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ABSTRACT
Email is one of the most important communication tools
today, but email overload resulting from the large number
of unimportant or irrelevant emails is causing trillion-level
economy loss every year. Thus personalized email prioritiza-
tion algorithms are of urgent need. Despite lots of previous
effort on this topic, broadcast email, an important type of
email, is overlooked in previous literature. Broadcast emails
are significantly different from normal emails, introducing
both new challenges and opportunities. On one hand, lack
of real senders and limited user interactions invalidate the
key features exploited by traditional email prioritization al-
gorithms; on the other hand, thousands of receivers for one
broadcast email bring us the opportunity to predict impor-
tance through collaborative filtering. However, broadcast
emails face a severe cold-start problem which hinders the
direct application of collaborative filtering. In this paper,
we propose the first framework for broadcast email prioriti-
zation by designing a novel active learning model that con-
siders the collaborative filtering, implicit feedback and time
sensitive responsiveness features of broadcast emails. Our
method is thoroughly evaluated on a large scale real world
industrial dataset from Samsung Electronics. Our method
is proved highly effective and outperforms state-of-the-art
personalized email prioritization methods.

Categories and Subject Descriptors
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1. INTRODUCTION
With nearly 200 billion emails sent and received per day,

email is undoubtedly one of the most prevalent personal and
business communication tools[29]. However, along with the
great benefits come significant drawbacks. According to pre-
vious research, 58% of emails are unimportant or irrelevant,
and a person on average spends nearly 380 hours every year
to handle those emails, which causes trillion-level economy
loss in productivity[4][16]. This phenomenon is called email
overload, and there is an urgent need to develop a system
that can automatically learn the personal priorities of the
emails to mitigate the problem.

Different from spam filtering which has been widely ex-
plored in the literature[24][25], personalized email prioritiza-
tion aims at making a personalized prediction of the impor-
tance label of non-spam emails. Many efforts have been done
in both industry and academia to solve this problem[39][36].
For instance, Google has proposed an email importance pre-
diction algorithm for Gmail[1] and it has been used in the
Gmail Priority Inbox, in which every important email is
marked with a yellow icon next to the sender’s name (Figure
1).

However, broadcast email, one important type of email
with interesting and challenging characteristics, has been
overlooked in previous personalized email prioritization sys-
tems. A broadcast email is an email message that are sent to
a group of receivers, usually by organizations, companies and
web services. The size of the group is typically large, com-
monly containing thousands or even millions of receivers.
A typical email user may be members of dozens of broad-
cast mailing lists. For instance, as a student, we are in the
broadcast mailing list of graduate students; as an employee
we are in the company’s developer department list; as a con-
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sumer we are in the promo lists of various products. Even
though there are important and related broadcast emails, a
large portion of them are irrelevant and unimportant and
one can easily get swamped by them. Moreover, it makes
us more likely to miss the really important broadcast emails
since we are used to neglecting them. Thus, personalized
email prioritization is even more important for broadcast
emails. However, broadcast emails are significantly different
from normal emails. The following challenging characteris-
tics of broadcast emails could fail traditional personalized
email prioritization methods:

The Same Sender One of the most indicative features from
previous works [1][39] for personalized email prioriti-
zation is the social feature based on the interactions
between the sender and the receiver. For instance, if
a high percentage of a sender’s emails were read by
the receiver, we can deem the sender important and
predict his following emails are also important to the
receiver. However, for a broadcast mailing list, there is
usually only one sender (e.g. mailing list admin) and a
receiver may get hundreds of different emails from the
same broadcast sender.

Limited Types of Interaction Traditional methods often
exploit a user’s interactions with emails for importance
prediction. Compared to normal emails, nevertheless,
the types of interaction with broadcast emails are lim-
ited. For instance, we usually will not reply, forward or
cc a broadcast email; we would not manually label an
irrelevant mail from a broadcast mailing list as spam
either, since we still wish to receive other mails from
the mailing list. The common user action on broadcast
emails is viewing.

Hence, many key features of traditional methods cannot
be extracted for broadcast emails, which significantly de-
teriorate their performance. Despite these new challenges,
broadcast emails also bring us new opportunities. The most
prominent one is that each broadcast email is sent to thou-
sands of users and other users’ responses (view or not) can
be very helpful in predicting a target user’s preference. In
other words, we could generate priority predictions by col-
laborative �ltering: for a user, if other users with similar in-
terests have considered the email important (i.e. viewed it),
he should be very likely to also consider it as an important
email. In this paper, we propose the first personalized email
prioritization framework for broadcast emails, in which we
exploit collaborative filtering features by considering other
users’ responses to broadcast emails. However, there exists
one key challenge. Each email waiting for priority prediction
is completely cold. That’s to say no view-email action has
been observed, since the email has not yet been sent to any
users, which makes it impossible to exploit the collaborative
filtering features directly.

