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ABSTRACT
Carbon dioxide emissions resulting from fossil fuels (brown
energy) combustion are the main cause of global warming
due to the greenhouse effect. Large IT companies have re-
cently increased their efforts in reducing the carbon dioxide
footprint originated from their data center electricity con-
sumption. On one hand, better infrastructure and mod-
ern hardware allow for a more efficient usage of electric re-
sources. On the other hand, data-centers can be powered
by renewable sources (green energy) that are both environ-
mental friendly and economically convenient.

In this paper, we tackle the problem of targeting the us-
age of green energy to minimize the expenditure of running
multi-center Web search engines, i.e., systems composed by
multiple, geographically remote, computing facilities.

We propose a mathematical model to minimize the op-
erational costs of multi-center Web search engines by ex-
ploiting renewable energies whenever available at different
locations. Using this model, we design an algorithm which
decides what fraction of the incoming query load arriving
into one processing facility must be forwarded to be pro-
cessed at different sites to use green energy sources.

We experiment using real traffic from a large search engine
and we compare our model against state of the art baselines
for query forwarding. Our experimental results show that
the proposed solution maintains an high query throughput,
while reducing by up to ∼25% the energy operational costs
of multi-center search engines. Additionally, our algorithm
can reduce the brown energy consumption by almost 6%
when energy-proportional servers are employed.
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1. INTRODUCTION
Large commercial Web search engines receive a vast amount

of queries every day which are executed against an ever grow-
ing crawled and indexed collection of Web pages. One main
challenge of modern search engine architectures is to deliver
results back to users maintaining responses times that are
within a fraction of a second.

In order to be able to meet user latency expectations [26]
search engines comprise thousands of servers which in turn
are organized within several clusters and process queries in
a distributed manner [3]. These search clusters are hosted in
large data centers alongside with their associated infrastruc-
tures such as telecommunications, power supplying, ther-
mal cooling and fire suppression among others [2]. Query
response times can be further reduced if large-scale Web
search engines distribute their infrastructures and opera-
tions across several, geographically distant, data centers.
Each site maintains an index replica of the most recent
crawling of the Web [5] and user queries are subsequently
processed in the closest available data center to yield low
query response latencies.

While distributed facilities are the key to enable large-
scale search they raise economical issues in the form of main-
tenance, depreciation and operational costs. As a matter
of fact, the electricity expenditure to power a data center
can exceed its original investment cost [21], accounting for
over 10% of the total ownership cost [16]. Therefore, energy
prices may play a role in deciding where to build a data cen-
ter, favoring countries where energy is cheaper. In fact, en-
ergy shows both spatial and temporal price variations, with
its cost changing during the day due to supply/demand fac-
tors [24]. Query forwarding has been proposed as a factor
to reduce the operational costs of search engines [15, 29].
The main idea is to dispatch queries from the data center
that firstly received the request to a different one. In order
to reduce the energy expenditure, query forwarding aims to
shift the query load towards those data centers which incur
in the lowest energy price at every time step.

However, operational costs are not the only concern for
data center owners as the power consumption of these fa-
cilities also raise environmental concerns. For instance, the
ICT sector has been reported to be responsible for roughly
2% of global carbon emissions in 2007, with general purpose
data centers accounting for 14% of the ICT footprint [11].
Unsurprisingly, governments have drawn codes of conduct
and best practices for those large computing facilities [10,
31] since carbon dioxide emissions are the main cause of
global warming due to the greenhouse effect.
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Recently, Web companies have adopted eco-friendly poli-
cies to reduce data centers energy consumption and the rel-
ative carbon footprint. These range from designing more
energy efficient data centers to increasing the usage of green
energy – auto-produced or bought from local providers.1

Green energy comes from resources which are renewable
and do not emit carbon dioxide, such as sunlight and wind.
On the contrary, brown energy is produced using pollut-
ing resources like carbon or oil. Since green energy sources
are freely available, and thanks to governments incentives,
green energy is often cheaper than brown alternatives [13,
28]. However, in many cases green energy availability can
fluctuate over the day: for instance, solar and wind energy
production is susceptible to weather conditions. Given that
data center energy consumption depends on its usage [2],
additional – possibly brown – energy needs to be bought
from the energy market, when there is not enough available
green energy to sustain the data center workload.

In this work we target the energy-related operational costs
of large-scale, multi-center Web search engines with repli-
cated indexes. Our research is mainly motivated by the fol-
lowing observations:
• green energy is available at different sites in limited

quantities;
• green energy usage is assumed to be more convenient

than brown energy;
• query workloads of search data centers show spatial-

temporal variations, i.e., the workload of a data center
varies during the day and some data centers may be
under high traffic while others are mostly idle [27].

We propose a new query forwarding algorithm that aims
to reduce the overall energy operational costs of a multi-
center Web search engine. Our approach exploits both the
green energy sources available at different sites and the dif-
ferences in market energy prices. The problem of exploiting
green/brown energy to reduce costs when forwarding queries
is modeled as a Minimum Cost Flow Problem, taking into
account the different and limited processing capacities of
data centers, query response time constrains and commu-
nication latencies among sites. We evaluate the proposed
algorithms using workloads obtained from the Yahoo search
engine together with realistic electric price data, and we
compare it with a state-of-the-art baseline for query for-
warding in distributed search engines. Our results show
that, in general, query forwarding plays only a little role
in reducing the carbon footprint of current data centers. In
other words, we provide an additional evidence of the need
for more energy-proportional hardware, i.e., for hardware
which consume little or no energy when not being in use [2,
4]. More importantly, we show that our solution obtains en-
ergy expenditure reductions that range from ∼15% to ∼25%
with respect to standard multi-center Web search engines,
outperforming the state-of-the-art.

