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ABSTRACT

Incremental and approximate computations are increasingly
being adopted for data analytics to achieve low-latency exe-
cution and efficient utilization of computing resources. Incre-
mental computation updates the output incrementally instead of
re-computing everything from scratch for successive runs of a
job with input changes. Approximate computation returns an
approximate output for a job instead of the exact output.

Both paradigms rely on computing over a subset of data items
instead of computing over the entire dataset, but they differ in
their means for skipping parts of the computation. Incremental
computing relies on the memoization of intermediate results of
sub-computations, and reusing these memoized results across
jobs. Approximate computing relies on representative sampling
of the entire dataset to compute over a subset of data items.

In this paper, we observe that these two paradigms are comple-
mentary, and can be married together! Our idea is quite simple:
design a sampling algorithm that biases the sample selection to the mem-
oized data items from previous runs. To realize this idea, we designed
an online stratified sampling algorithm that uses self-adjusting
computation to produce an incrementally updated approximate
output with bounded error. We implemented our algorithm in a
data analytics system called INCAPPROX based on Apache Spark
Streaming. Our evaluation using micro-benchmarks and real-
world case-studies shows that INCAPPROX achieves the benefits
of both incremental and approximate computing.

1. INTRODUCTION

Big data analytics systems are an integral part of modern online
services. These systems are extensively used for transforming
raw data into useful information. Much of this raw data arrives
as a continuous data stream and in huge volumes, requiring
real-time stream processing based on parallel and distributed
computing frameworks [2, 6, 19, 47, 60, 72].

Near real-time processing of data streams has two desirable,
but contradictory design requirements [60, 72]: (i) achieving low
latency; and (ii) efficient resource utilization. For instance, the
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low-latency requirement can be met by employing more com-
puting resources and parallelizing the application logic over
the distributed infrastructure. Since most data analytics frame-
works are based on the data-parallel programming model [34],
almost linear scalability can be achieved with increased com-
puting resources. However, low-latency comes at the cost of
lower throughput and ineffective utilization of the computing re-
sources. Moreover, in some cases, processing all data items of the
input stream would require more than the available computing
resources to meet the desired SLASs or the latency guarantees.
To strike a balance between these two contradictory goals,
there is a surge of new computing paradigms that prefer to com-
pute over a subset of data items instead of the entire data stream.
Since computing over a subset of the input requires less time
and resources, these computing paradigms can achieve bounded
latency and efficient resource utilization. In particular, two such
paradigms are incremental and approximate computing.

Incremental computing. Incremental computation is based on
the observation that many data analytics jobs operate incremen-
tally by repeatedly invoking the same application logic or algo-
rithm over an input data that differs slightly from that of the
previous invocation [21, 44, 47]. In such a workflow, small, lo-
calized changes to the input often require only small updates to
the output, creating an opportunity to update the output incre-
mentally instead of recomputing everything from scratch [10, 18].
Since the work done is often proportional to the change size
rather than the total input size, incremental computation can
achieve significant performance gains (low latency) and efficient
utilization of computing resources [22, 24, 64].

The most common way for incremental computation is to
rely on programmers to design and implement an application-
specific incremental update mechanism (or a dynamic algorithm)
for updating the output as the input changes [25, 29, 35, 39, 43].
While dynamic algorithms can be asymptotically more efficient
than re-computing everything from scratch, research in the algo-
rithms community shows that these algorithms can be difficult
to design, implement and maintain even for simple problems.
Furthermore, these algorithms are studied mostly in the context
of the uniprocessor computing model, making them ill-suited
for parallel and distributed settings which is commonly used for
large-scale data analytics.

Recent advancements in self-adjusting computation [10, 12,
45, 46] overcome the limitations of dynamic algorithms. Self-
adjusting computation transparently benefits existing applica-
tions, without requiring the design and implementation of dy-



namic algorithms. At a high level, self-adjusting computation
enables incremental updates by creating a dynamic dependence
graph of the underlying computation, which records control and
data dependencies between the sub-computations. Given a set of
input changes, self-adjusting computation performs change prop-
agation, where it reuses the memoized intermediate results for all
sub-computations that are unaffected by the input changes, and
re-computes only those parts of the computation that are tran-
sitively affected by the input change. As a result, self-adjusting
computation computes only on a subset (“delta™ ) of the compu-
tation instead of re-computing everything from scratch.