We propose a novel active learning framework to solve
the cold-start problem. The intuition is simple. For a new
email, we first send it to a small portion of the users in
the mailing list (e.g. 5%) without priority labels and wait
for a short period of time (e.g. half an hour) to collect
their feedback (whether the user has read the email). Then
based on these users’ feedback, we predict the priority for
the remaining majority of users. Our personalized email
prioritization problem can thus be naturally divided into

two sub problems. First, how to sample the small portion of
users whose feedback can help us the most in determining
the email priority for the remaining users. Second, once user
feedback are gathered, how to use them to accurately predict
personalized priority for the remaining users.

Our problem can be considered as a type of active learning
for recommendation. However, due to the unique character-
istics of the broadcast email prioritization task, several chal-
lenges exist which are different from those for the traditional
active learning recommendation methods.

Implicit Feedback To the best of our knowledge, the lit-
erature on active learning in recommender systems fo-
cuses on explicit feedback [22][20][35][21][15]. For ex-
ample, works on the MovieLens and Netflix datasets
deal with 1-5 star user ratings. The underlying as-
sumption is that once we query a user about an item
and get his feedback, we can know his preference on
the item based on his rating. While in our task, we
only consider users’ view-email actions, which are one-
class implicit feedback. If the user viewed the email
(positive feedback) we infer the email is important.
However, if the user did not view the email (negative
feedback), there is no way we can infer the importance
of the email since we could attribute a user not reading
an email to a lack of interest or a lack of awareness of
the email.

Timely Response In the active learning recommendation
literature, there exists an underlying assumption that
users queried for feedback always provide feedback in
time. However, this is not the case in our task. When
we send the email to a small portion of the subscribers
for feedback, we can only wait for a short period of
time for the responses, due to the real-time nature of
emails. Hence, our problem requires us to sample users
who can provide responsive feedback in time.

Completely Cold Item In previous works on active learn-
ing for recommendation [12, 17, 31], the methods re-
quire that even for cold start items, there are a small
number of initial ratings. However, in our problem, ev-
ery email waiting for prioritization is completely cold
with zero user response.

Fairness in User Querying For every email requiring pri-
oritization, we need to query some informative users
for feedback. The choice of informative users need to
be fair. That is to say we cannot always pick the same
set of users for feedback querying, because it will re-
sult in them losing the chance of benefiting from the
service of email prioritization and may even generate
user frustration.

To cope with the above mentioned challenges, we propose
a novel active learning framework, in which we sample a
small set of informative users considering both the prefer-
ence of a user and his tendency of giving responsive feed-
back, by exploiting features including text and attributes of
emails and users’ email-view interactions. After gathering
the feedback, we use a weighted regularized matrix factor-
ization method specifically designed for implicit feedback to
learn the preference scores for the remaining users and use
the scores as the key feature to predict the final priority of
the email.
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Since there is no publicly available dataset that contains
personal importance judgments by real users for broadcast
emails due to the privacy concern [39], we collect an indus-
trial dataset from Samsung Electronics. The dataset con-
tains thousands of broadcast emails from one of Samsung
Electronics’s company broadcast mailing lists with thou-
sands of Samsung employees as subscribers. These employ-
ees are from all over the world and with diverse demographic
features. We collect both the text features (e.g. email ti-
tle, content) and attributes features (e.g. sender, receiver,
timestamp) for the broadcast emails. We also collect user’s
view logs of these emails in a 9-month time window. We
conduct extensive experiments and demonstrate that our
method outperforms all the baseline algorithms in terms of
prediction accuracy.

Our main contributions are as follows:

1. We present the first in-depth discussion of personalized
prioritization for broadcast emails and propose an ac-
tive learning based framework to solve the problem.
In particular, we exploit the collaborative filtering fea-
tures in email prioritization.

2. We propose a novel active learning model that can han-
dle one class implicit feedback, and considers users’
time-sensitive responsiveness for active learning based
recommendation.

3. Our method is thoroughly evaluated on a large scale
real industrial dataset, and is demonstrated to be highly
effective compared against a large number of baselines.

2. RELATED WORK

2.1 Active Learning for Recommendation
In recommendation systems, active learning methods have

been proposed to acquire those ratings from users that will
best help in predicting the ratings for the unknown user and
item pairs. Active learning methods for recommendation
can be classified into three big categories, attention-based
methods, uncertainty reduction methods and error reduction
methods[37].

Attention-based strategies are simple and easy to imple-
ment, and are usually used as the initial attempts to solve
the cold start problem. The Popularity strategy [9, 10] se-
lects items that have received the highest number of ratings
and thus users are more likely to be able to rate them. The
Coverage strategy [9] selects items that are highly co-rated
with other items by users and thus are prone to improve
the prediction accuracy for the other items. However, these
methods are not personalized and do not consider the fair-
ness requirement listed in the Introduction.

