : N→ R+ that is non-increasing in n, with
limn!+1 f(n) = 0. Essentially, this implies that the reward
at a location at any time is zero if the resource process is in
state 0, and it is equal to f(n) if the resource process is in
state 1, if there are n agents at that location. Furthermore,
this reward f(n) decreases to zero as the number of agents
at a location increases. Given this setting, each agent i at
any time prefers to be at a location with resource process
state equal to 1, and where the number of other agents is
small.

Within this setting, we will focus on three cases: (1) for
each n ∈ N, we have nf(n) = 1. In this case the (unit)
resource, if available at a location, is shared equally among
the agents at that location; (2) nf(n) is non-decreasing in n.
In this case adding agents to a location increases the total
reward earned, either through synergy, or because a small
number of agents cannot fully utilize a location’s resource;
and (3) nf(n) is non-increasing in the number of agents n
at that location. In this case antagonism or overutilization
causes the total reward earned to decrease as agents are
added.

Next, we discuss the information each agent i has while
making their decision to stay or switch. We assume that an

agent i has access to the states of the resource process Z
(k)
t

and the number of agents N
(k)
t of a location k during the

time she is present at the location k, i.e., when kit = k. We
further assume that agents have perfect recall, and hence,
at a jump time t = T i` , each agent i bases her decision to
switch or stay on the entire history hit she has observed until
time t, namely the resource process states and the number
of agents at each location she has visited during the time
period she visited that location:

hit =
{

(Z
(kis)
s , N

(kis)
s ) : s ≤ t

}
.

Thus, a strategy ξi for an agent i, specifies a (mixed) action
between stay and switch at each jump time t = T i` of her
associated Poisson process Xi

t , based on her history hit.
Given this informational assumption, each agent i seeks

to maximize the total expected reward accrued over her life-
time, given by

E

[
1∑
`=0

RiT i
`
I{τ i ≥ T i`}

]
.

Observe that since the agent departs the system with prob-
ability (1 − γ) at each jump time independently, the total

expected reward can be equivalently written as

E

[
1∑
`=0

γ`RiT i
`

]
.

Thus, each agent’s decision problem is equivalent to maxi-
mizing her total discounted expected reward assuming she
persists in the system.

Since the reward at any location is determined by the
number of agents at that location, each agent’s decision to
stay in her current location or to switch to a new one de-
pends on all the other agents’ behavior. Consequently, the
interaction among the agents is a dynamic game, and ana-
lyzing the agents’ behavior requires an equilibrium analysis.

The standard equilibrium concept to analyze the induced
dynamic game is a perfect Bayesian equilibrium (PBE). A
PBE consists of a strategy ξi and a belief system µi for
each player i. A belief system µi for agent i specifies a belief
µi(hit) after any history hit over all aspects of the system that
she is uncertain of and that influence her expected payoff.
A PBE then requires two conditions to hold: (1) each agent
i’s strategy ξi is a best response after any history hit, given
their belief system and given all other agents’ strategies; and
(2) each agent i’s beliefs µi(hit) are updated via Bayes’ rule
whenever possible (see [10, 11] for more details).

Observe that a PBE supposes a complex model of agent
behavior. It requires each player i to keep track of her entire
history, and maintain complex beliefs about the rest of the
system. While this may be plausible in small settings, this
behavioral model seems implausible for large systems. On
the contrary, in such settings, it is more plausible that each
agent would base her decision to stay or switch solely on the
current state of the location she is in — specifically on its
level of resource, and the number of other agents there— and
on the aggregate features of the entire system. Moreover, we
expect that if an agent were to base her decision only on this
information, then she would pursue a “threshold” strategy:
she would stay in her current location if the number of agents
at that location is low, and switch to a different location if
that number is high, with the threshold used depending on
that location’s level of resource.

Below, we seek to uncover this intuitive behavioral model
as an equilibrium in large systems by letting the number of
agents and the number of location both increase proportion-
ally to infinity, and studying the limiting infinite system.

3. LIMITING INFINITE SYSTEM
In this section, we consider an infinite system that is ob-

tained as the limit of the finite system as the number of
location K and the number of agents N both tend to infin-
ity, with N = βK, for some fixed β > 0. In the limiting
system, there are infinite number of locations and agents,
with the expected number of agents per location fixed at
β > 0. In such a limit, given certain consistency conditions
that bind the mean dynamics of all the locations, the dy-
namics of each location essentially decouples from the rest
of the system. Under such a decoupling, instead of focus-
ing on the entire limiting system, it suffices to focus on the
dynamics of a single location, as well as the empirical distri-
bution of the states of all the locations. We begin with the
description of the dynamics of a single location in such an
infinite system.
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3.1 Location dynamics
To analyze the agents’ behavior in the infinite system, we

fix a location k and focus on the decision problem faced by
an agent i at location k about when to switch to a different
location. Let Xi

t denote the Poisson process with rate λ > 0
associated with agent i, with jump times T i` for l ≥ 0. As

before, let Z
(k)
t denote the state of the resource process at

location k and let N
(k)
t denote the number of agents at loca-

tion k at time t. We assume that agents arrive at location k
according to a Poisson arrival process with rate κ > 0. Note
that these arriving include new agents arriving to the sys-
tem (following a departure), as well as existing agents who
have chosen to switch from their current location.