Approximate computing. Approximate computation is based
on the observation that many data analytics jobs are amenable to
an approximate, rather than the exact output [36, 58, 61, 66]. For
such an approximate workflowy, it is possible to trade accuracy
by computing over a partial subset instead of the entire input
data to achieve low latency and efficient utilization of resources.

Over the last two decades, researchers in the database com-
munity proposed many techniques for approximate computing
including sampling [15, 41], sketches [33], and online aggrega-
tion [48]. These techniques make different trade-offs with respect
to the output quality, supported query interface, and workload.
However, the early work in approximate computing was mainly
targeted towards the centralized database architecture, and it
was unclear whether these techniques could be extended in the
context of big data analytics.

Recently, sampling based approaches have been successfully
adopted for distributed data analytics [14, 42]. These systems
show that it is possible to have a trade-off between the output
accuracy and performance gains (also efficient resource utiliza-
tion) by employing sampling-based approaches for computing
over a subset of data items. However, these “big data" systems
target batch processing workflow and cannot provide required
low-latency guarantees for stream analytics.

The marriage. In this paper, we make the observation that the
two computing paradigms, incremental and approximate com-
puting, are complementary. Both computing paradigms rely
on computing over a subset of data items instead of the entire
dataset to achieve low latency and efficient cluster utilization.
Therefore, we propose to combine these paradigms together in
order to leverage the benefits of both. Furthermore, we achieve
incremental updates without requiring the design and implemen-
tation of application-specific dynamic algorithms, and support
approximate computing for stream analytics.

The high-level idea is to design a sampling algorithm that
biases the sample selection to the memoized data items from pre-
vious runs. We realize this idea by designing an online sampling
algorithm that selects a representative subset of data items from
the input data stream. Thereafter, we bias the sample to include
data items for which we already have memoized results from
previous runs, while preserving the proportional allocation of
data items of different (strata) distributions. Next, we run the
user-specified streaming query on this biased sample by mak-
ing use of self-adjusting computation and provide the user an
incrementally updated approximate output with error bounds.

We implemented our algorithm in a system called INCAP-
PROX based on Apache Spark Streaming [5], and evaluated its
effectiveness by applying INCAPPROX to various micro-bench-
marks. Furthermore, we report our experience on applying
INCAPPROX on two real-world case-studies: (i) real-time net-
work monitoring, and (ii) data analytics on a Twitter stream.
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Figure 1. System overview

Our evaluation using real-world case-studies shows that IN-
CAPPROX achieves a speedup of ~ 2x over the native Spark
Streaming execution, and ~ 1.4 x over the individual speedups
of both incremental and approximate computing.

2. OVERVIEW

2.1 System Overview

INCAPPROX is designed for real-time data analytics on online
data streams. Figure 1 depicts the high-level design of INCAP-
PROX. The online data stream consists of data items from diverse
sources of events or sub-streams. We use a stream aggregator
(such as Apache Kafka [7], Apache Flume [3], Amazon Kine-
sis [1], etc.) that integrates data from these sub-streams, and
thereafter, the system reads this integrated data stream as the in-
put. We facilitate user querying on this data stream by providing
a user interface that consists of a streaming query and a query
budget. The user submits the streaming query to the system as
well as specifies a query budget. The query budget can either be
in the form of latency guarantees/SLAs for data processing, de-
sired result accuracy, or computing resources available for query
processing. Our system makes sure that the computation done
over the data remains within the specified budget. To achieve
this, the system makes use of a mixture of incremental and ap-
proximating computing for real-time processing over the input
data stream, and emits the query result along with the confidence
interval or error bounds.