The rest of the paper is structured as follows: Section 2
provides background information and discusses the related
work. Section 3 proposes a model for a distributed search en-
gine, its energy consumption and its operational costs, while
Section 4 exploits such models to design a query forward-
ing algorithm leveraging the green energy available to the
search engine. Section 5 illustrate our experimental setup

1https://www.google.com/green/
http://www.microsoft.com/environment/
https://sustainability.fb.com

and Section 6 reports on the results of our comprehensive
evaluation. Finally, the paper concludes in Section 7.

2. BACKGROUND AND RELATED WORK
Despite the economical and environmental challenges posed

by data centers, there is only a limited body of work ad-
dressing these topics from the perspective of Web search
engines. Barroso et al. [3] introduced one of the first studies
on the energy consumption issues incurred by commercial
search engines, detailing several challenges related to high
density packaging, power consumption and cooling issues.
Some ballpark figures report that a standard server rack of
40 machines consume around 10 MWh of power per month.
Chowdhury [9] proposed the first research agenda on Green
Information Retrieval, advocating for the need of Green IT
and how cloud computing can play a key role in reducing the
environmental impact of search technologies. In line with
such agenda, Freire et al. [12] introduced a self-adaptive
model to manage the number of active query servers in a
fully replicated search engine while guaranteeing acceptable
response times. Their method exploits the historical and
current query loads of the system to autonomously decide
whether to activate a query server or put it in standby.
The model is formulated as a decision problem which tries
to optimize the power/latency trade off, by estimating fu-
ture query arrival and service times. Overall, the approach
brings an energy saving of 33% with respect to a naive base-
line where query servers are always active. Similarly, Lo
et al. [18] proposed a feedback-based model that trade offs
power savings for longer query response time in Web search
engines. Their approach dynamically scale servers’ CPUs
frequencies, so that latency requirements are barely met un-
der any workload. On a large server cluster the central-
ized implementation of this technique helps saving 20% in
power consumption, while 40% savings are expected for a
distributed implementation. In the context of multi-center
search engines these techniques can be employed in conjunc-
tion with query forwarding in order to deploy more power-
efficient architectures.

Geographically distributed search engines have been de-
scribed in previous works [1, 7, 8, 14] as an alternative so-
lution to centralized search engine infrastructures. These
works describe the architecture of a multi-site Web search
engine together with different query forwarding algorithms
to improve the effectiveness of the search results and/or
the system performance. While tackling efficiency issues,
these previous works do not explicitly address the opera-
tional costs of the search infrastructure, i.e. the ongoing
costs for operating the system.

Regarding the impact of financial considerations on multi-
site search engines, some recent studies have suggested how
to take advantage of the fact that energy prices and query
volumes varies over the day [15, 29]. Kayaaslan et al. [15]
investigated the possibility of dynamically shifting the query
workload between data centers in order to minimize total en-
ergy cost incurred by the search engine. In their approach
every index is replicated and a data center forwards queries
to remote sites with cheaper energy prices. The probabil-
ity of forwarding a query towards a particular data center
is proportional to the amount of queries processable by the
remote site and evenly shared among sites with an higher en-
ergy prices. Since queries are forwarded using a probability
distribution, we call this technique PROB in the rest of the
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paper. Kayaaslan et al. show that multi-sites search engines
can save from 12% to 35% in energy expenditure by using
their PROB approach when compared to IR systems which
always locally solve the incoming queries. However, their
solution does not take into account the presence of green en-
ergy sources. Teymorian et al. proposed the Rank-Energy
Selective Query forwarding (RESQ) algorithm, designed to
work with partially replicated indices [29]. RESQ aims to
maximize ranking quality of search results, while satisfy-
ing energy cost budget constraints. Simulations show that
RESQ can achieve more than 40% energy cost savings with
respect to [8]. However, Teymorian et al.’s work uses query
workloads that are not realistic, since they are randomly as-
signed to the data centers by sampling the AOL dataset.
Moreover, RESQ do not perform any query forwarding in
the case of fully replicated indices, therefore providing no
benefits in such scenario. Sazoglu et al. [25] took into ac-
count dynamic query arrivals and electricity costs and pre-
sented a financial cost metric to measure the price of cache
misses in search engines. Interestingly, the benefits provided
by cost-aware caching strategies are more evident when there
is an high variation in the query costs.

In the context of generic Internet services, a larger amount
of literature exists targeting the power consumption of general-
purpose data centers. Due to space limitations, we refer the
reader to [2, 22] for more specific references. Instead, we
here discuss two works particularly related to ours [17, 24].

Qureshi et al. [24] argued that Internet services can exploit
variation in energy prices for cutting down their electric bill.
Additionally, Le et al. [17] described a linear programming-
based solution to cap brown energy consumption, without
excessively increasing costs nor degrading performance. Our
work differs from these as we take into account aspects spe-
cific to Web search engines. Indeed, we explicitly consider
that search engines have strict response time constraints [26]
and query result quality can be degraded when these require-
ments cannot be met [15]. Also, we conduct our experiments
using real-life query workloads and arrival patterns. Finally,
we perform request forwarding using a novel approach based
on a Minimum Cost Flow Problem formulation.

3. PROBLEM MODEL
We model the infrastructure of a search engine as a geo-

graphically distributed system. We assume that the under-
lying systems are able to communicate and exchange work-
load using query forwarding, which we aim to leverage in
conjunction with different pricing of electricity and avail-
ability of green energy around the world. The main goal is
to use optimally the amount of green energy available at dif-
ferent sites to minimize the operational costs and, as a side
effect, the carbon footprint of the whole infrastructure. The
model analytically captures the global state of a search en-
gine infrastructure through a set of state variables. We will
implicitly assume that our model is statically valid during a
fixed time length or time slot ∆t.

