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ABSTRACT
Online tracking poses a serious privacy challenge that has
drawn signi�cant attention in both academia and industry.
Existing approaches for preventing user tracking, based on
curated blocklists, su�er from limited coverage and coarse-
grained resolution for classi�cation, rely on exceptions that
impact sites’ functionality and appearance, and require sig-
ni�cant manual maintenance. In this paper we propose a
novel approach, based on the concepts leveraged from k-
Anonymity, in which users collectively identify unsafe data
elements, which have the potential to identify uniquely an
individual user, and remove them from requests. We de-
ployed our system to 200,000 German users running the
Cliqz Browser or the Cliqz Firefox extension to evaluate
its e�ciency and feasibility. Results indicate that our ap-
proach achieves better privacy protection than blocklists, as
provided by Disconnect, while keeping the site breakage to
a minimum, even lower than the community-optimized Ad-
Block Plus. We also provide evidence of the prevalence and
reach of trackers to over 21 million pages of 350,000 unique
sites, the largest scale empirical evaluation to date. 95%
of the pages visited contain 3rd party requests to potential
trackers and 78% attempt to transfer unsafe data. Tracker



the expenses of the loss of privacy of the users. Privacy is a
right that should be protected [37, 35].

In this paper we propose a step further towards the solu-
tion of this problem. Unlike other anti-tracking systems like
Disconnect, Privacy Badger, Ghostery, Adblock Plus,NoScript
and Firefox Tracking protection which are already quite pop-
ular, the system described in this paper does not rely on
blanket blocking of 3rd parties based on blacklists. Instead,
our method, inspired by k-Anonymity [38] with some tweaks
to limit known caveats, �lters only the data elements sent
to trackers that are not considered safe, where safety is de-
termined by consensus among all users running our anti-
tracking system.

The advantages of the method presented in this paper
are two-fold: 1) it is friendlier to trackers, data needed to
run their services will continue to exist, unless of course, it is
considered unsafe. And, 2) it o�ers better coverage, less false
positives and faster detection than systems based on curated
blacklists. Inspecting the trackers data collaboratively in
real-time results in better protection for the users as we will
see in detail in Section 5.

An additional contribution of this paper is empirical eval-
uation of the trackers’ prevalence and reach in the wild.
200,000 Cliqz users have been tracking the behavior of all
trackers present in all sites they visit, which constitutes the
largest �eld study about tracking to date, summarized in
Section 3.

2. MOTIVATION
This section will cover basic concepts of tracking as well

as an overview of the state of the art. For clarity, we will
use real-world examples, but without losing of generality.

2.1 Dissecting Tracking
Tracking is a mechanism to record certain browsing pat-

terns of a user in order gain information. A priori there
is nothing wrong with it. If a user visits a travel site and
then starts to receive advertising about hotels on her favorite
news site, one could argue that this is actually a use-case
that bene�ts the user. The re-targeting described does not
imply a loss of privacy by default. The loss of privacy comes
as a result of how tracking is typically implemented.

A example of a typical implementation is the travel site
kayak.de and the news site huffingtonpost.co.uk, which share
a tracker owned by Bluekai. There is a piece of javascript
code (tags.bkrtx.com/js/bk-coretag.js) that gets exe-
cuted on the user’s browser every time they visit any page
from either kayak.de or huffingtonpost.co.uk.

This piece of javascript typically sends the source page s
(the page being visited) in the HTTP-referer as well as the
following information:

bklc=55f6ad4d

l=https://www.kayak.de/

ua=f82610bef1d54776cde605b90b0c7949

t=1444203542439

m=020810a3483fc8307caa483fd192bc02

lang=07ef608d8a7e9677f0b83775f0b83775

sr=1440x900x24

cpu=4b4e4ecaab1f1c93ab1f1c93ab1f1c93

platform=6d44fad93929d59b3929d59b3929d59b

plugins=d4de4a68c91685d0ff4838ce3714359a

cn=df62ddfcfa96f717f2ee5a7d912e7102

Among this data we can see the string 55f6ad4d which
most likely identi�es uniquely the user, acting as a uid. We
say most likely because there is no way to know with ab-
solute certainty. What we do know however, is that
this particular value has only been seen by this user
out of a very large population and it does not change
when the users visits different sites, therefore, whether
it is a user unique identifier (uid) or not is somewhat
irrelevant. If it was not, or was not intended to be,
it could still be used as one. Detecting such values is
the core of the anti-tracking system presented in this paper.

From the data, the tracker Bluekai has the ability to learn
the relationship (u, s), meaning user u visited page s. Be-
sides kayak.de and huffingtonpost.co.uk, Bluekai is on almost
4,000 other sites. That means that Bluekai could learn a siz-
able chunk of the browsing history of a given user, and likely
without their knowledge.

The proportion of the a user’s history a tracker can even-
tually learn depends on the reach of the tracker, i.e. the
percentage of site-owners using the tracker’s javascript on
their sites. If a tracker has only a small reach, then there
is little risk. However, our analysis of tracker reach (see
Section 3) shows that this is rarely the case. Bluekai, for
example, can track users across 1.3% of all sites and 3.4%
of the pages visited by 200,000 users. Trackers can learn a
signi�cant portion of the user’s browsing, e.g. do-it-yourself
portals, porn sites or medical forums.

At this point two important questions arise: 1) why do
site-owners agree to put such code on their sites? And 2)
do trackers really want to know all the information about a
user? Unfortunately we cannot provide an answer account-
ing for all the dimensions, but we can share our expertise
and learnings from interacting with trackers.

2.1.1 Why site owners use trackers?
The Web has evolved to become a Software as a Service

mash-up, where site-owners tend to outsource certain func-
tionalities to 3rd parties. These service providers o�er an-
alytics of visits, site performance, social widgets, content
aggregation, comments systems, content delivery, and tar-
geted advertising, just to mention some. The side-e�ect of
such services is that 3rd parties have the ability to run their
code in the user’s browsers, and consequently, gain the abil-
ity to track them.