Uncertainty reduction aims at reducing the uncertainty
of rating estimates, decision boundaries and model param-
eters. For uncertainty reduction of rating estimates, some
researchers [23] propose to select training points in a local
(greedy) manner by rating items with high uncertainty. The
uncertainty of an item’s rating can be measured by its vari-
ance, entropy [9, 32] or confidence interval [30]. However,
labeling uncertain items does not necessarily reduce the rat-
ing uncertainty for the other items. [31] proposes a method
to solve this problem. Decision Boundary-based approaches
select training points closest to the decision boundary, in
order to obtain a more accurate decision boundary [5]. In

Model Uncertainty-based methods, training points are se-
lected so as to reduce the uncertainty about the model’s
parameters. It assumes that the accuracy of output values
will improve when we improve the accuracy of the model’s
parameters [12, 17]. There are also combined strategies [32,
26] considering both popularity and uncertainty, which can
be done in various ways to achieve different objectives. How-
ever, these methods either require a small amount of initial
ratings which is not available for completely cold items/users
or are non-personalized.

Error reduction refers to reducing the predictive error by
1) Greedy Extent [9, 10], namely optimizing the perfor-
mance measure (e.g. minimizing RMSE) on the training
set or 2) utilizing the relation between the predictive error
on the testing set and other factors. Output Change-based
approaches [33] assume that most changes in the output es-
timates lead to more accurate estimates on the testing set.
Thus they favor points that are likely to cause many es-
timates to change. Parameter Change-based methods [34]
choose points that will change the model’s parameters the
most. Many works [2, 19] propose sampling methods aiming
to reduce the variance of the model’s parameters estimates
in terms of different measures. These methods all require a
small amount of initial ratings and cannot handle the com-
pletely cold start problem. The Personality-Based Binary
Prediction method [6] tries to utilize attributes information
to handle the completely cold start problem and transforms
the item selection problem into a common matrix factoriza-
tion problem. However, all the above mentioned methods
are designed for the explicit rating prediction problem. The
challenges of one-class implicit feedback in our task (e.g.
the uncertainty in negative feedback and the informative-
ness difference between positive and negative feedback) has
not been discussed and cannot be effectively handled by pre-
vious methods.

Some works also consider the trade-off of the exploration-
exploitation problem [32, 30]. Most recommendation meth-
ods tend to focus on exploitation, that is, provide accurate
predictions to the user. However, recommending items that
will expand users’ interests (exploration) is of great impor-
tance as well, especially for newly sign-up users or long-
term users. The exploration-exploitation criteria also holds
true in the active learning phase of our task. Many of the
promising solutions come from the study of the multi-armed
bandit problem [7]. Random sampling, ε-greedy method,
the upper confidence bound (UCB) algorithms and Thomp-
son sampling have been explored in solving the problem [7].
However, the setting of these solutions requires that several
arms (sampling strategies) perform parallelly and cannot be
directly applied to our task.

2.2 Prioritization for Emails
Email prioritization focuses on making a personalized pre-

diction of the importance label of non-spam emails [39, 18,
13].

Douglas et. al [1] propose a simple linear logistic regres-
sion model to do prioritization for gmail, in which the fi-
nal prediction is the sum of the global model and the user
model log odds. Four categories of features are considered in
the model, including social features, content features, thread
features and label features. In [39], authors use personal so-
cial networks to capture user groups and to obtain rich fea-
tures that represent the social roles from the viewpoint of
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Table 1: Email Features
Feature Category Features

Email Body Email title, content of email body

Email Header Sender ID (only one sender, email-admin),
receiver ID, time stamp of email

User Attribute Receiver ID, receiver country, receiver
timezone

a particular user. They also developed a semi-supervised
(transductive) learning algorithm that propagates impor-
tance labels from training examples to test examples through
message and user nodes in a personal email network. In
[36], authors summarized multiple classification and semi-
supervised clustering methods on spam detection and email
categorization tasks. A social clustering approach is pro-
posed in [18] to predict the email prioritization based on
the relations between its sender and induced social clusters.
[27] defines metrics for measuring the social importance of
users based on the email elements: from, to and cc, and
user actions of replying and reading, which can potentially
be used for measuring email prioritization. Horvitz et al.
[13] regard the email prioritization prediction task as a clas-
sification problem. They use Support Vector Machines to
predict that whether the utility of newly arrived emails is
high or low. However, due to the previously described char-
acteristics of broadcast emails, i.e. The Same Sender and
Limited Types of Interaction, these traditional methods de-
signed for normal emails cannot be effectively applied to our
broadcast email prioritization task.

3. PROBLEM DEFINITION
The task of this paper is personalized prioritization for

broadcast emails. That is to say we want to predict whether
a broadcast email is important or not for a given user. The
problem can be divided into two sub problems. First, sample
a small portion of users whose feedback can best help us in
predicting the email priority for the remaining users. Sec-
ond, predict the priority for the remaining users based on
the feedback collected from the sampled users. We define
the problem formally as follows.