Search Engine Model. We model a geographically dis-
tributed search engine as a set of data centersD = {D1, . . . , DN}.
These data centers are placed in different and distant lo-
cations across the planet. Each data center Di is a pair
(Fi, Bi), composed by a frontend Fi and a backend Bi (Fig-

ure 1).2 A frontend acts as a requests router: it receives user
queries and decides to whether forward them to its corre-
sponding local backend or to some remote backend. In prac-
tice, this implies that every frontend is connected through
the network to every backend. A backend is composed by
several server clusters, which perform the computation re-
quired to process an incoming query. Once the results are
computed, these are sent back to the frontend that received
the original request, which will deliver the results back to
the user who issued the query.

D1

D2

D4
D5

D3

Figure 1: Example of a Web search engine infrastructure
model.

Each frontend Fi collects queries from users geographi-
cally close to data center Di. These users act like a query
source Si sending to Fi a certain number of search request
ai over the time slot ∆t. The number of queries submitted
varies throughout the day, being higher at daytime than at
nighttime [27]. Due to timezone differences, in the same in-
stant, data centers will experience different query workloads.

After receiving a query, Fi may decide to forward this
request to any other backend Bj or to process it locally.
Our goal is to determine xij , i.e., how many search requests
from frontend Fi are routed to backend Bj .

In this formulation, we enforce that the following three
balance constraints hold.

1. Forwarded search requests can not be negative nor
fractional, i.e., for all i and j we must have xij ∈ N.

2. The sum of search requests dispatched by frontend Fi

must correspond to the search requests received from
the source Si, i.e., for all i we must have:

N∑
j=1

xij = ai . (1)

3. At each time slot, the backend Bj processes yj queries,
which come from the different frontends. Therefore,
for all j the following holds:

yj =

N∑
i=1

xij . (2)

2Free indexes are assumed to run from 1 to N if not specified
otherwise.
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Any backend Bj is composed by mj machines dedicated to
process queries. Whenever a query arrives it is processed
as soon as possible by a server in first-in first-out order. If
every server is busy processing other requests, the query will
wait in a queue. Since users expect results to be delivered in
a short amount of time and queries can not wait indefinitely
to be processed [26], each request must be processed within a
certain time budget τ since its arrival on a frontend. Conse-
quently, a query can be classified according to the time spent
in processing it, and the quality of the produced results:
• successful query – a server processes the query and suc-

cessfully terminates within τ milliseconds, generating
a complete list of results;
• approximated query – a server starts processing the

query, but the time budget τ expired before full eval-
uation. The query processing is early terminated and
a partial list of results is generated [15];
• failed query – the query spends all its time budget wait-

ing in queue. No server is able to process the query
resulting in an empty result list or an error page re-
turned to the user.

In our approach we wish to limit the number of approxi-
mated and failed queries as they can negatively impact the
user satisfaction. Arguably, the configuration of the system
should keep the amount of failed queries close to zero as they
might severely hurt the user perception of performance.

Once the result list is generated, the backend Bj sends
it back to the frontend Fi which has forwarded the relative
query. The underlying communication network introduces
latencies which implies that round trip times from Di to
Dj needs to be accounted for. RTT (i, j) is the overall time
required by the network to send a request from Fi to Bj ,
and the response back from Bj to Fi. Round trip times may
negatively impact query processing, as they consume a part
of the time budget of each forwarded query.3

Finally, the number mj of identical machines hosted by
the backend Bj determines Vj , the maximum query volume
the backend can sustain, this is, Vj is the maximum number
of queries per second that Bj can successfully process before
their time budget allowance expires:

Vj =
mj

µ
, (3)

where µ is the average query processing time.
The amount of queries yj received by backend Bj should

not exceed its capacity Vj . Whenever this happens the back-
end becomes overloaded with requests and starts to produce
approximated and failed queries. Therefore, for every j, we
impose that:

yj ≤ Vj . (4)

Moreover, we want any data center to be able to process
its locally assigned queries without being overloaded with
those forwarded by other frontends. Given so, a remote
frontend Fi should limit the number xij of queries forwarded
to Bj by a quantity bounded by Bj ’s residual capacity, i.e.,
the difference between the backend capacity and the locally
incoming queries, divided by the number of remote sites. In
line with [15], for any i 6= j we impose that:

xij ≤
⌈

max(0, Vj − aj)
N − 1

⌉
(5)

3RTT (i, i) is assumed to be zero.

Energy Model. In this work we consider the energy con-
sumed by a data center to be accounted exclusively to its
correspondent backend. Even if this assumption does not
hold in practice (for example, a considerable amount of en-
ergy is spent in thermal cooling or inefficient power supplies
causing electrical losses), these issues are present regardless
of queries being forwarded and do not affect the performance
numbers comparisons.

The power P absorbed by a server is a function of its
utilization level u [4], which depends on its busy time (time
spent performing computations). Since Bj ’s servers are ded-
icated to process queries, in our scenario a server’s busy time
accounts for the amount of time needed to process all the
queries assigned to the machine. If Q is the set of queries
assigned to a server then the utilization level u(Q) equals:

u(Q) =

∑
q∈Q sq

∆t
, (6)

where sq is the time required to solve a query q in Q, with
0 ≤ sq ≤ τ .