Inspired by the discussion at the end of the preceding
section, we focus on a family of threshold strategies for
the agents. A threshold strategy is characterized by a pair
(n0, n1) ∈ [0,+∞)2. In a threshold strategy (n0, n1), an
agent at a location with resource level z ∈ {0, 1} chooses to
stay at her current location if the number of agents is strictly
below bnzc; chooses to switch her location if the number of
agents at her current location is strictly above nz; and stays
with probability nz − bnzc and switches with the remaining
probability if the number of agents is equal to bnzc. Our
eventual goal is to show that there exists an equilibrium for
agents’ behavior where all agents follow (the same) threshold
strategy. For now, we assume that all agents except agent
i adopt a threshold strategy (n0, n1), and seek an optimal
strategy over the class of all history-dependent strategies
(not just the class of threshold strategies) for agent i.

Note that given the arrival rate κ > 0, and the threshold

policy (n0, n1), the process (Z
(k)
t , N

(k)
t ) evolves as a contin-

uous time Markov chain on the state space S = {0, 1} × N
with the following transition rate matrix: for each z ∈ {0, 1},
and for all n ∈ N, we have

Q((z, n)→ (1− z, n)) = µz,1�z,

Q((z, n)→ (z, n+ 1)) = κ,

Q((z, n)→ (z, n− 1)) = λ(n− 1) (1− γ +

γ (1{n > nz} + (n+ 1− nz)1{n = bnzc})) .

Here, the first equation represents the transitions in Z
(k)
t ,

which is an independent Markov chain on {0, 1} with hold-
ing times µ01 and µ10. The second equation follows from the
assumption that agents arrive at location k according to a
Poisson process with rate κ > 0. The third equation repre-
sents a transition where an agent at location k leaves. This
transition can occur in two ways: first, the agent could leave
the system with probability 1 − γ; second, the agent could
survive, with probability γ, but choose to switch to a dif-
ferent location, which happens with probability 1 if n > nz,
with probability (n+1−nz) if n = bnzc, and zero otherwise.
Since there are (n− 1) other agents that make this decision
to stay or switch at rate λ, these transitions occur at rate
λ(n− 1). We denote this continuous time Markov chain de-
scribing the dynamics of a single location, where all agents
adopt the threshold policy (n0, n1) and the rate of arrival of
agents is κ, by MC(n0, n1, κ).

3.2 Agent’s decision problem
We are now ready to describe the decision problem faced

by the agent i regarding when to switch from her current
location. At each jump time t = T i` of Xi

t , the agent i

receives an immediate payoff of Z
(k)
t f(N

(k)
t ) and may leave

the system with probability 1− γ. If she does not leave the
system, then she has to decide between two actions “stay”
or “switch”. On choosing “stay” continues until the next
jump time T i`+1; on choosing “switch”, the decision problem
terminates with an immediate payoff of C > 0, that does
not depend on the state of the location k.

Before proceeding, we provide a brief interpretation of the
termination payoff C. Observe that in a finite system, an
agent on switching from a location, moves on to a different
location that is chosen uniformly at random, and continues
to accrue payoffs until she leaves the system. This suggests
that one may interpret the termination payoff C as capturing
the notion of a continuation payoff on switching in the finite
system in the context of the limiting infinite system. Sub-
sequently, we impose conditions on our equilibrium notion
that ensure that indeed C denotes the continuation payoff
in the infinite system.

Given these payoffs and actions for agent i, it follows
that the decision problem facing agent i is an optimal
stopping problem, which we denote by OS(n0, n1, κ, C).
We next specify the dynamic programming formulation of
OS(n0, n1, κ, C).