For user set U and email set E, we define a binary email
importance label set I based on users’ email-view interac-
tions. That’s to say, for user u ∈ U and email e ∈ E,

Iu,e =

{
1 if u has viewed e

0 if u hasn’t viewed e
(1)

For each email e, we record its text and attribute-based
features, e.g. title, content, sender and receiver of the email.
For each user u, we record user attribute features, e.g. coun-
try and timezone. Details of the features are provided in
Table 1. Given a new email enew, we define the two sub
problems mentioned above as:

Sampling Users for Feedback Given U, E, I, enew and
time interval Tfeedback in which we collect users’ feed-
back, select the subset S of k users from U whose feed-
back in Tfeedback maximizes the prediction accuracy of
IU−S,enew .

Prediction For Remaining Users Given U, E, I, enew,
IS,enew , predict the importance label set IU−S,enew .

4. THE FRAMEWORK
We propose an active learning framework for the broad-

cast email prioritization problem. There are two parts of
our framework, sampling informative users for feedback and
making priority prediction for the remaining users based on
the collected feedback, which will be described in details in
the following subsections.

4.1 Sampling Users for Feedback
To the best of our knowledge, none of the previous works

using active learning for recommendation focuses on how to
handle one-class implicit feedback data and most of them,
especially the personalized active learning for recommenda-
tion methods require at least a small portion of initial ratings
for each cold start user/item[1][39][36]. None of the previous
works considers the time cost of obtaining users’ feedback
and none of them considers the fairness issue when sampling
users for feedback. However, all of the above mentioned chal-
lenges are very important in sampling users for feedback for
our task and are carefully handled in our work. Next, we
first introduce important criteria of sampling users consid-
ered in our work and then discuss our sampling strategy in
detail.

4.1.1 Sampling Positive Feedback
To make our method general, we only consider email-



the email waiting for prioritization is completely cold with
zero email-view interaction, we have to rely on additional
information. Fortunately, the text features of emails provide
us a natural way to link the new email to old emails. We
use a hybrid recommendation algorithm to predict a user’s
preference towards the new email by combining the ideas of
content based recommendation and item based collaborative
filtering.

The text features of an email e are represented as< et, eb >,
where et and eb correspond to the term vectors for the title
and body of e and each dimension of a term vector corre-
sponds to the tf-idf value of a term. Similar to [38], stop-
word filtering, stemming and part of speech tagging are per-
formed on the text features and only nouns are kept in the
vocabulary.

We define the similarity between 2 emails ei and ej as the
weighted average of the cosine similarities of their titles and
bodies.

sim(ei, ej) = cos(eti, etj) + αcos(ebi, ebj) (2)

α is a constant weight and is learned by cross validation.
For a new email enew requiring prioritization, we first find
the top k similar emails Esim based on the similarity defined
above. Then we predict user uj ’s preference on enew using
an item based collaborative filtering idea by aggregating uj ’s
responses on Esim.

Scoreenew,uj =

∑
ei∈Esim

Iuj ,eisim(enew, ei)∑
ei∈Esim

sim(enew, ei)
(3)

Scoreenew,uj is used later in the user sampling phase. It
is worth noting that other methods like the method of [8]
can also be used in our framework as long as we adapt it
to estimate users’ preference on completely cold items with
the help of text features. We stick to the above described
approach for simplicity and efficiency.

4.1.3 Predicting Users’ Responsiveness
Different from previous works in active learning, the time

cost of waiting for users’ feedback cannot be ignored in our
work since we can only afford to wait for a short time period
for a user to respond. Thus, another crucial way to increase
positive feedback is to sample responsive users who return
their feedback in time. There are two factors that need to
be considered to predict whether a user is responsive or not.

Users’ Activity Time Users are only active (available to
check emails) in a certain time window. For instance,
a user usually only checks broadcast emails from his
company during working hours and some users may
start working early and leave early while others may
prefer the opposite. Moreover, users are located in dif-
ferent countries and different timezones with various
local work routines. It is important to generate per-
sonal activity time probability model and only query
users who are active.

Email Checking Frequency Different users have differ-
ent email checking habits. Some users may only check
their inbox twice a day while others respond to the
email in real time with the help of push notifications.
To sample more responsive users, we always prefer
users who check their inbox frequently.

We estimate the active time and email checking frequency
based on the timestamps of a user’s previous view-email
behavior. All the timestamps are converted to the corre-
sponding local time according to the timezone feature from
user attributes. We define user u’s temporal active profile
as D(u) =< vt1(u), vt2(u), ..., vt24(u) >, where vt(u) is the
number of days in which u was active in time interval t.
Each day is divided into 24 time intervals. For example, t1
is the time interval from 0:00 to 0:59. We regard u to be
active in interval t in a day if at least one of u’s view-email
interactions is observed in interval t on that day.

Since for each user the view-email interactions can be
very sparse, when generating personal active time proba-
bility model, we also rely on the view-email interactions of
other users from the same country. We define the user set
from country j as Uj . For a user ui coming from country j,
we define ui’s probability of being active at time interval t
as

Pt(ui) =

∑
e∈E

Iui,e

1 + γ
∑
e∈E

Iui,e

vt(ui)

ob(ui)
+

1

1 + γ
∑
e∈E

Iui,e

1

|Uj |
∑
u∈Uj

vt(u)

ob(u)

(4)
where ob(ui) refers to the total number of observation days
for user ui and ob(ui) = min(number of days ui is registered
, number of days of the experiment observation ). γ is a con-
stant weight which can be learned by cross validation. The
number of days of the experiment observation for our work
is 270 (9 months).