Power consumption increases linearly with its utilization
and it reaches its peak P̂ when u(Q) = 1. If a server is
idle, i.e. u(Q) = 0, it consumes only a small fraction of its

peak power αP̂ , with 0 < α ≤ 1/2 [2]. Therefore, the power
consumption of a server as a function of its utilization level
u(Q) can be written as:

P (Q) = αP̂ + (1− α)P̂ u(Q) . (7)

At each time slot ∆t we consider the energy Ej consumed
by the backend Bj to be the sum of the electricity required
by its mj servers. Assuming Bj being composed by homo-
geneous machines, for all j we have:

Ej =

mj∑
k=1

P (Qjk)∆t , (8)

where Qjk is the set of queries processed by the k-th server
in Bj . By combining Equations 6 and 7, we have that:

Ej = αmjP̂∆t+ (1− α)P̂

mj∑
k=1

u(Qjk)∆t

= αmjP̂∆t+ (1− α)P̂

mj∑
k=1

∑
q∈Qjk

sq . (9)

We define Qj as the full set of queries processed by the j-
th backend’s machines, i.e., |Qj | = yj . Finally, the average
energy Ej consumed by backend Bj during a time slot ∆t
can be expressed as a function of the mean processing time
µ as:

Ej = αmjP̂∆t+ (1− α)P̂ µyj = Ij +Hjyj (10)

The quantity Ij represents the energy consumed by Bj

over ∆t seconds when all its servers are idle. Instead, the
quantityHj represents the energy consumed to process queries.

Cost Model. We assume that every data center receives a
limited amount of green energy per time slot, denoted as
Gj . This green energy is available to the data center be-
cause it has its own green power plant, or because of special
agreements between the search engine company and the en-
ergy provider. If Gj is not sufficient to satisfy the energy
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consumption Ej the data center needs to buy additional,
possibly brown, energy from the market, denoted as Mj .

The number of queries that, on average, can by processed
by backend Bj by only exploiting green energy is:

gj = max

(
0,
Gj − Ij
Hj

)
= max

(
0,
Gj − αmjP̂∆t

(1− α)P̂ µ

)
. (11)

We consider that each data center Dj can consume en-
ergy available in two different prices per energy units. We
denote as pMj the unitary cost of market energy at site Dj .
This price varies throughout the day, typically being higher
at daytime than during night [24]. Similarly, we define pGj
to be the price of green energy at data center Dj . We as-
sume the green energy to be more convenient than the mar-
ket energy [13, 28]. Therefore, we would like to use only
green energy to operate the backends and to process search
requests, to reduce the search engine operational cost and
carbon footprint. However, when Gj units of energy have
been used in a given time period, we must resort to buy Mj

units of market energy, to power the data center Dj for the
remaining of the time slot. Finally, the operational costs Cj

of a data center Dj can be expressed as:

Cj =

{
pGj Ej if Ej ≤ Gj

pMj Ej − (pMj − pGj )Gj otherwise
(12)

Our goal is to minimize the overall operative cost in run-
ning a geographically distributed search engine, that is:

min

N∑
j=1

Cj . (13)

4. THE MIN COST FLOW QUERY
FORWARDING ALGORITHM

In this section we propose and discuss a new query for-
warding algorithm, called Min Cost Flow (MCF). This algo-
rithm is executed periodically at the frontends of the data
centers to decide if an incoming query must be processed lo-
cally or forwarded to another data center’s backend in order
to minimize the overall operational cost of a geographically
distributed search engine. During every time interval ∆t, we
need to know how many queries each data center Di must
process locally or forward to data centers Dj , i.e., we need to
compute values for the xij variables introduced in Section 3.
In the following, we will show how these can be obtained by
solving an instance of the Minimum Cost Flow Problem [6].

Algorithm 1 illustrates the MCF query forwarding algo-
rithm. Firstly, each data center Di must be able to locally
compute the xij ’s values for building a forwarding table Xi,
such that Xi[Dj ] = xij . This table is build every ∆t seconds
(lines 1–7). In order to generate this table, the algorithm
needs an estimate of the query volumes ai arriving to each
data center in the next time slot ∆t. The algorithm also
requires per-site information related to its maximum sus-
tainable query volume Vi, the available green energy Gi and
the energy prices (pMi , pGi ) at that time interval. We as-
sume that data centers exchange messages every ∆t seconds
containing all those values [15].

At this point, whenever a query q arrives to the frontend
Fi, the data center estimates its required processing time
sq (line 9). Next, Fi uses its forwarding table Xi to decide

1 every ∆t seconds do
2 A = {a1, . . . , aN}
3 V = {V1, . . . , VN}
4 Γ = {G1, . . . , GN}
5 Π = {pM1 , . . . , pMN , pG1 , . . . , pGN}
6 Xi = GenerateForwardingTable(A,V ,Γ,Π)

7 end

8 forall the incoming queries q ∈ Q do
9 sq = EstimateProcessingTime(q)

10 J = {Dj : Xi[Dj ] > 0 ∧ sq +RTT (i, j) ≤ τ}
11 if J is empty then
12 process q locally

13 else
14 Dj = select Dj ∈ J in a round robin fashion
15 Xi[Dj ]← Xi[Dj ]− 1
16 if Xi[Dj ] = 0 then
17 remove Dj from Xi

18 end
19 forward q to Dj

20 end

21 end
Algorithm 1: The MCF query forwarding algorithm.

to which sites it could forward a query to (line 10) and the
frontend selects in a round-robin fashion a backend Bj from
Xi, such that Xi[Dj ] > 0 (line 14). This decision takes into
account the expected round trip time from Fi to Bj . If the
sum of the expected query processing time and the expected
round trip time is smaller than the time budget τ , then q is
forwarded to Bj (line 19). The value Xi[Dj ] is decreased by
one and j is removed from Xi as soon as Xi[Dj ] = 0 (lines
15–17). It is possible that no remote backend can process
the query within the time budget; in such case the query is
processed locally by default (lines 11–12).