Note that in the decision problem, when the Markov chain
MC(n0, n1, κ) is in state (z, n), events occur at rate κ +
µz,1�z + λn: with rate κ a new agent arrives, with rate
µz,1�z the resource level changes, with rate λ(n − 1) one
of the other agents either leaves the system or survives and
makes the decision to stay or switch, and finally with rate
λ, agent i arrives at a jump time to make a decision herself.
Thus, we define the following transition probabilities for the
state transition:

Pdec(z, n) =
λ

nλ+ µz,1�z + κ
,

Pexit(z, n) =
(n− 1)λ(1− γ)

nλ+ µz,1�z + κ
,

Psur(z, n) =
(n− 1)λγ

nλ+ µz,1�z + κ
,

Pres(z, n) =
µz,1�z

nλ+ µz,1�z + κ
,

Parr(z, n) =
κ

nλ+ µz,1�z + κ
. (1)

Here, Pdec(z, n) denotes the probability that the next event
corresponds to agent i’s decision epoch, Pexit denotes the
probability the next event corresponds to one of the other
agents exiting the system, Psur denotes the probability the
next event corresponds to one of the other agents persisting
in the system, Pres denotes the probability the next event
corresponds to change in the resource level, and finally, Parr
denotes the probability that the next event corresponds to
a new arrival.

Given (Z
(k)
t , N

(k)
t ) = (z, n) with T i` = t, let V (z, n) de-

note the optimal expected total reward of agent i just after
her associated Poisson process Xi

t has undergone a jump,
but prior to her making a decision or receiving any reward.
Similarly, let V̂ (z, n) denote the optimal expected total re-
ward of agent i after a jump time, conditional on the decision
problem not terminating either due to the agent leaving the
system or choosing to switch to a different location. Then,
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we have the following Bellman equation:

V (z, n) = zf(n) + γmax{V̂ (z, n), C},

V̂ (z, n) = Pdec(z, n)V (z, n) + Pexit(z, n)V̂ (z, n− 1)

+ Psur(z, n) (1{n>nz}+ (n+1−nz)1{n=bnzc}) V̂ (z, n−1)

+ Psur(z, n) (1{n<bnzc}+ (nz−n)1{n=bnzc}) V̂ (z, n)

+ Pres(z, n)V̂ (1−z, n) + Parr(z, n)V̂ (z, n+1). (2)

Here, the first equation follows from the fact that subsequent
to a jump time, the agent receives an immediate payoff equal
to zf(n). Following this, she continues with survival proba-
bility γ, and has to make a decision to stay, which gets her
expected payoff equal to V̂ (z, n) or switch, which gets her
an expected payoff equal to C. The second equation relates
V̂ (z, n) to the agent’s expected payoff subsequent to various
events that can occur at the next transition. For a solution
V and V̂ to the Bellman’s equation, an optimal strategy ξi

for the agent i requires agent i to stay if V̂ (z, n) > C, and

to switch if V̂ (z, n) < C (any mixed action is optimal if

V̂ (z, n) = C). Let OPT (n0, n1, κ, C) denote the set of all
optimal strategies (not necessarily threshold strategies) for
the agent’s decision problem OS(n0, n1, κ, C).

3.3 Mean field equilibrium
Given the Markov chainMC(n0, n1, κ) and an agent’s de-

cision problem OS(n0, n1, κ, C) , we are now ready to state
the equilibrium conditions on the limiting system. First, in
the infinite system, we require the agents’ strategies to be
in equilibrium. Since MC(n0, n1, κ) describes the dynam-
ics of a location where all agents other than agent i use the
threshold policy (n0, n1), for equilibrium we must impose the
condition that (n0, n1) is an optimal strategy for the agent’s
decision problem. This leads to the following condition:

(n0, n1) ∈ OPT (n0, n1, κ, C). (3)

If all agents at location k, including agent i, follow the

threshold policy (n0, n1), then the transitions in (Z
(k)
t , N

(k)
t ) =

(z, n) follow a Markov chain with transition rate matrix Q
that is equal to Q except for the transition Q((z, n) →
(z, n − 1)) which is equal to Q((z, n) → (z, n − 1)) =
λn(1 − γ + γ(1{n > nz} + (n + 1 − nz)1{n = bnzc})).
This is because the arrival and the changes in the resource
level occur at the same rate, but now any one of the agents
at location k might choose to leave the location, as opposed
to any one of the agents other than agent i as defined in
Q. Denote this Markov chain by MC(n0, n1, κ) and let π
denote an invariant distribution of this chain:

πTQ = 0. (4)

In a large system, a natural requirement to impose is that
the invariant distribution of a single location k equals the
steady state empirical distribution of the resource level and
the number of agents across all locations. Requiring this
condition to hold leads to two consequences. First, because
in the infinite system the “agent density”, i.e., mean number
of agent across all locations, is equal to β, this implies that
the expected number of agents at location k must equal β:∑

(z,n)2S

nπ(z, n) = β. (5)

Note that this equation imposes a restriction on the arrival
rate κ of the Markov chain MC(n0, n1, κ). In particular, it

requires the arrival rate to be such that in steady state the
expected number of agents at each location is equal to β.