Take for instance Facebook ’s share button. Site owners
hope that ease of sharing will translate to more tra�c to
their sites. If this is not reason enough, there is often also
the users’ expectation for sites to have a share button. For
one reason or another site owner might eventually add the
share button. When that happens Facebook has the ability
to become a tracker, as protrayed in the following example.

Tracking from a free widget: every time you visit a
page with a Facebook component, they will receive the page
URL via HTTP-referrer as well as the following extra data,

datr=_zr8VGU5cOvsTE_CjXTxF9

lu=TTA08XEc9ieLocEDius7A

fr=0SoRz_o5WZz6ioQ.BV5h.WE.FYS.0.AWZSMd

c_user=100002835278978

via Cookie when you are logged in. In this case your uid
is explicit and known: it is the c_user parameter. When
you logout, the c_user parameter is removed but the other
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data remains1. It is di�cult to assess whether the remaining
data is privacy sensitive or not. However, by comparing data
across multiple users, we �nd that

datr=_zr8VGU5cOvsTE_CjXTxF9

is actually seen once and only once per user in a very large
population. Therefore, datr might not be an intended uid,
but it can be used as such2.

We cannot determine what is the intended use of datr

but this question, as already mentioned before, is irrelevant.
The data element is unsafe, regardless of its function, be-
cause it can be associated to a single user, and consequently,
should not be sent to Facebook. This uniqueness may be
unintentional|an unexpected side-e�ect of some other func-
tionality. In such cases we could argue that privacy protec-
tion systems like ours do not only bene�t users but also
bene�t trackers since it o�ers a guarantee that they are not
unintentionally collecting user identi�ers.

2.1.2 Why trackers track the way they do?
So why do Facebook and Bluekai send a data element that

can be used as a uid? Sometimes the motivation may be that
they want to learn the user’s browsing behavior, but often
it is just a by-product of a particular technical or implemen-
tation choice.

In the case of share buttons, displaying personalized infor-
mation in the context of an external page requires a uid to
identify whose information needs to be retrieved. Likewise,
Bluekai requires knowledge of users’ intent or interests in
order to re-target advertising e�ectively. To do this Bluekai
builds a pro�le for the user’ browsing history, using a uid as
a foreign key to group data by user.

The fact that the need for a uid can be justi�ed due to
technical choices does not make it less problematic with re-
gard to privacy. As a matter of fact, we hope that the pres-
sure of anti-tracking systems, including the one presented in
this paper, will motivate trackers to rethink their service’s
design so that users’ privacy is not compromised as an unfor-
tunate by-product of a particular implementation, especially
given viable alternative approaches [39, 15, 34].

We stress that in all of the examples in this paper, we
state that companies have the ability to track, but this does
not imply guilt on their part. Although trackers in general
have the ability to learn private associations, like a user u
visiting a site s, this does not mean that they will keep this
data forever, or that they will misuse it in any way. Data
might be deleted upon receipt, or only used in real-time and
never stored. This, however, remains a matter of trust.

We believe the vast majority of companies collecting such
data are to be trusted. However as long as unsafe data is
received there is always a possibility of a privacy breach. Be-
sides hacking, vulnerabilities include disgruntled employees
[6], companies going bankrupt and selling their assets [32]
or plain and simple government intervention [14, 26].

2.2 Related work on Tracking Protection
Much e�ort has been put into tracking protection. There

are many di�erent systems which can be categorized in sev-
eral groups depending on their modus operandi. However

1Study [3] commissioned by the Belgian Privacy Commis-
sion found that Facebook is tracking users when opted out.
2Perhaps the parameter used to hack into accounts [4].

they all aim for the same goal: to prevent 3rd party trackers
from learning information about the user. Note that some
systems provide anti-tracking as an additional feature be-
cause is related to its main goal. AdBlock Plus’s primary
focus, for instance, is blocking advertisement.

Noscript [29] takes the most conservative approach with
regard to privacy: it prevents any javascript code from being
executed in the browser. This blocks most forms of commu-
nication between the user’s browser and the 3rd party, how-
ever, this approach can cause a lot of problems with user
experience since modern sites rely heavily on javascript.

Privacy needs to be preserved but there is an obvious
trade-o� between privacy and usability. As a matter of fact
this is one of the main issues of anti-tracking, to protect pri-
vacy while not breaking, or, if that is not possible, minimiz-
ing the breakage of the site’s appearance and functionality.
This trade-o� has some interesting rami�cations.

Minimizing site breakage is not only needed for user satis-
faction and retention, but it also has an indirect impact on
the privacy protection. If sites break, users might attempt
to solve it by adding exceptions and by creating custom rules
to the anti-tracking engine. These rules may open gaps in
their security protection, at least for the majority of users
who may not really understand the underlying implications
of the whitelisting or the exceptions they are adding.

We would like to add that besides minimizing malfunc-
tions on the user side, these systems should also try to min-
imize malfunctions on the tracker side too.

The most common approach to anti-tracking is the use of
curated blocklist of trackers, e�ectively blacklists. Ghostery [13],
Disconnect [7] Adblock Plus [31], and beta Firefox Tracking
protection [25] use this approach, where communication be-
tween the user’s browser an a 3rd party in the blocklist is
blocked (limited to Cookies or to the whole HTTP request).