∑
e∈E Iui,e is the total number of ui’s

view-email interactions. The intuition behind Equation (4)
is that if ui has few view-email interactions, the estimation
of active probability for time interval t relies more on the
average active probability in t of other users from the same
country. As the number of view-email interactions increases,
ui’s own interactive data will gradually become dominant in
the probability estimation. Pt(ui) is used later in the user
sampling.

As mentioned earlier, a user’s email checking frequency
also matters in giving a responsive feedback. We define the
one-hour time window after one view-email interaction of a
user as an email checking session and all the following view-
email interactions within the one-hour time window belong
to the same session. Denoting {session(u)} as the set of all
email checking sessions of user u, we define email checking
frequency for u as:

frequency(u) =
|{session(u)}|

ob(u) + ζ
(5)

in which ζ is a constant used for smoothing and can be
determined by cross validation.

4.1.4 Sampling Strategy
As discussed above, for a user u and a new email enew

sent at his local time t, the probability of u providing a pos-
itive feedback to enew within the time limit is related with
u’s preference towards enew (scoreenew,u), u’s probability of
being active at t (Pt(u)) and u’s email checking frequency
(frequency(u)). We define the probability of u giving a
positive feedback to enew at t within the time limit as:

P (u, enew, t) =
1

1 + e−(β0+β1scoreenew,u+β2Pt(u)+β3frequency(u))

(6)
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It is a logistic regression model considering the above men-
tioned 3 factors. β = {β0, ..., β3} is the model parameter
which is trained based on the validation set.

For all users, we sort them in descending order of P (u, enew, t).
We then sample the top k users to form the sampled user
set S.

4.2 Prediction for the Remaining Users
Since we tend to sample responsive positive feedback, bias

could be introduced when we make predictions for the re-
maining users. In this section, we first discuss about how
we use the weighted low-rank approximation technique to
eliminate the bias and then propose the classification model
for the final priority label prediction.

4.2.1 Weighted Low-rank Approximation
After receiving the feedback from the sampled users, we

propose to use a matrix factorization based method to pre-
dict the preference for the remaining users. Since the feed-
back are one-class implicit and our sampling method intro-
duces bias towards positive feedback, a weighted low-rank
approximation method is developed to handle the implicit
data and correct the bias.

The intuition behind the proposed method is to punish
(add weight to) unexpected sampled feedback. That is to
say, during the training phase, for all the feedback gathered
by querying sampled users, we will punish negative feedback
which we predict to have a high responsive positive proba-
bility in the sampling phase and positive feedback which
we predict to have a low responsive positive probability in
the sampling phase, by adding additional weights on cor-
responding training data points. For all the other training
points, we will assign high weights to positive feedback and
lower weights to negative feedback as described in [28][14].

Given the expanded importance label set I′ = {I, IS,enew},
our objective is to minimize the loss function

L(P,Q) =
∑
ij

Wij(I
′
ij −Pi.Q

T
j.) + λ(||P||2F + ||Q||2F ) (7)

in which P ∈ Rm×d and Q ∈ R(n+1)×d stand for the latent
vectors for U and {E, enew}. Wij is a non-negative weight
for ui and ej . Different from all the previous active learning
works, we exploit the responsive positive feedback probabil-
ities predicted in the user sampling phase of active learning
in the weighting scheme to eliminate the bias from sampling.
The weighting scheme of non-negative weight matrix W is
summarized in Table 2. We set m equals to 1 and δ equals
to 0.2 in the experiment.

Alternating Least Squares (ALS) is used to solve our op-
timization problem by fixing P and Q alternatively while
optimizing the unfixed parameter.

When fixing Q and solving ∂L(P,Q)
∂Pi.

Pi. = I′iW̃i.Q(QTW̃i.Q + λ(
∑
j

WijID))−1 (8)

where W̃i. ∈ R(n+1)×(n+1) is a diagonal matrix with the el-
ements of Wi. on the diagonal and ID ∈ Rd×d is an identity
matrix.

Similarly, when fixing P and solving ∂L(P,Q)
∂Qj.

Qj. = I′T.j W̃.jP(PTW̃.jP + λ(
∑
i

WijID))−1 (9)

Table 2: Weighting Schemes
Feedback Type Weighting Scheme

Positive Sampled Feedback 1 + (m− Prp(ui, enew, tj))

Negative Sampled Feedback Prp(ui, enew, tj)

Other Positive Feedback 1

Other Negative Feedback δ

where W̃.j ∈ R(m)×(m) is a diagonal matrix with the ele-
ments of W.j on the diagonal. Details of using ALS to solve
matrix factorization problems is not the concern of this pa-
per and can be viewed in [28].