Generating a forwarding table. The forwarding table Xi

used in Algorithm 1 is obtained by solving an instance of the
Minimum Cost Flow Problem (MCFP) [6] derived from the
model of the distributed search engine discussed in Section 3.

The flow starts from some source nodes and every unit
of flow needs to reach one or many sink nodes. In our
case, queries represent the flow circulating in the network.
Nodes are used to represent flow balance equations, i.e., the
sum of incoming flow must be equal to the sum of outgoing
flow. Every edge is labeled with three values representing
the amount of flow passing through the link, its total capac-
ity and cost per unit of flow.

S1

S2

F1

F2

B1

B2

a1, �, 0

a2, �, 0

x11, V1, 0

x22, V2, 0

x12, V2 � a2, 0

x21, V1 � a1, 0

K1

K2

G

M

T

y1, V1, 0

y2, V2, 0

zG
1 , g1, p

G
1

zG
2 , g2, p

G
2

zM
1 , �, pM

1

zM
2 , �, pM

2

wG, �, 0

wM , �, 0

Figure 2: The MCFP instance to minimize the operational
cost of a geographically distributed search engine.

Figure 2 illustrates how the operational cost minimiza-
tion problem with two data centers can be represented as a
MCFP instance. Source nodes are the query sources S1, . . . , SN
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described in Section 3. These nodes are connected to their
correspondent frontends F1, . . . , FN , using edges with infi-
nite capacity and zero cost. Each source node Si originates
ai units of flow (i.e., queries). It is not known, a priori, how
many queries will arrive on frontend Fi during a particu-
lar time slot ∆t. For this reason, ai is estimated based on
previous query arrivals (this process is detailed in Section 5).

Each frontend Fi is connected to every backend Bj . The
arcs among frontends and backends have no cost. However
they have different capacities. Edges (Fi, Bi) have capacity
Vi, i.e., the maximum volume of queries per second sustain-
able by backend Bi (see Equation 4). Instead, edges (Fi, Bj)
with i 6= j have capacity dmax(0, Vj − aj)/(N − 1)e, as per
Equation 5. The flows on the (Fi, Bi) edges represent the
values for the xij variables defined in our model.

An artificial node Kj is introduced for every backend Bj ,
connected through an edge with zero cost and capacity Vj .
These nodes enforce the constraint yj ≤ Vj for every backend
Bj (see Equation 4). The nodes Kj are connected to two
more nodes, namely Green (G) and Market (M). The first
node models the query processing by using green energy,
while the second node by using market energy. Each Kj

node is connected to the Market node through edges with
cost pMj and infinite capacity. Moreover, each Kj node is

connected to the Green nodes by edges with cost pGi but
limited capacity gi, i.e., the number of queries that Bi can
process by using just green energy (see Equation. 11). The
flows zGj and zMj are just an artifact included to satisfy the

flow balance equations yj = zGj + zMj .
Finally, the G and M nodes are connected to the sink

node T . The edges ending in T have zero cost and infinite
capacity and the flows wG and wM are an artificial mean to
guarantee that the flow entering in T is equal to the flow
leaving the sources Si, i.e.,

∑N
i=1 ai = wG + wM .

Note that every edge but (Ci, G) and (Ci,M) has zero
cost. Therefore, to minimize the flow cost indirectly mini-
mizes the cost function defined by Equation 13.

Instances of the MCFP can be solved in polynomial time
by using linear programming tools. More importantly, while
MCF runs at every query arrival, the GenerateForward-
ingTable function needs to be executed less frequently (ev-
ery ∆t seconds).

Estimating the query processing time. There are several
approaches to estimate the processing time of a query before
executing it in the search engine backend. Documents rel-
evant to a query are retrieved from the inverted index, by
exhaustively traversing the posting lists relative to the query
terms. In this case, processing time relates to the posting
list lengths of the query terms [20]. Dynamic pruning tech-
niques, such as MaxScore [30], can be deployed to speed up
query processing. These techniques skip over portions of the
posting lists by avoiding the evaluation of non relevant doc-
uments. When dynamic pruning is applied, queries with the
same number of terms and similar posting list lengths can
have widely different processing times and query efficiency
predictors can be used [19].

Algorithm 1 is agnostic to the particular EstimatePro-
cessingTime() implementation. In the experimental sec-
tion, we assume that this function uses an oracle which is
employed in both the baseline and new algorithm.

5. EXPERIMENTAL SETUP
In this section, we determine empirically the potential of

the proposed model and algorithm for reducing the opera-
tional cost of a distributed search engine without negatively
impacting on its efficiency. In particular, we address three
research questions, as follows:

1. What is the impact of the proposed approach and the
baselines on the quality of service of the search engine?

2. Does our approach diminish the data centers’ carbon
footprint?

3. Do our MCFP-based model and the query forwarding
MCF algorithm achieve energy cost savings comparable
with reasonable baselines?

To answer questions 1, we measure the number of approxi-
mated and failed queries produced by the search engine. To
answer question 2, instead, we need to evaluate the good-
ness of system in exploiting green energy. In fact, when the
search engine misses the opportunity to consume green en-
ergy, it turns to the energy market – buying possibly brown
energy and increasing its carbon footprint. For this rea-
son we measure the system green energy e�ciency, defined
as the ratio between the amount of used green energy and
the amount of green energy globally available to the search
engine. Finally, to answer research question 3, during our
simulations we measure the overall electricity expenditure of
the search engine.

In the remainder of this section we define the experimental
setup to address our research questions covering the base-
lines, the data centers, the data, the energy prices and the
workload estimates.

Baselines. We will compare these results against two base-
lines. The first baseline, called NoForwarding, represents a
standard multi-center Web search engine. It does not per-
form any query forwarding: the queries received by a fron-
tend are processed in the local backend.