Creating and maintaining precise and up-to-date block-
lists is a di�cult proposition, as past experience in areas like
Spam and Phishing detection systems reported [36, 20]. In
order to classify 3rd parties as trackers, one �rstly needs to
be aware of new domains that appear, and secondly one must
regularly re-evaluate that known domains have not changed
their behavior. There are however at least two further prob-
lems with the blocklist approach:

1) Blocklists typically operate at the level of domain suf-
�x3. Once the 3rd party is classi�ed as tracker it will get
blocked. This approach however is very coarse-grained. Our
empirical evidence shows (see Sect. 5.1) that about 78% of
requests to 3rd parties blocked by Disconnect ’s blocklist ex-
hibit a mixed behavior, meaning that sometimes the content
should be blocked and sometimes not. Domain name does
not o�er the proper resolution for an accurate classi�cation.
While the 78% �gure is novel, the problem was known. In
fact it is the underlying reason why blocklist based systems
are evolving to o�er a �ner resolution control by extend-
ing blocklists to accept regular expressions and other case
based exceptions. Why would �ner grained resolution mat-
ter? It would be reasonable to assume that if a 3rd party
is tracking for some cases it should be blocked even when
if not. This assessment is however incorrect because of the
aforementioned trade-o� between site breakage and protec-
tion; too aggressive blocking produces site-breakage which

3although there are some which increase the resolution to
full URL or some sophisticated regular expressions
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if not handled, will force users to abandon anti-tracking or
to create rules that subvert protections.

2) The other problem with blocklists is whether one can
determine if the behavior of a 3rd party warrants inclusion in
the blocklist. The fact that trackers have a mixed tracking
behavior makes this evaluation even more di�cult, given
that the case of pure behavior is already a di�cult task.
Catching a tracker involves analyzing dozens or hundreds
of requests trying to �nd a pattern or data element that
is considered suspicious. Furthermore, this behavior rep-
resents an ever-moving target, for example the crackdown
on 3rd party cookies has led to the rise of a multitude of
other tracking methods to replace them, e.g. local storage,
etags, �ngerprinting, HTML5 canvas [8, 23, 1]. Every time
a new method to �ngerprint is detected, 3rd party trackers
that were considered safe should to be reanalyzed for safety.
These issues put those working with blocklists to protect
users’ privacy at a serious disadvantage in the arms-race
against trackers. Additionally, many times data elements
that could be uids will simply escape detection, as we will
see in Sect. 5.3.

Due to the coarse-grain resolution of blocklists, and the
di�culty of detecting a 3rd party by requests inspection,
we decided to explore a more algorithmic solution. In this
respect ours is not the �rst attempt: Privacy Badger [9]
relies on heuristics to identify tracking domains, however,
it seems that in practice their approach alone leads to a
signi�cant amount of site breakage [11, 18, 19]. We rely on
global information, where users cooperate on tracking the
trackers. Another important di�erence in our approach is
that we do not focus on identifying and blocking trackers but
rather on deciding which pieces of data sent to 3rd parties
are safe or unsafe with regard to privacy. The empirical
evaluation of our method in Sect. 5 shows greater protection
coverage than state-of-the-art methods based on blocklists,
while keeping site breakage at bay.

3. TRACKING IN THE WILD
Before describing our system let us present our �ndings

on the prevalence and reach of trackers on the Web.
Using the anonymous data needed to collectively evaluate

safeness (see Sect. 4.1) we can get a comprehensive picture
of the prevalence and reach of trackers for 350,000 di�erent
sites, visited by di�erent 200,000 German users for a full
week period4. This is the largest empirical evaluation to the
best of our knowledge. Previous work focused on studying
tracking for a subset of sites, e.g. the top 200 sites according
to Alexa or on a small population5 and provided evidence
that trackers are present in 99% of the most popular News
sites. Acar et al. [1] analyzed a much larger set of 100K sites
to characterize tracking methods, the study however did not
include real users (tra�c was automated using Selenium).
Our results reproduce previous �ndings as well as provde and
an answer to the question of whether tracking is localized on
specialized domains, like popular and heavy monetized sites,
or it is a wide-spread phenomena that a�ects the whole Web.

3.1 Prevalence of Trackers
4Between 28/09/15 and 04/10/15
5Kontaxis and Chew [19] included longitudinal data from
users running Firefox nightly (140K) but only 0.5% of those
users had the Firefox anti-tracking enabled.

For seven days we observed 200,000 di�erent users vis-
iting roughly 21 million Web pages. The visits went to 5
million unique pages (URLs) spanning over 350,000 unique
sites (domains). Figure 1a shows the number of 3rd parties
that are classi�ed by our method as potential trackers for
each page load (a user visiting a page/URL) as well as for
each unique �rst party site (domain). Figure 1b shows the
same relationship but counting only the cases when we have
seen evidence of an attempt to send unsafe data to one of
those potential trackers.

In Figure 1a we can see that 95% of page loads produce a
request to a potential tracker, i.e. a 3rd party that exhibits a
connectivity pattern typical for a tracker6. 24% of the page
loads result in requests to at least 10 of these entities.

As we already mentioned in the discussion about tracker
blocklists in Sect. 2.2, trackers often have a mixed behavior,
and not all 3rd party requests to trackers contain privacy
sensitive data. Therefore, we would like to provide a more
precise picture of the amount of page loads subjected to
tracking. In Figure 1b we only consider page loads that
produce a request to a potential tracker and that the request
contains data considered unsafe, i.e. data elements that are
user identi�ers or can be used as such (see 4.1 for a formal
de�nition). With this much stricter constraint, the number
of page loads with no tracking involved increases to 22%,
which means that the remaining 78% of all page loads are
subjected to tracking.

Figures 1a and 1b also show that the proportion of unique
domains (sites) with large numbers of trackers is less than
the number of pages loaded with this many trackers, as ex-
pected given the positive correlation between tracker’s oc-
currence and popularity of the sites.

3.2 Trackers Reach
Naturally not all potential trackers belong to the same or-

ganization so it would be incorrect to conclude that a single
organization can track users across 78% of their browsing.
That would only be the case if trackers were to share data,
note that some trackers share data via exchanges, e.g. bid-
ding for users.

To assess approximately the reach of di�erent organiza-
tions we use Disconnect [7] blocklist, which groups its 2000
trackers by organization. Figure 2 depicts the top 20 orga-
nizations ranked by their aggregated tracker’s reach.

All trackers owned by Google combined (according to Dis-
connect ’s blocklist) are present on 62% of page loads. If we
restrict the analysis to those page loads with unsafe data
elements, Google’s reach lowers to 42%. This means 42% of
the pages loaded by 200,000 Germans for a 7 days period
produced a request from the user’s browser to a tracker con-
trolled by Google and that request contained data that is or
could be used as a user identi�er.