The second condition imposes a restriction on the imme-
diate termination reward on switching C. Recall that we
interpret C as modeling the optimal continuation payoff on
switching in the finite system. Since the empirical distri-
bution of the states of other locations is given by π, the
optimal expected reward an agent can obtain on switching
is given by

∑
(z,n)2S π(z, n)V̂ (z, n + 1). This is because,

after the agent moves to a location in state (z, n), which
happens with probability π(z, n), the number of agents at
that location becomes n+1, and the expected payoff to that
agent is V̂ (z, n + 1). We require that this quantity equals
the immediate reward C:

C =
∑

(z,n)2S

π(z, n)V̂ (z, n+ 1). (6)

Given these consistency conditions, we are now ready to
define a mean field equilibrium for the infinite system:

Definition 1 (Mean Field Equilibrium). A mean
field equilibrium is characterized by a threshold strategy
(n0, n1), an arrival rate κ > 0, an distribution π over S,
and an immediate reward C > 0, such that the set of equa-
tions (3),(4),(5), and (6) hold.

Note that as opposed to a PBE, a mean field equilibrium
adopts a fairly natural and simple model of agent behavior,
where each agent needs to keep track only of current state
and the number of agents at the location she is in, along
with the immediate payoff for switching.

4. MAIN RESULTS
Having defined the equilibrium concept, we now consider

the problem of existence of a mean field equilibrium in the
infinite system.

We begin with the following lemma that shows that for
any level of resource at a location, the value function V̂ (z, n)
is non-increasing with the number of agents at that location.
The proof may be found in Appendix A.

Lemma 4.1. For each z ∈ {0, 1}, the value function

V̂ (z, n) is non-increasing in n.

Using this lemma, it is straightforward to show that for any
level of resource z ∈ {0, 1}, if it is optimal to switch when the
number of agents at the location is n, then it is still optimal
to switch when the number of agents is greater than n. From
this, we obtain the first result of this section.

Theorem 4.1. For any (n0, n1) ∈ R2
+, κ > 0 and C >

0, there always exists an optimal strategy with a threshold
structure for the decision problem OS(n0, n1, κ, C).

The preceding theorem suggests that set of threshold strate-
gies is closed under best-responses: if all agents other than
agent i adopt the same threshold strategy, then it is opti-
mal for agent i to also follow a threshold strategy. Thus,
it suffices to focus on the set of optimal threshold strate-
gies for the agent decision problem, which we denote by
T (n0, n1, κ, C). Note that T (n0, n1, κ, C) can be char-
acterized as a subset of R2

+ corresponding to the values
of the thresholds of the optimal threshold strategies. In
Lemma A.1 in the Appendix A, we show that T (n0, n1, κ, C)
is a convex set.
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Building on this result, we obtain the main theorem of our
paper.

Theorem 4.2. For any λ > 0, β > 0 and µ01, µ10 > 0,
there exists a mean field equilibrium for the infinite system.

We emphasize that the existence of a mean field equilib-
rium is obtained under very general conditions, requiring
only that the reward function f(n) is non-increasing in the
number of agents n



µ f(n) = 1/
√
n f(n) = 1/n f(n) = 1/n2

0.1 2.80, (1.0, 43.9) 1.98, (1.0, 4.0) 0.14, (1.0, 7.7)
0.5 2.39, (4.3, 43.8) 1.72, (1.0, 4.0) 0.25, (1.0, 4.7)
1.0 2.63 , (1.0, 27.2) 0.96, (1.0, 10.4) 0.18, (1.0, 5.0)
10.0 2.37, (11.0, 18.2) 0.93, (4.0, 7.1) 0.16, (3.0, 5.0)
100.0 2.46, (11.0, 12.0) 0.97, (4.0, 4.0) 0.80, (1.0, 8.0)

Table 1: Computationally determined approximate equilib-
rium values of the payoff for switching C, and the thresholds
n0 and n1 used to decide whether to switch or not. Values
are reported in the table as C, (n0, n1), for each value for
reward function f and the rate µ at which the resource level
changes.

6.1 Computation of MFE
Recall that the mean field equilibria of our model are the

fixed points of the correspondence T . We thus seek to find
(approximate) fixed points of this map. To do this, we
adopt a brute-force approach. We first truncate the state
space S of the agent decision problem to S200 = {0, 1} ×
{0, 1, · · · , 199}. We restrict the thresholds (n0, n1) to grid
of values in [0, 50]2, where we set the grid resolution r adap-
tively over different runs. We do a similar adaptive meshing
of the set of values of the immediate payoff C. Having re-
stricted the set of values of (n0, n1) and C thus, we search
over all values to find lie in the image of T , within some
pre-specified tolerance ε. We describe this process in detail:

1. For each value of (n0, n1), we perform a binary search
on κ to find a value for which the stationary distri-
bution π of the Markov chainMC(n0, n1, κ) restricted
to S200 satisfies equation (5) with a tolerance ε. (The
stationary distribution π is obtained by solving the set
of linear equations (4).)