For each remaining user ui ∈ (U− S), we can predict his
preference to enew as

yi,enew = PiQ
T
enew

(10)

4.2.2 Feedback-sensitive Classification
Once yi,enew is estimated for all the remaining users, we

can combine it with any additional features proposed by pre-
vious methods (e.g. content feature and label feature) and
put them in a classification model (e.g. a logistic regression
model as proposed in [1]) to predict the email priority labels
for the remaining users.

In this work, to make it simple, we use yi,enew as the
only feature considered in priority classification. We devise
a classification method that can make a feedback sensitive
classification. The intuition is that for each email a certain
percentage of users will consider it as important, but the
percentage varies among different emails since they are with
different topics, written quality etc. We can infer the per-
centage of important emails by the percentage of positive
feedback in the sampling phase. We define the threshold for
email enew as

H(enew) =
θpos(enew) + pos(E)

θk +mn
(11)

pos(enew) is the total number of positive feedback from the
k queried users. pos(E) is the total number of positive re-
sponses from all the m users for all the n previous emails. θ
is a constant to balance the global percentage of positive re-
sponses with enew-specific percentage of positive responses
estimated from the sampled feedback and can be inferred
by cross validation. For the top H(enew) percent of users
according to yi,enew , we predict enew as important while for
others as unimportant.

5. EXPERIMENTS

5.1 Dataset
We collected emails, view logs of emails and user informa-

tion from a large business mailing list for employees within
Samsung Electronics. Employees from all around the world
receive emails with various topics, like win notices of deals,
meeting agendas of customers, business objectives, news and
technical issues. The dataset contains 6291 broadcasting
emails sent to 2805 Samsung employees, generating 398,343
view records. For each email, we collected both text data
like titles, contents and attributes like receiver, timestamp,
timezone etc. All the emails have the same sender attribute

1186



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

U
se

rs
’ A

ct
iv

ity
 T

im
e 

P
ro

ba
bi

lit
y

 

 
Korea
United Kingdom

Figure 2: Activity Time Probability of Users from
Korea and United Kingdom

(email-admin). We split the data set into training set (con-
taining 5632 emails and their view logs) and testing set (659
emails and their view logs) based on a certain time point.
Since we only have users’ implicit email viewing action data,
we assume an email is important to a user if the user has
viewed it. It is worth noting that the data set is relatively
small with only one sender and contains only view-email
behavior. Accuracy could be better if we can incorporate
information like deletions of emails, flagging emails as im-
portant and skipping an email. However, due to the privacy
concerns, there is no public dataset containing importance
judgments by real users for broadcast emails [39] and this is
the best dataset we can get.

All user data was analyzed and stored in accordance with
Samsung’s privacy policy. Only the view logs of the autho-
rized broadcast emails were extracted and all the users are
Samsung Employees. The dataset was completely anonymized
by mapping user ids and email ids to integer indices before
any analysis. All the features extracted from messages were
deleted after training.

5.2 Data Pre-processing and Analysis
The users in our dataset are located in 67 countries with

widely varied timezones. To handle the timezone variance,
the timestamps of users’ view log were first converted to
their local time. Then as mentioned in section 4, we calcu-
lated the active probabilities in all time intervals both for
each user and for all the users from the same country, with
the assumption that users from the same country share sim-
ilar work routines. Based on our dataset, we noticed that
users from different countries are with different activity time
distributions due to working culture differences. For exam-
ple, as shown in Figure 2, most users from United Kingdom
tend to view emails at work time from 8:00 to 18:00. While
in Korea, users tend to work in much longer time with many
users checking their emails early in the morning or late at
night.

5.3 Baselines
Many previous active learning recommendation methods

[12, 17, 31] require at least a small amount of initial rat-
ings, which is not applicable for our problem since emails
requiring prioritization are completely cold items. Due to
the restrictions of broadcast emails, i.e. the same sender

and limited types of interaction, most email prioritization
methods cannot be directly applied to our task [18, 13, 27]
or lack key features [1, 39, 36] if applied.

In the experiment section, we refer to our own method as
Positive-feedback-oriented Active Learning (PAL). We try
our best to adapt the following methods from previous lit-
erature for comparison. The first baseline is an adaption
of the email prioritization algorithm used for Gmail inbox.
The second baseline is adapted from a hybrid recommenda-
tion algorithm. The next 3 baselines are 3 active learning
based recommendation algorithms from different literatures.
We use them to replace the user sampling part of our own
algorithm and for all the active learning baselines, the clas-
sic weight regularized matrix factorization method designed
for implicit feedback from [28][14] [11] is used for the pref-
erence score prediction and a logistic regression model is
used for label prediction. The last baseline is a variation
of our own method by eliminating the weighting scheme in
the weighted low-rank approximation process. For all ac-
tive learning methods including our own, the percentage of
sampled users is set to 10% and the length of time period
waiting for users’ response is set to 1 hour unless otherwise
specified.