Criteo, an organization that provides ad-retargeting, is
in the 4th position on the list, with a reach of 9% of the
page loads. Note that 9% might look like a modest number,
especially when comparing it to Google or Facebook but it is
not. 9% translates to roughly 1.2 million page loads, about
1.1 tracking signals per user per day.

The results collected from our large scale study are conclu-
sive: tracking users on the Web is wide-spread phenomena
not limited to popular or heavy monetized sites.

6A more formal de�nition is provided in Sect. 4.1
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Figure 1: Distribution of number of requests to potential trackers from 21 million page loads from 200,000 users. The 0
column means that zero trackers were present on the page load, thus no tracking.
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Figure 2: Top 20 organizations by combined tracker’s reach. The ownership of a tracker is based on Disconnect’s blocklist [7].
The �rst column accounts for the percentage of page loads in which a request to the potential tracker is issued by the user’s
browser. The second column is when the request also contains unsafe data.

People who are not concerned about privacy might con-
sider that there is no real risk if an organization such as
Google can track which articles they read on Engadget.com
or Quora.com since they can be perceived as neutral with
regard to privacy. But this is not the full picture, tracking
is prevalent on virtually all sites. Trackers owned by Google
are also present on pages on AshleyMadison.com, videos on
PornHub, posts about diseases of Gutefrage.net and a long
list composed of tens of thousands of sites. Organizations
able to track users across thousands of sites have the ability
to infer aspects like religious beliefs, trade union member-
ship, sexual orientation, etc. Handling this kind of data
requires stronger requirements and generally the users’ con-
sent according to German law [5].

4. DESIGN AND IMPLEMENTATION
As we already stated throughout this paper, our approach

is not based on detecting 3rd party trackers but rather on
dynamically identifying data elements that are not safe with
regard to privacy. In this Section we will formally de�ne

concepts like safe, unsafe and potential trackers as well as
show how they can be implemented in a system.

4.1 Determining Safeness
The typical approach is based on trying to make sense of

what 3rd parties are trying to achieve in order to classify
them as trackers or not.

In this paper we advocate for a di�erent approach to the
problem, related to k-Anonymity [38]. Rather than scanning
for data elements that could be used as a user identi�er (uid)
by analyzing its semantics, origin or method of creation we
rely on a simple fact: if a data element was intended by a
3rd party be used as a uid then we should expect that only
and only that user is sending that particular data element.

Therefore, our rationale is simple, data elements that are
only and always sent by a small number of users must be
considered unsafe with regard to privacy. Such elements are
dangerous since they are intended to serve as user identi�ers
(uid



data cannot be e�ectively related to any particular user (in
upcoming Sect. 4.1.1 we will present some caveats of this
claim).

We assess safeness as follows: for every request that user’s
u browser makes to a 3rd party, the QueryString component
of the request is parsed to obtain a list of tuples where each
tuple t takes this form,

t = 〈u, s, d, k, v〉 (1)

where u is the user, s is the source domain (the domain
of the page the user visited), d is the 3rd party domain,
k is a parameter and v is the parameter value. To miti-
gate known caveats of k-Anonymity on high-dimensionality
data [27, 2, 28] we do not limit k and v to be the explicit pa-
rameter/value in the QueryString (see Sect. 4.1.1 for further
details). For clarity, let us assume that users share the tuple
t with a centralized service hosted by Cliqz without worrying
about privacy (see Sect. 4.2) or e�ciency (see Sect. 4.3).

The �rst thing to determine is whether the 3rd party do-
main has a connectivity behavior that can be associated
with trackers. We classify a 3rd party domain as potential
tracker if the 3rd party domain d is (1) present in more
than 20 di�erent source domains s in a 7 days period, (2)
has been seen at least 5000 times in this period, and (3) a
proportion of requests have been observed attempting can-
vas �ngerprint, sending private browser data, sending cookie
values, or frequently sending QueryString data7.

Note that potential trackers can be seen as some sort of
a blocklist, however, due to the mixed behavior of trackers
we cannot base our privacy intervention solely on it. In the
case that a 3rd party is on our list of potential trackers we
need to determine their safeness level . We will consider
any data element that has been seen at least kg times by
di�erent users in a tg period safe, formally,

safe ⇐⇒ |〈u = ∗, d, v〉| ≥ kg for tg (2)

the values of key and source domains (k and s, respec-
tively) are aggregated, therefore not shown in the equation.
What we are looking for is the cardinality of the set of unique
users u for which a given value v was sent (attempted) to a
given potential tracker d. In our current con�guration, kg is
set to 10 and tg is set to 7 days, i.e. a data element v sent
to d will be safe only when it has been seen by at least 10
di�erent users in a period of 7 days. If that condition is not
met the data v should be altered (or blocked) to prevent the
potential tracker from receiving it.

The default safeness level for data that has never been
seen is, consequently, unsafe. This implies that all new data
elements collected by a 3rd party that are bound to become
safe must undergo a transient state, in which they will be
considered unsafe. That is the only way by which one can
be sure that the data is not tied to any particular user.

The transient state can be split in two parts: 1) the time it
takes for the value to reach the safeness quorum, determined
by kg and by the number of requests containing that value.
And, 2) the propagation lag, which is the time it takes from
when safeness quorum is reached until users learn about it.
We defer the analysis of the impact of it to Sect. 5.4, but we
can anticipate that it is very small.

7The proportions tested for each behavior are 5%, 5%, 1%
and 50% respectively.

When the safeness quorum is reached the data element is
added to a set Gwl that acts as the whitelist of safe values.
This set is shared to all browsers by an updating mechanism
described in Sect 4.3.1 so that local browser can decide lo-
cally whether to allow or prevent a value to be sent to a po-
tential tracker. Relying only on Gwl poses a couple of prob-
lems that need to be addressed, one is size, which is quite
critical since Gwl needs to be transferred to all browsers.
The other is the transient state itself, which has to be min-
imized.