2. For this value of κ, (n0, n1) and each value of C, we
perform value iteration to compute the value func-
tion V̂ , again with a tolerance of ε, and compute
the set of optimal thresholds T (n0, n1, κ, C). Let
dist(n0, n1) denote the distance between (n0, n1) and
the T (n0, n1, κ, C) under the Euclidean norm. (Note
that the latter set is convex and the distance is well
defined.)

3. Next, using the stationary distribution π and the value
function V̂ , we compute the immediate payoff C̃.

4. For each value of n0, n1 and C, we compute d(n0, n1, C) ,
‖C−C̃‖+dist(n0, n1). We output the value of (n0, n1, C)
that minimizes d(n0, n1, C) over all values.

To make the brute-force search efficient, we run this algo-
rithm sequentially and adaptively by first identifying candi-
date regions where equilibria might exist, and restricting the
search to those regions with lower tolerance and finer grid
values.

6.2 Numerical results
In Table 1 we report computationally determined values

for three different reward functions, obtained over five dif-
ferent rates for the underlying resource process.

For large values of µ, we see n0 and n1 are close. This
is natural because large values of µ imply that the resource
level is changing very quickly, and so the level of resource

at the time of the decision has little impact on what the re-
source level will be at the next time the agent receives a re-
ward. Thus, the current level of resource z has little impact
on the threshold nz. On the other hand, for small values of
µ, the thresholds differ significantly with the resource level.

We also observe that, when comparing reward functions
f(n) = 1/

√
n, 1/n, and 1/n2, when f decreases more

quickly, agents are more willing to switch (the threshold
for switching is lower), and the payoff for switching is also
lower.

7. CONCLUSION
We have studied a multi-agent location-specific resource-

sharing game, and have established the existence of an equi-
librium in this game, and have characterized each agent’s
policy in this equilibrium as being a threshold policy. This
result provides economic insight into such multi-agent resource-
sharing games, and also allows evaluating the effects of de-
signing and modifying these games, through subsidies or
penalties added to natural occurring rewards and costs.

This work also sets the stage for studying information
sharing in multi-agent resource-sharing systems. Our cur-
rent analysis assumes that agents observe only the number
of other agents and resource level at their current location,
and the locations they have visited in the past. One may
extend this model to allow for information sharing among
the agents as well as between the agents and a central plan-
ner who has access to the current state(s) of the location(s)
that the agent mights switch to. A first question of interest
would then be whether such information sharing necessarily
improves social welfare, or whether it can in fact degrade it.
A second question is how this information sharing mecha-
nism should be designed to maximize social welfare.
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APPENDIX
A. PROOFS

In this appendix we provide proofs of selected results dis-
cussed in the main text. A full proof of the main theorem is
technical, and is omitted due to space constraints. This full
proof will appear in a future version of the paper.

A.1 Structure of optimal strategies

Proof of Lemma 4.1. By Markov property we may as-
sume at t = 0 the agent makes his current decision, and let t0

be the time his next decision epoch starts. We denote ν(z,n)
as the distribution of (Zt′ , Nt′) given (Z0, N0) = (z, n), then
we can write

V̂ (z, n) = Eν(z,n)
V (Zt′ , Nt′).

Let V̂ (0)(z, n) = 0 for all z and n. Compute V (m)(z, n)

and V̂ (m+1)(z, n) using value iteration for the Bellman’s
equation (2).

V (m)(z, n) = zf(n) + γmax{V̂ (m)(z, n), C},

V̂ (m+1)(z, n) = Eν(z,n)
V (m)(Zt′ , Nt′).

By convergence of value iteration we have ‖V (m)−V ‖1 → 0

and ‖V̂ (m) − V̂ ‖1 → 0 as m→∞. Therefore, it suffices to

show ∀m ∈ N0, for z ∈ {0, 1}, V (m)(z, n) and V̂ (m)(z, n) are
non-increasing in n. We can prove this by induction on m.

The base case follows trivially. Now assume V̂ (m)(z, n) is
non-increasing in n for z ∈ {0, 1}, for some m ∈ N0. From

this it is straightforward to conclude that V (m)(z, n) =

zf(n) + γmax{V̂ (m)(z, n), C} must be non-increasing in

n since both f(n) and V̂ (m)(z, n) are non-increasing in n.

Thus, we only need to show that V̂ (m+1)(z, n) is also non-
increasing in n.