2.2 Design Goals

The goals of the INCAPPROX system are to:

e Provide application transparency: We aim to support unmod-
ified applications for stream processing, i.e., the program-
mers do not have to design and implement application-
specific dynamic algorithms or sampling techniques.
Guarantee query budget: We aim to provide an adaptive exe-
cution interface, where the users of the system can specify
their query budget in terms of tolerable latency/SLAs, de-
sired result accuracy, or the available cluster resources, and
our system guarantees the processing within the budget.
Improve efficiency: We aim to achieve high efficiency with
a mix of incremental and approximate computing.
Guarantee a confidence level: We aim to provide a confidence
level for the approximate output, i.e., the accuracy of the
output will remain within an error range.

2.3 System Model

Before we explain the design of INCAPPROX, we present the
system model assumed in this work.

Programming model. Our system supports a batched streaming
processing programming model. In batched stream processing,
the online data stream is divided into small batches or sets of
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Figure 2: Sliding window computation over data stream

records; and for each batch a distributed data-parallel job is
launched to produce the output.

As opposed to the trigger-based programming model (see [72]
for details), the batched streaming model provides three main
advantages: (i) it provides simple fault tolerance based on re-
computation of tasks, and efficient handling of stragglers using
speculative execution; (ii) it provides consistent “exact-once" se-
mantics for records processing instead of weaker semantics such
as “at least once" or “at most once"; and finally, (iii) it provides a
unified data-parallel programming model that could be utilized
for batch as well as stream processing workflows. Given these
advantages, the batched streaming model is widely adopted by
many stream processing frameworks including Spark Stream-
ing [5], Flink [2], Slider [19, 20], TimeStream [65], Trident [8],
MapReduce Online [32], Comet [47], and NOVA [26].

Computation model. Our computation model for stream pro-
cessing is sliding window computations. In this model (see Fig-
ure 2), the computation window slides over the input data stream,
where the newly arriving input data items are added to the win-
dow and the old data items are dropped from the window as
they become less relevant to the analysis.

In sliding window computations, there is a substantial overlap
of data items between the two successive computation windows,
especially, when the size of the window is large relative to the
slide interval. This overlap of unchanged data-items provides an
opportunity to update the output incrementally.

Assumptions. Our system makes the following assumptions. We
discuss these assumptions and the different possible methods to
enforce themin § 6.

1. We assume that the input stream is stratified based on the
source of event, i.e., the data items within each stratum
follow the same distribution, and are mutually indepen-
dent. Here a stratum refers to one sub-stream. If multiple
sub-streams have the same distribution, they are combined
to form a stratum.

2. We assume the existence of a virtual function that takes the
user specified budget as the input and outputs the sample
size for each window based on the budget.

3. We assume that the memoized results for incremental com-
putation are stored in the way that is fault-tolerant.

Lastly, we assume a time-based window length, and based on
the arrival rate, the number of data items within a window may
vary accordingly. Note that this assumption is consistent with
the sliding window APIs in the aforementioned systems.

2.4 Building Blocks

Our system leverages several computational and statistical
techniques to achieve the goals discussed in § 2.2. Next, we
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briefly describe these techniques and the motivation behind our
design choices.

Stratified sampling. In a streaming environment, since the win-
dow size might be very large, for a realistic rate of execution, we
perform approximation using samples taken within the window.
But the data stream might consist of data from disparate events.
As such, we must make sure that every sub-stream is considered
fairly to have a representative sample from each sub-stream. For
this we use stratified sampling [15]. Stratified sampling ensures
that data from every stratum is selected and none of the minori-
ties are excluded. For statistical precision, we use proportional
allocation of each sub-stream to the sample [16]. It ensures that
the sample size of each sub-stream is in proportion to the size of
sub-stream in the whole window.

Self-adjusting computation. For incremental sliding window
computations, we use self-adjusting computation [10, 12, 45, 46]
to re-use the intermediate results of sub-computations across suc-
cessive runs of jobs. In this technique we maintain a dependence
graph between sub-computations of a job, and reuse memoized
results for sub-computations that are unaffected by the changed
input in the computation window.

Error estimation. For defining a confidence level on the accuracy
of the approximated output, we use error estimation [31]. This
specifies a confidence interval or error bound for the output, i.e.,
we emit the output in the following form : output + error mar-
gin. A confidence level along with the margin of error tells how
accurate is the approximate output.