To address the shortcomings from Gwl we introduce an-
other set that is built locally in each of the user’s browser
called Lwl. This set is built following Eq. 3 which does not
require global information,

safe ⇐⇒ |〈d, k, v = ∗〉| ≥ kl for tl (3)

if the same key k for a potential tracker d has been seen
to hold more than kl di�erent values v for a period of tl the
whole combination of d−k is considered safe. In the current
con�guration, kl is 3 and tl is 7 days. This means that the
user has seen at least 3 di�erent values for the same d − k
combination (key and potential tracker respectively). This
helps to decreases the transient state for a wide variety of
cases, e.g. a parameter from a 3rd party encoding a product-
id or a timestamp. In such cases the combination d− k will
be added to Lwl and also considered safe, not by value, but
by key, i.e. any value for the key k and potential tracker d
combination will be allowed.

If the key is considered safe it implies that all values of the
key are also safe, and consequently, the key can be used to
prune the global set Gwl. Instead of holding every possible
safe value of d− k−∗ it will only keep d− k that subsumes
them. The pruning is performed locally but it can also be
performed globally on the Gwl if certain conditions are met.
When a browser adds a new d−k combination to Lwl it will
be sent to the Cliqz service. If more than 10 di�erent people
per hour report that a d− k is safe it will be added to Gwl

with an expiration time of two days, this will cause pruning
of Gwl with the consequent reduction of size.

4.1.1 Robustness against Attacks
It is important to stress that our method has some angles

that an adversary might attack to subvert the safeness eval-
uation. This would be true even in the case were the inner
working of the system were not publicly available. In any
case, vectors of attack can be prevented once known.

An adversary might try to exploit the collaborative nature
of our system, for instance by creating instrumented users
that collude to de�ne a combination d−k safe when it is not,
thus exploiting Eq.3 pruning on Gwl. This can be prevented
using anomaly detection and selectively testing the validity
of the client’s claims on the server side.

An adversary might also try to attack known vulnerabil-
ities of k-Anonymity which plays an important role in our
safeness quorum. k-Anonymity su�ers from issues on high-
dimensionality data [27, 2, 28], one can take a combination
of multiple variables that are not unique but once combined
they become unique. For instance, an adversary might break
a 32 bits uid parameter into 4 di�erent parameters encoding
8 bits each, the values then would most likely pass the safe-
ness quorum since they can only take 256 di�erent values
across the whole population. We counter such attacks, de-
parting from vanilla k-Anonymity, because our list of tuples
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(Eq. 1) is not limited to explicit parameters of the data, we
also create arti�cial parameters where values are combined
and split. Following the attack example, if two parameters
encoding partial uid were to be combined that would yield
a virtual parameters encoding 16 bits (65K di�erent values)
likely to fail on the safeness quorum.

We have outlined two potential attacks and their counter-
measures but there are more vulnerabilities, including un-
known ones for which no countermeasure can be devised
until discovered. Our method is not immune to attacks|a
\smart" tracker can try to subvert our system to continue
tracking users on the Web. We are not getting rid of the
arms-race between trackers and people working on privacy
protection. It will continue. But thanks to our system track-
ers will have a much harder time; it is no longer enough to
hide or obfuscate the origin of a particular data element,
trackers will also have to \convince" our system that enough
members of the community have seen it.

4.2 Private Data Sharing
In the previous section we saw that we needed to col-

lect tuples 〈u, s, d, k, v〉 to determine safeness. These tuples,
however, constitute a privacy breach since they contain the
user identi�er u and the source domain s of the page visited,
which is precisely the information that trackers should not
collect. Naturally, we do not collect that information either.

To maintain privacy we need to make sure that no user
identi�er u is ever sent to Cliqz. The user browser will keep
an in-memory counter of the signatures of seen tuples, buck-
eted by hour. The �rst time the tuple is seen in one hour
period the increment will yield a 1, then and only then tu-
ple (with u removed) will be sent to Cliqz. Following this
scheme, users will only send the same signal (tuple) once per
hour if seen. As a consequence, the server can assume that
a repeated signal in the same hour interval comes from two
di�erent users, without having to rely on the explicit user
identi�er u.

Preventing the user identi�er u to reach Cliqz’s servers
is not enough, the tuple still contains sensitive information.
By design, our system only requires comparisons between
strings, so the real values are not needed and can be obfus-
cated by a one way function. All values from the tuple t
will be hashed using MD5. Additionally, s and d can also be
truncated to keep only the �rst 16 chars of the hash to allow
for plausible deniability at the expenses of a very small colli-
sion probability. We are aware that a brute-force dictionary
attack to reverse the MD5 is possible but quite unfeasible
given the wide range of values that k and v can take.

The same applies to the tuple 〈d, k〉 from the user’s Lwl

set. Once per hour, if the browser is active, the full list of
items contained in Lwl will be sent to Cliqz.

Data is sent to Cliqz using the Human Web framework [22],
which provides communication anonymity by means of a
proxy relay. Furthermore, we must avoid the possibility
to create sessions on our server side. To achieve this the
browser will send each signal on a new request (to avoid
grouping) and the request will be sent at a random time
since creation (to avoid temporal correlations).

4.3 Implementation
Let us now present the implementation of the system in

the browser. Every request to a 3rd party will be suspended
until the checks below are resolved:

1. 3rd party cookies will always be blocked, regardless if
the 3rd party is a potential tracker or not.

2. if a GET request, we will build the list of tuples T
from the QueryString data following Eq. 1. Tuples
whose value v is shorter than 12 characters (or 8 in
the case the value is not a word) are excluded. For
each t in T we will calculate its safeness level,

concat(Ht(d), H(k)) ∈ Lwl∨
concat(Ht(d), H(k)) ∈ Gwl∨
concat(Ht(d), H(v)) ∈ Gwl =⇒ safe

(4)

by building a string from the concatenation of d, k
and v hashes, and doing a membership tests against
the sets Lwl (implemented as a Dictionary) and Gwl

(implemented as a Bloom Filter to minimize size, with
a false positive rate of 0.1%). If not safe the data
element will be blocked, either by: replacing it by an
empty string, replacing it by a placeholder string or by
shu�ing the value.