Observe showing V̂ (m+1)(z, n) ≥ V̂ (m+1)(z, n+1) is equiv-

alent to showing Eν(z,n)
V (m)(Zt′ , Nt′)≥ Eν(z,n+1)

V (m)(Zt′ , Nt′).
We show this using a sample path argument by consider-
ing two processes. Let (Z1

t , N
1
t ) be a copy of MC(n0, n1, κ)

that starts at (Z1
0 , N

1
0 ) = (z, n) and let (Z2

t , N
2
t ) be a copy

of MC(n0, n1, κ) that starts at (Z2
0 , N

2
0 ) = (z, n + 1). By

carefully coupling the two processes, the details of which we
omit due to space restrictions, it can be shown that for all
t ≥ 0, Z1

t = Z2
t and N1

t ≤ N2
t . Since (Z1

t′ , N
1
t′) ∼ ν(z,n) and

(Z2
t′ , N

2
t′) ∼ ν(z,n+1), we have

Eν(z,n)
V (m)(Zt′ , Nt′) = E[V (m)(Z1

t , N
1
t )],

and

Eν(z,n+1)
V (m)(Zt′ , Nt′) = E[V (m)(Z2

t , N
2
t )].

Since V (m)(z, n) is non-increasing in n for both z = 0, 1,

V (m)(Z2
t , N

2
t ) ≤ V (m)(Z1

t , N
1
t ) in all sample paths, and
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therefore E[V (m)(Z1
t , N

1
t )] ≥ E[V (m)(Z2

t , N
2
t )], which com-

pletes the proof.

We now consider the set of optimal thresholds T (n0, n1, κ, C).

Lemma A.1. For each (n0, n1), κ > 0, and C > 0, the
set of optimal thresholds T (n0, n1, κ, C), as a subset of R2

+,
is convex.

Proof. From Lemma 4.1, we know that the value func-
tion V̂ (z, n) is non-increasing in n for each z ∈ {0, 1}. Now

for z ∈ {0, 1}, denote
¯
nz = max{n : V̂ (z, n) > C} and

n̄z = min{n : V̂ (z, n) < C}. For all n ≤
¯
nz, the optimal

action is to stay at the current location and for all n ≥ n̄z,
the optimal action is to switch to a different location. For
any integer n ∈ [

¯
nz, n̄z], we have V̂ (z, n) = C, meaning the

agent is indifferent between staying in the current location
or switching to a different location when the state at the
current location is (z, n).

Let (n1
0, n

1
1) and (n2

0, n
2
1) be two threshold strategies that

are both optimal: (n`0, n
`
1) ∈ T (n0, n1, κ, C) for ` ∈ {1, 2}.

By the definition of the threshold strategy, this implies that
bn`zc ≥

¯
nz, and dn`ze ≤ n̄z for each `. This is because in the

threshold strategy (n`0, n
`
1), at state (z, n), the agent stays

at her current location for all n < bn`zc, switches to a differ-
ent location for all n > n`z and and stays with probability
n`z−bn`zc and switches with the remaining probability if the
number of agents n is equal to bn`zc. Since this is true for
each `, we have for any α ∈ (0, 1), bαn1

z + (1− α)n2
zc ≥

¯
nz,

and dαn1
z + (1 − α)n2

ze ≤ n̄z. This implies that a thresh-
old strategy that at state (z, n) stays in the current loca-
tion if n < bαn1

z + (1 − α)n2
zc, switches to a different lo-

cation if n > bαn1
z + (1 − α)n2

zc, and stays with proba-
bility (n + 1 − bαn1

z + (1 − α)n2
zc) and switches otherwise

if n = bαn1
z + (1 − α)n2

zc is also optimal. This implies
that (αn1

0 + (1− α)n2
0, αn

1
1 + (1− α)n2

1) also lies in the set
T (n0, n1, κ, C), and hence the latter set is convex.

A.2 Restriction of T to a compact set
In this section, we show that the map T can be restricted

to a compact subset X of R3
+, whose image T (X ) is a subset

of X .
Towards that goal, we define C̄,

¯
C as follows:

C̄ ,
f(1)

1− γ ,

¯
C ,

λ

λ+ µ1,0 + βλ

µ0,1

λ+ µ0,1 + βλ
e
� β

1−γ f(1).

It is straightforward that 0 <
¯
C < f(1) < C̄. Also, for

n ∈ N0, define

g(n) ,
1

1− γ

[
f(

√
n

2
) + exp(−

√
n

8
) +

2√
logn

]
+
γb(logn)

1/2c

1− γ f(1). (7)

Note g(n) is decreasing in n and g(n)→ 0 as n→ +∞. We
pick M such that

M , min{n : g(n) < (1− γ)
¯
C}.

Define X = [0,M ]2× [
¯
C, C̄]. The following theorem shows

that the image of map T is a subset of X for all values
therein.

Theorem A.1. For all (n0, n1, C) ∈ X , T (n0, n1, C) ⊆
X .