3. DESIGN

In this section, we present the detailed design of INCAPPROX.

3.1 Algorithm Overview

Algorithm 1 presents an overview of our approach. The al-
gorithm computes a user-specified streaming query as a sliding
window computation over the input data stream. The user also
specifies a query budget for executing the query, which is used
to derive the sample size (sampleSize) for the window using a
cost function (see § 2.3 and § 6). The cost function ensures that
processing remains within the query budget.

For each window (see Figure 2), we first adjust the computa-
tion window to the current start time t by removing all old data
items from the window (timestamp < t). Similarly, we also drop
all old data items from the list of memoized items (memo), and
the respective memoized results of all sub-computations that are
dependent on those old data items.

Next, we read the new incoming data items in the window.
Thereafter, we perform proportional stratified sampling (detailed
in § 3.2) on the window to select a sample of size provided by the
cost function. The stratified sampling algorithm ensures that sam-
ples from all strata are proportional, and no stratum is neglected.

Next, we bias the stratified sample to include items from the
memoized sample, in order to enable the reuse of memoized
results from previous sub-computations. The biased sampling al-
gorithm (detailed in § 3.3) biases samples specific to each stratum, to
ensure reuse, and at the same time, retain proportional allocation.

Thereafter, on this biased sample, we run the user specified
query as a data-parallel job incrementally, i.e., we reuse the memo-
ized results for all data items that are unchanged in the window,
and update the output based on the changed (or new) data items.
After the job finishes, we memoize all the items in the sample



Algorithm 1 Basic algorithm

Algorithm 2 Stratified reservoir sampling algorithm

User input: streaming query and query budget

Windowing parameters (see Figure 2):

t < start time; § « slide interval,

begin

window <— @; // List of items in the window

memo <— @; /7 List of items memoized from the window

sample < @; // Set of items sampled from the window

biasedSample <— @; // Set of items in biased sample

foreach window in the incoming data stream do

// Remove all old items from window and memo

forall elements in the window and memo do

if element.timestamp < t then

window.remove(element);
memo.remove(element);

end
end
// Add new items to the window
window <— window.insert(new items);
// Cost function gives the sample size based on the budget
sampleSize < costFunction(budget);
// Do stratified sampling of window (8 3.2)
sample < stratifiedSampling(window, sampleSize);
// Bias the stratified sample to include memoized items (§ 3.3)
biasedSample < biasSample(sample, memo);
// Run query as an incremental data parallel job for the window (§ 3.4)
output < runJobIncrementally(query, biasedSample);
// Memoize all items & respective sub-computations for sample (8§ 3.4)
memo <— memoize(biasedSample);
// Estimate error for the output (§ 3.5)
outputterror < estimateError(output);
// Update the start time for the next window
tt+;

end

end

and their respective sub-computation results for reuse for the
subsequent windows. The details are covered in § 3.4.

The job provides an estimated output which is bound to a
range of error due to approximation. We perform error estima-
tion (as described in 8 3.5) to estimate this error bound and define
a confidence interval for the result as: output=+errorbound.

The entire process repeats for the next window, with updated
windowing parameters and the sample size. (Note that the query
budget can be updated across windows during the course of
stream processing to adapt to the user’s requirements.)

3.2 Stratified Reservoir Sampling

Stratified sampling clusters the input stream into homogenous
disjoint sets of strata (here homogenous means the items within
a stratum have same distribution) and selects a random sample
from each stratum. Meanwhile, reservoir sampling selects a uni-
form random sample of fixed size without replacement, from an
input stream of unknown size. We perform a combined strati-
fied reservoir sampling, adopted from the approach in [15], along
with proportional allocation, i.e., we sample the streaming data
within a sliding window by stratifying the stream, and applying
reservoir sampling within each stratum proportionally. By com-
bining these two techniques, statistical quality of the sample is
maintained—as sample from every stratum is selected proportion-
ally, and a random sample of fixed size—given by cost function
is selected from the window.