3. if a POST request. Data elements in the POST will be
blocked by a more conservative criteria. If they match
a value of the Cookie, or if they match a value from
a call to browser-info like plugins, build-id, oscpu, or
if values are also present in the QueryString and were
not safe according to the previous point.

4. all tuples in T are queued for the o�-line component
of the anti-tracking system.

5. check that exceptions do not apply (see Sect. 4.3.2).

This real-time checking adds between 1 to 12 ms to each
3rd party request depending on the number of parameters.
It is not a negligible amount but note that these calls are
usually asynchronous to the page load.

The o�-line component responsible for building the Gwl

and Lwl sets is run as an independent process decoupled
from the real-time requests. The memory footprint can be
broken down to 390 KB for Gwl once implemented as Bloom
Filter. Gwl contains on average about 100K elements (28%
of them are key-based and the rest are values). On the
other hand, Lwl and the dictionary used to keep counters of
the tuples’ signature bucketed by hour account for less than
20KB.

The bandwidth overhead details are as follows, besides
telemetry, all the signals from the user’s browser to Cliqz
servers amount to 90 KB per day on average. This �gure
does not include maintaining consistency between the global
Gwl that the copy running on the users’ browser, which will
be dealt in the next section.

4.3.1 Maintaining Gwl Consistency
The global whitelist set Gwl is built in a centralized way,

using the anonymous signals contributed by all users running
the anti-tracking system. Gwl is highly dynamic, keys and
values are added as per Eq. 3 and 2 and removed according to
their expiration times. The assessment for safeness however
is based on the local copy of Gwl in each user’s browser as
per Eq. 4. Thus maintaining consistency among the global
and the local copy of Gwl is a key factor in our system.
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We rely on an eventual consistency model; changes on
the global set will be reected eventually to the local one.
However the time it takes for a change to propagate is im-
portant, and needs to be bound. We aim to minimize the
propagation lag. That is values that are declared safe on
the global Gwl but that local copies are still treating as un-
safe and, therefore, blocking it. However, a fast propagation
time also involves higher bandwidth costs for the browsers.

After some experimentation we settled for a setup by
which Cliqz publishes a brand new Gwl set daily as a ma-
jor version (typically 350 KB) and every 10 minutes incre-
mental additions are published as revisions to that version
(typically 1.5 KB). This version/revision setup is due to the
particularities of Bloom �lters, which allow for very e�cient
merge operations (N sets can be merged using an bit-wise
OR operation) but does not allow set removals operations.
Therefore, we cannot provide a fully incremental solution
and daily checkpoints, i.e. the major version, are required
to accommodate the expiration of keys and values.

With the current setup, a browser that is always online
will have a to download about 566 KB per day to have a
worst-case propagation lag of 10 minutes.

4.3.2 Exceptions to the Rule
There are certain cases in which data elements that are

unsafe are not blocked for the sake of minimizing break-
ing the site’s functionality or appearance. As mentioned in
Sect. 2.2 site breakage can impact negatively privacy cov-
erage as the result of custom rules an exceptions added by
the users trying to make the sites work as expected. This
particular issue will further analyzed in Sect. 5.2 where we
empirically measure site breakage.

Another exception revolves around 3rd party DOM el-
ements, for instance sites with the Google +1 button, or
sites using Disqus to power its commenting system, which
in turn allows for OAuth login through Facebook and Twit-
ter. When a user explicitly interacts with a 3rd party DOM
element the anti-tracking validation will be suspended for
any 1st or 3rd party domain that can be attributed to trig-
ger as a consequence of that event. Unfortunately perfect
attribution is not always possible, due to complex work-ows
involving callbacks, redirects and nested calls. So we must
rely on heuristics to determine attribution. A case by case
analysis seems to indicate that our attribution heuristics do
not su�er from false positives but we cannot rule out the
possibility that they exists. In the case of a false positive
attribution we might allow data that did not undergo our
safeness evaluation reach a tracker.

5. SYSTEM EVALUATION
In this section we will proceed to the evaluation of the

anti-tracking system in di�erent dimensions.

5.1 Protection Coverage
The �rst thing to evaluate is the protection coverage of-

fered by our system compared to related work. We chose
Disconnect, since they have published their blocklist, and
Kontaxis and Chew [19] (henceforth KC ), which is based on
a hand-picked subset of 1500 domains of Disconnect’s block-
list selected to minimize site breakage8. Although we would
8Since we do not know which subset was picked we evaluated
1000 random subsets based on Disconnect blacklist and kept
the one with better protection coverage.

Table 1: Privacy coverage contingency tables. For each con-
�guration the contingency table shows the percentual break-
down of request to 3rd parties according to whether they are
in a blocklist (denoted b) or not and whether they contain
unsafe data elements or not (unsafe denoted ¬s). Note that
b for the case of Cliqz means that is on the list of potential
trackers, not necessarily blocked. Whereas b for Disconnect
and KC means that is on the blocklist, therefore, blocked.

All Pages Alexa top 200
US domains

b ¬b b ¬b

Cliqz
s 31.8 12.5 56.1 10.4
¬s 51.7 4.0 31.5 2.0

Disconnect
s 25.7 18.6 46.2 20.3
¬s 40.4 15.3 27.6 5.9

KC: Kontaxis &
Chew (est.)

s 10.7 33.6 9.3 57.3
¬s 25.7 30.0 19.6 13.6

have liked to include Adblock Plus [31] in the measurement
it was not technically possible9.

We choose an direct empirical evaluation rather than a
side-to-side comparison on a limited set of sites like [33].
Such experiments provide more detail on the inner workings
of the systems analyzed but they cannot quantify the privacy
protection in a real-world scenario. Since we have the luxury
of data on 350K unique sites visited by 200K users we believe
that a direct evaluation is more relevant.