The second baseline, PROB, forwards the queries follow-
ing the approach in [15]. The technique works as follows. At
each query arrival, the data center Di estimates the work-
loads (i.e., incoming queries) of each data center. Then, Di

looks at which data center is underloaded, i.e., which site
has the opportunity to process forwarded queries. If these
other data centers have a lower energy price, Di simulates
to redistribute its own workload towards these sites. How-
ever, Di conservatively assumes that other data centers will
try to do the same. Therefore, Di equally divides such for-
warding opportunity with its “competitors”. The remaining
queries are simulated to be processed locally. At the end of
the simulation, the data center Di has computed how many
queries xij it would forward to data center Dj . A probabil-
ity distribution is generated accordingly to these values and
the incoming query is forwarded to a data center following
such distribution.

Search data centers. Our experiments simulate a real dis-
tributed Web search engine with six data centers: DC-A,
DC-B, DC-C, DC-D, DC-E and DC-F. We assume that these
data centers are located in the capital cities of six different
countries. In order to not disclose sensitive information,
the countries are not revealed. We approximate network la-
tencies between frontends and backends by considering the
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Figure 3: Query workload for six different Yahoo frontends
during 24-hours.

speed of light on copper wire (200,000 km/s) and the bird-fly
distances between the relative cities [8, 15].

We assume that the data centers’ backends contain iden-
tical servers. In this work, we experiment with two different
kinds of server, i.e., we variate the α parameter defined in
Section 3. The first server type represents normal servers
which consume half of their peak power when idle (i.e.,
α = 0.5). The other type represents next-generation servers,
which are more energy-proportional, with α = 0.25 [2].

The number of machines in a backend is determined by
taking the reciprocal of the backend capacity in Equation 3.
The maximum sustainable query volume, Vi, is set to be the
99.95th-percentile of the observed query loads, taken every
second over the logs.

Data. We use real-world queries and arrival times sampled
– in the order of tens of millions of points – from six dif-
ferent frontends of the Yahoo Web search engine, spanning
one week. The first day of the log (see Figure 3) is used to
tune our approach and the baselines. The remaining days
are used in the simulation, i.e., queries are sent to the simu-
lated data centers following the same load and arrival times
reported in the log.

The processing times, on the other hand, are randomly
sampled from an empirical distribution. This distribution is
obtained by processing one million of unique queries using
Terrier [23]. The platform is hosted on a dedicated Ubuntu
14.04 server, equipped with 32GB RAM and an Intel i7-
4770K processor. Queries are taken from the MSN 2006
log, while documents relevant to such queries are retrieved
from the TREC ClueWeb09 collection (cat. B). The corpus
is indexed removing stopwords and stemming terms. The
Elias-Fano schema is used for compression [32], and the re-
sulting inverted index is kept in main memory. At retrieval
time, dynamic pruning is applied by using the MaxScore
algorithm [30]. The experimental mean processing time is
100 ms and its 99th-percentile is 589 ms. During our simu-
lations, the query time budget τ is fixed to the reasonable
value of 500 ms. This threshold has been chosen to avoid a
drop ratio greater than 0.5%. We note that this value can
be re-scaled if we consider shards with different sizes, for
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Figure 4: Market electricity prices and green energy price.

instance, when each machine index stores a lower amount of
Web pages.

Electricity prices. We also need to set the price of green
and market energy available in each data center, along with
the amount of green energy available at each location.

Market electricity price varies by country and by hour of
the day. To simulate this behavior, we generate a market
electricity cost configuration in each data center. This con-
figuration follows the price fluctuations observed over one
week on the United Kingdom day-ahead market.4 Prices
are modified to reflect the cost of energy in the countries
where the data centers are placed.5 Also, prices are shifted
accordingly to the timezone of the corresponding data center
country. One day of the resulting electricity costs is shown in
Figure 4. All times are normalized to the Greenwich Mean
Time, i.e., GMT+0.

We assume that data centers have their own green power
plants. Considering construction and maintenance costs,
these produce energy for 0.036 e/KWh, which is cheaper
than market energy [28]. As stated in Section 3, we assume
that each data center Di receives a fixed amount Gi of green
energy at every time slot ∆t. This quantity covers a frac-
tion of the maximum amount of energy that Di can possibly
consume in ∆t seconds. The maximum energy consumption
of a data center is given by the product of the number mi of
its servers times their peak power consumption P̂ times the
time slot length ∆t. Therefore, at each time slot, a data-
center Di receives Gi = γmiP̂∆t KWh of green energy. We
denote by γ the green energy availability ratio and range this
value from 0 to 1 in the experiments. Green energy avail-
ability can fluctuate over the day. For instance, solar and
wind energy production is susceptible to weather conditions.
While our experiments do not consider this aspect, MCF can
deal with variable green energy availability.

Workload estimate. Both PROB and MCF algorithms need
to accurately estimate the workloads of data centers a1, . . . , an
in every time slot, to decide where to forward queries. Fol-

4http://www.nordpoolspot.com accessed 01-06-2015
5https://en.wikipedia.org/wiki/Electricity_pricing
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Table 1: Time windows size (in seconds) for estimating the
incoming query workloads of different data centers.