We prove this theorem in two steps. First, in Lemma A.2,
we show that for all values of (n0, n1, C) in X , the value

of C̃ lies in [
¯
C, C̄]. Then, we show in Lemma A.3, that for

all values of (n0, n1, C) in X , the optimal thresholds must
always be less than M . We begin with the first lemma.

Lemma A.2. For any (n0, n1, C) ∈ [0,+∞)2× [
¯
C, C̄] and

κ ∈ [βλ(1 − γ), βλ], let V̂ be the solution of the Bellman
equation (2) with given parameters (n0, n1, C, κ). Let π be

the unique stationary distribution ofMC(n0, n1, κ). Let C̃ ,∑
(z,n)2S π(z, n)V̂ (z, n+ 1). Then C̃ ∈ [

¯
C, C̄].

Proof. We first show C̃ ≤ C̄. We have

C̃ =
∑

(z,n)2S

π(z, n)V̂ (z, n+ 1)

≤ max
(z,n)2S

V̂ (z, n+ 1)

= max
z2f0,1g

V̂ (z, 1), (8)

where the last equality is implied by Lemma 4.1. Also note
Pexit(z, 1) = Psur(z, 1) = 0 for z ∈ {0, 1}, therefore

V̂ (z, 1) = Pdec(z, 1)V (z, 1) + Pres(z, 1)V̂ (1− z, 1)

+ Parr(z, 1)V̂ (z, 2), for z ∈ {0, 1}. (9)

From Lemma 4.1 we have V̂ (z, 2) ≤ V̂ (z, 1) for z ∈ {0, 1}.
Further, assume z� ∈ {0, 1} attains maxz2f0,1g V̂ (z, 1), then

V̂ (1− z�, 1) ≤ V̂ (z�, 1), and (9) becomes

V̂ (z�, 1) ≤ Pdec(z
�, 1)V (z�, 1) + Pres(z

�, 1)V̂ (z�, 1)

+ Parr(z
�, 1)V̂ (z�, 1). (10)

We have 1−Pres(z
�, 1)−Parr(z

�, 1) = Pdec(z
�, 1) = λ/(λ+

µz∗,1�z∗ + κ) > 0, along with (10) this gives V̂ (z�, 1) ≤
V (z�, 1). Thus, we have

V̂ (z�, 1) ≤ V (z�, 1)

= z�f(1) + γmax{C, V̂ (z�, 1)}

≤ z�f(1) + γmax{C, V̂ (z�, 1)}. (11)

If V̂ (z�, 1) < C, then by (8) we have

C̃ ≤ max
z2f0,1g

V̂ (z, 1) = V̂ (z�, 1) < C ≤ C̄.

Otherwise C ≤ V̂ (z�, 1) and (11) becomes

V̂ (z�, 1) ≤ z�f(1) + γV̂ (z�, 1),

which gives us

V̂ (z�, 1) ≤ z�f(1)

1− γ ≤
f(1)

1− γ = C̄.

Hence in both cases we have C̃ ≤ C̄.
Next we show C̃ ≥

¯
C. We have

C̃ =
∑

(z,n)2S

π(z, n)V̂ (z, n+ 1) ≥
∑
z=0,1

π(z, 0)V̂ (z, 1). (12)
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Note that

V̂ (1, 1) = Pdec(1, 1)V (1, 1) + Pres(1, 1)V̂ (0, 1)

+ Parr(1, 1)V̂ (1, 2)

≥ Pdec(1, 1)V (1, 1)

= Pdec(1, 1)[f(1) + γmax{V̂ (1, 1), C}]
≥ Pdec(1, 1)f(1),

and

V̂ (0, 1) = Pdec(0, 1)V (0, 1) + Pres(0, 1)V̂ (1, 1)

+ Parr(0, 1)V̂ (0, 2)

≥ Pres(0, 1)V̂ (1, 1)

≥ Pres(0, 1)Pdec(1, 1)f(1).

Therefore, with (12) we have

C̃ ≥ Pres(0, 1)Pdec(1, 1)f(1)
∑
z=0,1

π(z, 0).

Let N1
t be the number of agents in our system at time t,

and N2
t be that of an M/M/∞ queue with arrival rate κ and

service rate λ(1 − γ). Assume N1
0 = N2

0 . Using a coupling
argument, which we omit due to space limitations, it can be
shown that N2

t stochastically dominates N1
t for all t ≥ 0.

Therefore,∑
z=0,1

π(z, 0) =
∑
z=0,1

lim
t!+1

P(N1
t = 0, Zt = z)

= lim
t!+1

P(N1
t = 0)

≥ lim
t!+1

P(N2
t = 0)

= e
� κ
λ(1−γ) ,

where the last equality follows from the steady state distri-
bution of the M/M/∞ queue.