5.3.1 Importance Ranking (IR)
We adapt the importance ranking algorithm used for Gmail

Priority Inbox[1]. Four categories of features are considered
in the model, including social features, content features,
thread features and label features. However, due to the
characteristics of broadcast emails, social features, thread
features and label features are inapplicable. We generate its
content based feature as follows. Each email waiting for pri-
oritization is represented as a term vector where each dimen-
sion is the tf-idf value of the corresponding term extracted
from the text data of emails. For each user, we generate a
user interest profile by aggregating the term vectors of the
emails he has read. For an email requiring priority predic-
tion, the cosine similarity between the user interest profile
and the email term vector is calculated as the content feature
and a logistic regression model is trained for label prediction.

5.3.2 Hybrid Based Prediction (HBP)
HBP is the method described in section 4.1.2, which we

used to predict a user’s preference towards a new email. It
is a combination of content based recommendation and item
based collaborative filtering. Once we get users’ preference
scores for the email, a logistic regression model is used for
label prediction. Please refer to section 4.1.2 for more de-
tails.

5.3.3 Popular Sampling Active Learning(PSAL)
Inspired by [10, 33], for a new email enew, we sample k

users who have viewed the highest number of emails. This
method is also equivalent to sampling the users with largest
Variance or Entropy of Ratings [33], because in our task,
we only have one-class implicit feedback and if we treat all
the items without feedback as negative feedback (rating 0),
to sample a user with the largest entropy/variance, we need
to find some one with equivalent number of positive and
negative ratings. However, since most users have far more
negative rating than positive ratings, sampling user with
large entropy/variance is thus equivalent to sampling popu-
lar users.
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5.3.4 Coverage Sampling Active Learning(CSAL)
Inspired by [9, 33], for a new email enew, we sample k users

who have highly co-viewed emails with other users. Here,
Coverage(i) =

∑
j nij , where nij is the number of emails

that are viewed by both users i and j. The users with high
Coverage values are then sampled. The heuristic used by
this strategy is that users co-view the same emails with many
other users can better reflect other users’ interests, and thus
their viewing behaviour is more helpful for predicting the
viewing behaviour of other users.

5.3.5 Exploration Sampling Active Learning(ESAL)
Exploration is important for the completely cold emails

in our task [37]. Inspired by [32, 3], we firstly construct
the user-email viewing matrix (entries are equal to 0 or 1).
Then the matrix is normalized and each row of the matrix
is regarded as a user vector. Finally, we gradually sample
users ensuring that the sampled users are similar to the un-
sampled users and are less similar with the already sampled
users. The intuition is the sampled users should be both
representative of the unsampled users while diverse among
the sampled users.

5.3.6 PAL Without Weight(PAL-SVD)
In order to test how the weighted low-rank approximation

impacts the result, we propose another baseline called PAL-
SVD, which is the same as our algorithm except that we
eliminate the whole weighting scheme mentioned in section
5.2.1 and just use a basic SVD model to do the prediction.

5.4 Evaluation Metrics
Since our task is a classification task, we use precision,

recall and f-score as the main evaluation metrics. Based
on the predicted label from the algorithm and ground truth
label from the data set, a prediction is either true positive
(tp), true negative (tn), false positive (fp), or false negative
(fn). The metrics are defined as

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

F − score =
2 ∗ precision ∗ recall
precision+ recall

5.5 Results and Analysis

5.5.1 Algorithm Comparison
In this section, we compare PAL with all baselines. Since

different active learning algorithms query different sets of
users for feedback, to make fair comparisons, the perfor-
mance is evaluated on the same set of users, which is the
intersection of the unsampled user sets of all the compared
algorithms.

As shown in Figure 3, our method significantly outper-
forms all the baselines on all the evaluation metrics. Tradi-
tional email prioritization methods like IR [1] does not per-
form well in broadcast email prioritization, because many
types of key features cannot be applied here due to the “one
sender” and “limited type of interaction” challenges. HBP
can work on our task, but the noises hidden in the content
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Figure 3: Performance Comparison of Various Al-
gorithms

feature inevitably prevent the algorithm from generating rel-
atively more accurate results.

Active learning recommendation methods may improve
the prediction accuracy because the collected feedback al-
low us to predict the prioritization based on other user’s re-
sponses by collaborative filtering. However, sampling strate-
gies matter here, since in our task we can only collect the
implicit feedback from a small portion of users in a very short
time period. Our method outperforms all the other active
learning baselines by considering users’ preferences, active
time distributions and email-viewing frequencies when sam-
pling users. The proposed weighted low-rank approximation
method uses the predicted positive feedback probabilities
from the sampling phase as penalty weights to eliminate the
bias from the sampling phase and it also works well in prac-
tice (PAL-SVD vs. PAL). It is worth noting that sampling
methods like PSAL, CSAL and ESAL are non-personalized,
which means they cannot generate different user samples for
different emails and results in a negative impact on the pre-
diction accuracy. Methods like PSAL and CSAL tend to
sample popular users who almost like (read in our case) ev-
ery item they see and these users actually cannot provide
enough information for the matrix factorization based pre-
diction. Moreover, they do not comply with our proposed
fairness criterion, which means the same set of users may be
sampled frequently. This issue will be discussed in section
5.5.4 in details.