Table 1 depicts the requests contingency tables for the 3
anti-tracking methods in two di�erent scenarios, requests to
any page, and requests to pages from the top-200 visited
sites in the US, according to Alexa. The contingency table
splits the requests according to two di�erent attributes: 1)
s and ¬s, whether the requests contained only safe data
elements or not. And 2) b and ¬b whether the 3rd party of
the request was in the blocklist of the method. Each set of
four values in the table add up to 100% of the requests.

Let us focus �rst on the all pages scenario. Cliqz anti-
tracking (our system) makes an intervention to protect pri-
vacy on 51.7% of the requests, when the 3rd party is a po-
tential tracker and the request contains an unsafe data el-
ement (b ∧ ¬s). Disconnect makes an intervention (blocks)
whenever the 3rd party is on its blocklist, which happens
for 66.1% of the requests (40.4% from b ∧ ¬s + 25.7% from
b ∧ s). This seems to indicate higher coverage from Discon-
nect, but 25.7% of the requests blocked contained no unsafe
data elements at all. If we calculate the ratio of blocked and
safe by all blocked we will see that 38.8% of the blocked
requests by Disconnect are false positives according to our
safeness measure.

Blocking these requests is unnecessary, it does not increase
the privacy coverage and can result on an increase of site
breakage. KC reported that they used only a curated subset
of the full Disconnect blocklist to minimize site breakage, our
estimated results on KC show that unnecessary blocking of
requests drops to 29.4%, thus minimizing the probability of
site breakage due to unnecessary blocking.

9Adblock Plus blocklist contains a large number of regular
expressions which cannot be evaluated with the data avail-
able to us. For privacy reasons the 3rd party domain for
each requests is hashed, see Sect. 4.2
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Less aggressive blocking has the side-e�ect of allowing re-
quests that should have been blocked. For KC, using the
best estimated subset of Disconnect blocklist, we observe
that 30.0% of all requests were not blocked and contained
unsafe elements (¬b ∧ ¬s), thus we can consider these as
misses in privacy protection. For the full blocklist of Dis-
connect the misses percentage drops to 15.3%. According
to our safeness criteria, both systems allow a fair amount of
requests that contain privacy sensitive data. Note that for
Cliqz (¬b∧¬s) is not zero but 4%, this accounts for the num-
ber of requests with unsafe elements send to 3rd parties not
in our list of potential trackers. These requests are allowed
regardless of the safeness level because we consider 3rd par-
ties that do not meet the criteria for potential trackers are
not dangerous, due to lack of reach (see Sect. 4.1).

Taking this into consideration we should revisit the per-
centage of misses for Disconnect and KC to exclude requests
not present in our list of potential trackers, i.e. not danger-
ous because of limited reach. The revisited misses �gures
are 12.3% for Disconnect and 25.4% for KC, still very high,
showing that both systems let a fair amount of requests to
potential trackers containing unsafe data pass through.

The same analysis can be performed by the requests to
the top-200 sites according to Alexa. Results are consistent,
and, as one might expect, popular sites have better protec-
tion coverage. Still, the coverage o�ered by Disconnect is
not total, 5.9% of the requests still contain unsafe data ele-
ments, 4.7% in the case we exclude requests not in our list
of potential trackers.

The better performance in terms of coverage of our system
mostly arises from the ability to block not at the coarse-
grained level of the 3rd party request, but rather on the
requests’ individual data elements.

Figure 3 depicts the cumulative probability that a tracker
present both in Disconnect blocklist and in our list of po-
tential trackers contain an unsafe data element. We can
observe that as many as 78% trackers have a mixed behav-
ior, sometimes sending unsafe data sometimes not. Thus a
heavy-side function like a binary classi�cation blocklist will
not be a good �t. Anti-trackers already realized that block-
lists need a �ner-grain resolution to deal with the mixed be-
haviour of trackers. Allowing exceptions and/or rules based
on full URL or even regular expressions, like Adblock Plus
are attempts to increase the degrees of freedom of the block-
list classi�cation. However, it is highly unlikely that a case-
based approach will be as scalable and as e�ective as looking
at the safeness level of individual data elements.

5.2 Measuring Site Breakage
We now turn to evaluate the site breakage produced by

our system. We already mentioned multiple times that the
trade-o� between breakage and protection coverage is not
trivial. Increasing protection at the expenses of increasing
site breakage can lead to a decrease of protection. If site
breakage is high users will eventually take action either by
removing the tracking protection or by creating custom rules
or too general exceptions that are bound to decrease their
protection. User intervention, while an interesting feature
for power-users, can be considered harmful if abused.

Measuring site breakage on 350K sites is something that
cannot be achieved with typical QA. KC proposed an indi-
rect measurement, monitoring how many times users click
on the button to temporally disable anti-tracking. This has
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Figure 3: CDF of the number of requests with observed
unsafe data-elements by 3rd party domains contained both
in Disconnect blocklist and on Cliqz list of potential trackers.
Both blocklist have ∼2000 domains each, intersection is 447.

Table 2: Page reload rates

reload rate % increase
Baseline (No Anti-Tracker) 0.00101 {
Cliqz 0.00104 4%
Adblock Plus 0.00110 10%
Cliqz acting as Blocklist 0.00125 25%

some limitations: 1) it assumes that users are likely to inter-
act with a new UI element that they are not familiar with.
And 2) not all systems under study have such button, and
if the button exists, we do not have access to the signal.
We decided to use an alternative measure based on the page
reload rate. The underlying assumption is that when users
experience a site with broken functionality or appearance
they will attempt to reload the page, which is a more natu-
ral action on a browser.

Table 2 shows the observed page reload rates based on an
A/B test of our users running di�erent anti-tracking browser
extensions. The �rst group is a control group, users that
have no anti-tracking present. The second group are users
running Adblock Plus. From our data we see that 33% of re-
quests are from browsers running Adblock Plus. Firefox 3rd
Party Cookie Blocking [24], seen on 2% of requests, and
other anti-tracking extensions, including Disconnect, had
too few users for reload rate to be measured with statistical
signi�cance. The last group of users are running the Cliqz
anti-tracking, as presented in this paper. Note that these
groups are independent, but thanks to the large population
in each group we can assume user behavior is consistent.