α = 0.25 α = 0.5
γ PROB MCF PROB MCF

0.0 200 40 200 40
0.1 200 40 190 40
0.2 200 40 200 40
0.3 200 40 200 40
0.4 200 40 190 40
0.5 200 1 210 40
0.6 200 1 190 40
0.7 190 10 200 1
0.8 200 1 200 10
0.9 200 1 200 1
1.0 200 10 200 10

lowing [15] we assume that data centers exchange messages
about their current workload every second (i.e., ∆t = 1s).
This also corresponds to the execution frequency of the Gen-
erateForwardingTable function (see Algorithm 1). In
the succeeding time slot, each data center estimates the
workloads of remote sites by using their recent history. Con-
servatively, a future workload is approximated to the max-
imum query volume observed over a time window for that
remote data center [15]. In practice this implies that we
need to select a time window size such that the workload
estimates are as accurate as possible. As a working example
consider a data center DC-A that is highly loaded. If the
window size is too small and the query load briefly drops,
we incur in the risk of forwarding too many queries to DC-
A erroneously assuming that it is now lightly loaded. This
situation will result in an high number of failed queries. On
the other hand, if the time window is too large and DC-A
is actually becoming lightly loaded, we will mistakenly pro-
duce low forwarding rates assuming that DC-A is still highly
loaded. This implies that the algorithm will effectively miss
the opportunity to save costs. Therefore, we use the first
day of query log to determine a reasonable time window
size. We set this size to the minimum possible value such
that the failed query rate remains below the 0.5% threshold,
as in [15]. The ideal time windows are reported in Table 1
and consistently used for the experiments. Note that MCF
needs smaller time windows than PROB to estimate the in-
coming workloads.

6. RESULTS
In this section, we report on a comprehensive evaluation of

MCF and PROB.The reported results are presented as per-
centage improvements over the NoForwarding baseline. We
compare consistently the NoForwarding, PROB and MCF al-
gorithms with varying configurations, namely the idle server
power consumption fraction α and the data center green en-
ergy availability γ. We assume α = 0.5 for current servers
and α = 0.25 for next-generation servers, while we vary γ
from 0 (data centers completely powered by market energy)
to 1 (data centers completely powered by green energy).

We aim to determine if our proposed MCF algorithm al-
lows to markedly reduce market power consumption and op-
erational costs with latency comparable to that achieved by
the baselines. In particular, we firstly discuss the impact of

the MCF approach on the quality of service of the system,
measured in terms of the amount of approximated and failed
queries. Then we evaluate the eco-friendliness of our algo-
rithm with respect to the baselines, measured in terms of
their green energy efficiency. Finally, we address our key re-
search question concerning the cost savings MCF can obtain.
The outcome of the experiments is summarized in Table 2.

Quality of service. The two first main columns of Table 2
report the values concerning the degradation in effectiveness
of the different approaches, when queries are being processed
in a distributed fashion across different data centers.

Results state that our proposed approach does not neg-
atively impact the overall service quality of the multi-site
Web search engine. Across all the tested green availabil-
ity ratios γ, the MCF algorithm reduces the number of ap-
proximated queries. Moreover, thanks to query forwarding,
approximated queries can be reduced from 1% to 11% per-
cent with respect to NoForwarding, when currently existing
servers (i.e., α = 0.5) are utilized. Similar values are observ-
able when the data center is equipped with more energy-
proportional servers (α = 0.25).

Table 2 also shows that MCF achieves the best absolute re-
sult in reducing the approximated queries with respect to the
PROB baseline when a large fraction of the data centers is
powered by green energy. However, while the PROB baseline
maintains an almost constant decrease of ∼11% of approx-
imated queries across all green energy availability configu-
rations, MCF does not forward many queries for high green
energy availability values, since a large quantity of cheap
green energy is available locally at each data center. Conse-
quently, data centers may incur in local overload situations
that force them to early terminate some queries.

Note that we do not report the number of failed queries
since in all configurations this value is always below the 0.5%
threshold imposed in Section 5. Similarly, we do not report
here the query response times, as the query time budget τ
is fixed to 500 ms.

Green energy efficiency. As seen in Section 5, green en-
ergy efficiency gives us a measure of the search engine eco-
friendliness. Table 2 shows that query forwarding plays a
limited role in improving the green energy efficiency of a
multi-site search engine built of current technology servers
when the amount of green energy is limited (γ ≤ 0.5). This
effect happens because half of the energy consumed by the
data centers is used just to keep the servers operative and
idle, without processing any query. Therefore, there is no
opportunity for processing requests using green energy when
γ ≤ 0.5. Similarly, MCF and PROB behave like NoForward-
ing also when green energy is abundant, i.e. γ ≥ 0.8; in this
case, in fact, a query is processed using green energy whether
it is forwarded or not. With current servers, MCF shows eco-
friendliness when 0.5 < γ < 0.8, up to 1.66% when γ = 0.6.
On the other hand, PROB proves to be less green energy
efficient than NoForwarding. In fact, PROB is unaware of
green energy availability and forwards queries where market
energy is less expensive. While doing this, PROB misses the
opportunity to exploit locally available green energy. Fur-
thermore, it will not forward queries to data centers where
market energy is costly but green energy is available.

Green energy efficiency improves when employing more
energy-proportional servers. If α = 0.25, MCF becomes
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Table 2: Percentage of (a) Approximated queries, (b) green energy efficiency improvements, and (c) cost savings with respect
to NoForwarding. The best results are reported in bold.