5.5.2 Factors for Positive Feedback Prediction
As mentioned in section 4.1, we consider three different

factors to help sample more positive feedback, namely, users’
preferences to the email, their activity time distributions
and their email checking frequencies. In this section, we
remove these three factors one at a time and evaluate how
each factor affects the percentage of positive feedback we get
during sampling. Moreover, the length of the time-window
during which we wait for responses from sampled users also
impacts the percentage of positive feedback we can get dur-
ing the sampling phase. So we also plot the percentage of
positive feedback against different lengths of waiting time-
windows. For users’ activity time probability feature, if the
time-window length is larger than one hour, we consider the
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Figure 4: Factor Comparison for Positive Feedback

average probability of all the time intervals that are in the
time window.

From the results displayed in Figure 4, we can see all these
three factors are helpful in boosting the positive feedback
rate in the sampling phase and thus further increase the
prioritization precision. User preference and email checking
frequency contribute more than activity time distribution.
This makes sense because a user’s active time is not always
fixed. For instance, one may be on leave or travelling to
another country on business. The noises and uncertainty in
the activity time distribution factor affect its performance.

The percentage of positive feedback is positively corre-
lated with the length of the waiting time-window, which is
in accordance with our expectation. Our sampling strategy
can work well even if we only give users a very short time
period for response, because we consider users’ responsive-
ness related factors (i.e. activity time distribution and email
checking frequency) when sampling users. It is also worth
noting that with the increase of the length of waiting time-
window, responsiveness related factors become less impor-
tant and the user preference factor becomes more important
in raising the positive feedback rate.

5.5.3 Active Learning Cost
Active learning has cost. That’s to say the sampled users

to whom we send emails for feedback cannot benefit from
the email prioritization service. Figure 5 shows that how
the percentage of sampled users affect the final performance
of the prioritization task. Note that even though increasing
the percentage of sampled users helps to improve the pre-
diction performance of the remaining users, sampling more
users also increases the cost of active learning. Our method
works well even if only a small portion of users(e.g. 5-10%)
are sampled. This is because our sampling strategy tends
to sample positive feedback and even with only a small per-
centage of users sampled, we can still get enough positive
feedback for the model training and preference prediction.

5.5.4 Sampling Fairness
In our broadcast email prioritization framework, it is real

users that we are sampling, so fairness is a very important
criterion. If we keep sampling the same set of users again
and again, they will quickly get annoyed and it is also unfair
since they cannot benefit from the prioritization service. We
compare our method with the active learning baselines with
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Figure 5: PAL Performance with Different Sampling
Percentage

Table 3: Sampling Fairness Comparison
Sampling Methods Coverage Average Sample Times

Random 2805 65.78

PAL 898 205.48

PSAL, CSAL, ESAL 280 659

regard to the fairness criterion. For better comparison, We
also add a random sampling baseline, which, due to its nat-
ural randomness, undoubtedly is the best strategy when we
only consider fairness in user sampling. We use user cover-
age (the total number of sampled users during test) and the
average sampled times as metrics. The results are stored in
Table 3. From the results we can see, our method covers 2
times more users compared with PSAL, CSAL and ESAL.
The results make sense since PSAL, CSAL and ESAL are un-
personalized active learning sampling strategies, which can
easily cause serious fairness issues.

6. CONCLUSION
In this paper, we present the first framework for personal-

ized broadcast email prioritization and propose a novel ac-
tive learning framework to solve the problem. To exploit the
collaborative filtering features of broadcast emails, we devise
an active learning strategy that aims to sample enough pos-
itive feedback within the limited time window by exploiting
factors including users’ preferences, their activity time prob-
ability distributions and their email checking frequencies.
A weighted low-rank approximation method is proposed to
eliminate the possible bias from the sampling phase and gen-
erate accurate preference estimates for the remaining users.
Finally we develop a feedback-sensitive classification method
for personalized priority prediction. Comprehensive experi-
ments are conducted on an industrial dataset from Samsung
Electronics and the results show that our method outper-
forms all the baselines and the various factors considered
are indeed useful to help to collect more positive feedback
even under strict restrictions.

Since this is the first work using active learning for email
prioritization, there is still much room for future research.
First, in our work an approach that prefers positive feed-
back is used to sample users, which may not be the optimal
sampling approach. For example, better performance may
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be achieved by combining our positive feedback sampling
approach with the coverage sampling baseline mentioned
in section 5.3. Active learning models considering multiple
sampling criteria at the same time will be proposed in our
future work to increase the prediction precision. Secondly,
even though we use a real industrial dataset in our experi-
ment, the dataset is still small and with its limitations. We
will try to look for a larger dataset with multiple mailing
lists and more diverse user actions in the future.
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