The baseline page reload rate is 0.001, approximately 1
reload for every 1000 pages visited. For users running Ad-
block Plus the reload rate increased almost 10% from the
baseline, so it is plausible to assume that the increase of the
page reload rate can be attributed to site breakage caused
by it. For Adblock Plus, some breakage could be caused by
its DOM manipulation phase, which is independent from
the anti-tracking dimension. Note that users running Ad-
block Plus might have created custom rules and exceptions
to decrease the site breakage they experience, such users are
included in the results10.

10For privacy reasons we cannot collect the users’ Adblock
con�guration to assess the level of customization
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Table 3: Origin of unsafe data. Cookie corresponds to the
transmission of a cookie value in another part of the request
(i.e. an attempted circumvention of cookie blocking). 2)
Javascript fingerprinting refers to an attempt to send private
values generated from javascript functions (e.g. browser-
info, names of installed plugins, build-id, oscpu and other
and OS information). 3) Canvas fingerprinting accounts for
a method of generating unsafe data using the HTML5 can-
vas element. 4) Unknown accounts for the rest.

unsafe data creation method
Proportion of unsafe

requests
Cookie value 58%
Javascript �ngerprinting 15%
Canvas �ngerprinting 0.5%
Unknown 40%

For users running Cliqz the page reload rate increased
5% over the baseline, thus we can conclude that our anti-
tracker still produces undesired site breakage. However, it
is less than the community-optimized Adblock Plus, without
having to resort to user intervention of any kind.

We also include the page reload rate for a modi�ed version
of our system (Cliqz ) that acted as a blocklist. Any request
to a 3rd party in the list of potential trackers was blocked.
In such scenario 83.5% of the requests would be blocked (as
per Table 1) instead of 51.7%. This aggressive blocking did
not increase privacy coverage|blocking requests to poten-
tial trackers if all data is safe has no bene�t and it should
increase the chances of site breakage. The observed page
reload rate supports this claim: during the period11 that
Cliqz acted as a blocklist there was a 25% page reload rate
increase over the baseline.

5.3 Unsafe data origins
The common approach to �nding trackers involves intro-

spection of the requests sent to 3rd parties to �nd common
patterns to generate uids. We wanted to quantify how many
unsafe requests detected by our system could have detected
solely by their creation method.

Results summarized in Table 3 show that 58% of unsafe
requests are due to attempts to circumvent Cookie protec-
tion, for instance, sending cookie values on the QueryS-
tring. Fingerprinting based on exploiting javascript, includ-
ing strict Canvas �ngerprinting, amounts for 15.5% of the
observed unsafe requests. Finally, for 40% of the unsafe re-
quests we cannot determine the origin of the unsafe data
elements, illustrating the di�culty of data inspection.

5.4 Measuring Transient State
Finally we measure the e�ect of the transient state, pro-

duced by the time it takes to reach the safeness quorum plus
the propagation lag. During this time data elements that are
truly safe are treated as unsafe by our system, i.e. they are
temporarily miss-classi�ed.

Rather than measuring time, which has factors that de-
pend on externalities like popularity (to reach safeness quo-
rum) we focus on measuring the number of occurrences of
the phenomena. To that end we force the users’ browser
to keep a record of data elements that were declared unsafe
for few days and reevaluate their safeness level periodically

11between 09/09/2015 and 16/09/2015

to see if its classi�cation changes to safe. The frequency of
such cases gives us the miss-classi�cation rate.

Results show that approximately 650M data elements are
analyzed per day. 0.8% of them are declared unsafe. Only
0.07% of the data elements declared unsafe were caused by
a miss-classi�cation due to the transient state. Therefore,
we can safely conclude that the e�ect exists but it is almost
negligible.

6. CONCLUSIONS
In this paper we proposed a novel approach to prevent

online tracking. Thanks to a large scale empirical study,
involving 200,000 users in Germany, we showed the protec-
tion coverage achieved is better than other systems, such as
Disconnect, which failed to account for at least 12.3% of the
requests that contain privacy sensitive data, despite having
aggressive blocking rules. We also showed that the extra
privacy protection does not come at the expense of breaking
sites’ functionality or appearance, the disturbances to the
user can be measured to be half of those caused by mature
and highly optimized systems such as Adblock Plus. All this
with a system that is purely algorithmic, and requires no
user intervention at any time.

The novelty of our approach is its departure from the tra-
ditional blocklist approach. Rather than trying to identify
3rd parties as trackers we increase the classi�cation reso-
lution by basing our decision on the data elements of the
requests. We have built a system that e�ciently, and re-
specting the privacy of the users, allows them to collaborate
to collectively determine if the data elements present in a
request are safe or not. Only those data elements that have
been seen by enough independent users will be considered
safe. Thus, data that is intended by trackers to serve as user
identi�ers (uids), or that is unique enough that it could be
used as such, are �ltered out, protecting the user’s privacy.
The proposed model is inspired by k-Anonymity, although
it departs from it in several ways to cover for some known
vulnerabilities.

Our large scale empirical study based on more than 21 mil-
lion pages visited on 350,000 di�erent sites by 200,000 users
over a week allows us to evaluate the prevalence of trackers
in the wild. We have shown that trackers are present is more
than 95% of the pages visited by Germans, and as little as
22% of the page loads do not attempt to transfer data that is
considered unsafe with regard to privacy. We also provided
evidence of the reach of the organizations behind trackers,
establishing a ranking.

Despite the very positive empirical results obtained by our
system we cannot call victory against online tracking. The
arms-race will continue, the system presented in this paper
is making the life of trackers much more di�cult, but there
are still ways in which trackers can continue to monitor the
user, even with our system in place. Future work will focus
on extending the protection against some attacks to subvert
the system, as well as improving the overall e�ciency of it.
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