Therefore we have

C̃ ≥ Pdec(1, 1)Pres(0, 1)f(1)
∑
z=0,1

π(z, 0)

=

(
λ

λ+ µ1,0 + κ

)(
µ0,1

λ+ µ0,1 + κ

)
e
� κ
λ(1−γ) f(1)

≥
(

λ

λ+ µ1,0 + βλ

)(
µ0,1

λ+ µ0,1 + βλ

)
e
� β

1−γ f(1) =
¯
C,

where the last inequality is achieved on picking κ = βλ.

Next we restrict our choice of thresholds (n0, n1) to a com-
pact set.

Lemma A.3. Given (n0, n1) ∈ [0,+∞)2, C ∈ [
¯
C, C̄] and

κ ∈ [βλ(1 − γ), βλ], for any (ñ0, ñ1) ∈ T (n0, n1, κ, C), we
have ñ0 ≤M and ñ1 ≤M .

Proof. Suppose at t = 0 the 0th decision epoch the agent
starts, and there are n agents at the node. We show for large
enough n, the total expected payoff the agent receives if he
chooses to stay at t = 0 will be less than what he would
receive if he chooses to switch to a different location.

Let τ ∈ N0 be the first decision epoch the agent chooses to
leave. We seek to show that τ = 0. Suppose, for the sake of
arriving at a contradiction, τ ≥ 1. Let Ri be the immediate
reward the agent receives at his ith decision epoch if he is

still at the current node at the time he makes his ith decision,
and R be the total reward he receives on choosing to stay
at t = 0. We have:

E[R] =

+1∑
i=0

γiE[Ri1{τ > i}] + E[γτC]

≤
+1∑
i=0

γiE[Ri1{τ > i}] + γC. (13)

The first term in the first equation of (13) is the expected
total reward until the agent chooses to leave, and the sec-
ond term is the aggregated expected payoff on leaving. The
inequality follows from the assumption that τ ≥ 1. Our
goal is to show E[Ri1{τ > i}] vanishes as n → +∞, hence
E[R]→ γC < C as n→ +∞, and since C is the aggregated
expected payoff on leaving at t = 0, we would have τ = 0.

Let Ti be the time the ith decision epoch of the agent
starts. We have Ti ∼ Gamma(i, λ) since the interval be-
tween two consecutive decision epochs are i.i.d. exp(λ) and
Ti is the sum of i such intervals.

Let n0 = 1
2

√
n. We have for all i ∈ N+,

E[Ri1{τ ≥ i}] = E[Ri1{τ ≥ i}|NTi ≥ n
0]P(NTi ≥ n

0)

+ E[Ri1{τ ≥ i}|NTi < n0]P(NTi < n0)

≤ f(n0)P(NTi ≥ n
0) + P(NTi < n0)f(1)

≤ f(n0) + P(NTi < n0)f(1). (14)

We first show P(NTi < n0) vanishes as n → +∞. Consider
an alternative system with n agents at t = 0 where each
agent stays an exp(λ) time and then leaves the system. Let
N 0t be the number of agents in the system at time t. For
any agent in this alternative system, the probability he is
still in the system at time Ti is e�λTi , therefore we have
N 0Ti ∼ Bin(n, e�λTi).

Using a similar argument as in the proof of Lemma 4.1,
we can show for all t ≥ 0, Nt is no less than N 0t in all sample
paths, i.e., Nt stochastically dominates N 0t in the first order.

Let k = b(logn)
1
2 c. Note N 0Ti ≥ N 0Tk , for all i ≤ k. Thus,

pick tk = 1
2λ

logn. We have

P(NTi < n0) ≤ P(N 0Ti < n0)

≤ P(N 0Tk < n0)

≤ P(N 0Tk < n0|Tk < tk)P(Tk < tk) + P (Tk ≥ tk)

≤ P(N 0tk < n0|Tk < tk)P(Tk < tk) + P(Tk ≥ tk)

≤ P(N 0tk < n0) + P(Tk ≥ tk).

We have N 0tk ∼ Bin(n, e�λtk ). Given ne�λtk =
√
n >

1
2

√
n = n0, we can apply the Chernoff bound to obtain,

P(N 0tk < n0) ≤ exp(− (ne�λtk − n0)2

2ne�λtk
)

= exp(−n
0

4
)

= exp(−
√
n

8
).

Also, by Markov’s inequality we have

P (Tk ≥ tk) ≤ E[Tk]

tk
=

k

λtk
=

2b(logn)
1
2 c

logn
≤ 2√

logn
.
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Therefore,

P(NTi < n0) ≤ exp(−
√
n

8
) +

2√
logn

.

By (14) and using the fact that n0 = 1
2

√
n, we have

E[Ri1{τ > i}] ≤ f(

√
n

2
) + exp(−

√
n

8
) +

2√
logn

,

for all i = 1, . . . , k. Therefore, we have

1i