(a) Approximated queries (b) Green energy efficiency (c) Cost
α = 0.25 α = 0.5 α = 0.25 α = 0.5 α = 0.25 α = 0.5

γ PROB MCF PROB MCF PROB MCF PROB MCF PROB MCF PROB MCF
0.0 -11.15 -10.70 -11.16 -10.84 0.00 0.00 0.00 0.00 -9.86 -9.45 -4.71 -4.50
0.1 -10.95 -10.77 -11.08 -10.85 0.00 0.00 0.00 0.00 -11.96 -11.55 -5.39 -5.17
0.2 -11.20 -10.89 -11.03 -10.80 0.00 0.00 0.00 0.00 -15.44 -14.82 -6.30 -6.07
0.3 -11.03 -10.85 -10.82 -10.60 -2.58 0.26 0.00 0.00 -16.84 -19.52 -7.64 -7.34
0.4 -11.23 -11.46 -11.35 -10.95 -4.07 3.93 0.00 0.00 -9.02 -25.51 -9.75 -9.30
0.5 -11.16 -10.08 -11.11 -10.84 -2.19 5.37 0.00 0.00 -1.35 -21.73 -13.21 -12.67
0.6 -10.98 -7.77 -11.03 -11.21 0.02 1.14 -1.76 1.66 -1.23 -5.75 -5.52 -15.79
0.7 -11.19 -11.73 -10.98 -8.48 0.06 0.10 -0.35 1.22 -0.49 -0.66 -0.37 -6.16
0.8 -11.07 -3.21 -10.88 -11.37 0.00 0.00 0.03 0.04 -0.04 -0.17 -0.21 -0.28
0.9 -10.99 0.85 -11.16 -1.25 0.00 0.00 0.00 0.00 -0.04 -0.20 -0.01 -0.08
1.0 -11.07 -6.83 -11.20 -7.01 0.00 0.00 0.00 0.00 -0.03 -0.09 -0.00 -0.04
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Figure 5: Percentage of green energy efficiency improve-
ments w.r.t. NoForwarding on a daily scale, over the first
day of the test query log, for (a) α = 0.25, γ = 0.4 and (b)
α = 0.5, γ = 0.6.
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Figure 6: Percentage of cost savings w.r.t. NoForwarding on
a daily scale, over the first day of the test query log for (a)
α = 0.25, γ = 0.4 and (b) α = 0.5, γ = 0.6.

more effective in exploiting green energy, improving over a
larger range of green energy availability 0.3 < γ < 0.8, up
to 5.37% when γ = 0.5. Larger effects can be noticed on a
smaller timescale, as highlighted in Figure 5. Instead, the
PROB baseline proves to be inadequate in reducing the car-
bon footprint of a search engine, even when energy-proportional
servers are employed.

Cost savings. Both MCF and PROB algorithms can help
reducing the energy operational cost of a multi-site search
engine, as shown in Table 2). When current servers are
used, MCF and PROB similarly behave until the green en-
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Figure 7: Percentage of cost savings w.r.t. NoForwarding,
for different values of α and γ.

ergy availability γ ≤ 0.5. Indeed, half of the energy available
has to be consumed just to keep them operative. However,
in order to be able to process queries, data centers need
to buy additional energy from the energy market leaving
no opportunity for MCF to exploit green energy for query
processing. In any case, even when γ ≤ 0.5, both PROB
and MCF forward queries to sites with cheaper market en-
ergy, successfully reducing the operational costs of the whole
search engine. As highlighted in Figure 7, when green en-
ergy availability is 0.5 < γ < 0.8, MCF reduces the energy
operational cost up to almost 16% w.r.t NoForwarding. Such
savings are even higher if we look at daily variations, as
shown in Figure 6.

Conversely, PROB reduces the operational cost by only
less than 6% when 0.5 < γ < 0.8. This effect happens again
because PROB is not able to use the information about the
green energy availability, while MCF is able to exploit this
knowledge. When γ ≥ 0.8, little differences can be see with
NoForwarding as green energy becomes highly available at
every sites, and query forwarding does not make any dif-
ference. If we use more energy-proportional servers, larger
benefits are observable over a wider range of green energy
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availability. MCF reduces the energy expenditure of NoFor-
warding by more than 25% when just 40% of green energy is
available. Again, these benefits are even larger when consid-
ering smaller time scales, as per Figure 6. Under the same
configuration, PROB can only save less than 10%.

Finally, it is important to highlight that MCF obtains the
best results when 0.3 < γ < 0.8. This reinforces the impor-
tance of our results, as data centers would probably work
with limited amounts of green energy due to its susceptibil-
ity to external variables such as the weather conditions.

7. CONCLUSIONS
In this paper we propose a novel model of a multi-center

Web search engine that characterizes the frontend and back-
end components of the system, together with their process-
ing capacity, to represent the energy operational cost of the
search engine in presence of green energy resources. Using
this model, we propose MCF, a novel query forwarding algo-
rithm based on a Minimum Cost Flow Problem formulation.
MCF is able to leverage the different pricing and availability
of brown and green energy to reduce the energy expendi-
ture of search systems. At the same time, MCF effectively
takes into account the various backend processing capacities
to maintain an acceptable service quality of the system.

We simulate the proposed algorithm using real query work-
loads obtained from six frontends of a live search engine and
realistic electric price data. We compared our results with
two baselines: NoForwarding, which represents a standard
multi-site search engine; and the state-of-the-art PROB al-
gorithm, which greedily forwards queries to the cheapest site
following a estimated probabilistic distribution. We showed
that with current technology servers, query forwarding plays
a limited role in reducing the carbon footprint of search en-
gines, although when a data center is equipped with next
generation hardware query forwarding is a promising and
effective technique to exploit green energy usage. This fur-
ther reinforces the need for energy-proportional hardware in
Web search engine data centers. Finally, we illustrated how
MCF performs better than PROB in achieving cost savings,
obtaining energy expenditure reductions that range from
∼15% to ∼25% with respect to the NoForwarding config-
uration. These savings are possible when limited quantity
of green energy are available at the different remote sites,
stating the importance of the MCF algorithm since green
energy is typically attainable only in limited quantities due
to external variables like weather conditions among others.
For future work, we will consider more complex scenarios
where different green power sources like solar and wind are
available, and they vary dynamically during a day at the
different sites as well as the development of more complex
query workload forecast predictors.
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