The stratified reservoir sampling algorithm (described in Algo-
rithm 2) uses a fixed size reservoir with size equal to the sample
size. It allocates the space in the reservoir proportionally to the
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Require: T < Interval for re-calculation of sub-reservoir size
stratifiedSampling(window, sampleSize)
begin
S < @ /7 Ordered set of all strata seen so far in window
forall item belonging to stratum S; in window do
S.add(S;); // Add new stratum seen to S
i < Index of stratum S; ;
// Fill reservoir until sampleSize is reached
if (ZLi'ﬂsample[h} |) < sampleSize then
‘ sampleli].add(item); 7/ Add item to its sub-reservoir

end
else
if T interval is passed then
forall Sj in S do
i < Index of stratum S; ;
// Compute new sub-reservoir size using Equation 1
newsSize[i] +— sampleli].computeSize();
if newSize[i] # |sample[i]| then
¢ < newSize[i] — |sample[i]|;
/7 Do Adaptive Reservoir Sampling
sample[i] < ARS(c, sample[i], Sj);
end
else
// Do Conventional Reservoir Sampling
sampleli] - CRS(item, sampleli], S;);
end
/7 Skip items in window, if seen by ARS or CRS
skipItemsSeen(); 7/ Details omitted

end

end

else

// Until T, do Conventional Reservoir Sampling
sample[i] < CRS(item, sample]i], S;);

end
end

end
end

samples from each stratum, based on number of items seen so
far in the corresponding stratum. As we move forward through
the window for sampling, the arrival rate of items in each stra-
tum may change, hence the proportional allocation must be
updated. Therefore, periodically, the algorithm re-allocates the
space in the reservoir to ensure proportional allocation. There-
after, based on this re-allocation, we adapt the algorithm to use
an adaptive reservoir sampling (ARS) [16] for those strata whose
sub-reservoir sizes are changed, and conventional reservoir sam-
pling (CRS) [15] for those strata whose sub-reservoir sizes are
unchanged. (Let reservoir consists of a group of sub-reservoirs,
each for storing sample from each stratum). ARS ensures that we
periodically adjust the proportional allocation (based on the ar-
rival rate), and CRS ensures randomness in sampling technique.
Once the sub-reservoir’s proportional allocation is handled using
ARS, the sampling technique switches back to CRS, until the next
re-allocation interval.

Algorithm 2 works as follows: For each item seen in a window,
if the stratum of the item is newly seen, then we add it to the set
of strata seen so far. Initially, we fill the reservoir of sample until
it is full. Here the reservoir is a store for our stratified sample
’sample’, and can be considered as a group of sub-reservoirs of
different strata such that: [sample| = ZEJ ! |sample[i]| where S
is the ordered set of all strata seen so far in the window, and
sampleli] is the sub-reservoir of the sample from the it" stratum.



Algorithm 3 Subroutines for the stratified sampling algorithm

Algorithm 4 Biased sampling algorithm

Let incomingltems[ ] represent incoming items seen when moving forward
through window

ARs(c, samplefi], Sj)

begin

if c > 0then

// Add c items to sample[i] from incoming items belonging to S;

Vj €10, .., c—1}: sample[i].add(incomingltems[S;].get(j));

end

else

// Evict random c items from sampleli]
vje{0,..,c—1}:

// random(a, b)givesarandom number between [a, b]
sampleli].remove(random(0, [sample[i]| —1));

end
end
CRs(item, sample[i], S;)
begin
|[sample[i]| . -
p <« T, // Probability of replacement

/7 Replace a random item from sample[i] with item, using probability p
sample[i].replace(sample[i][random(0, |sample[i]| —1)],
item, p);

end

We fill the reservoir by adding each item to its corresponding
sub-reservoir, based on the stratum to which the item belongs.
Once the reservoir is full, then until a pre-decided periodical
time interval T to re-allocate sub-reservoir sizes, we proceed with
a conventional reservoir sampling (CRS). In CRS technique, for

each of the further items seen in each stratum S;, we decide with

a probability ‘53"%9[

| Ul whether to accept or reject the item, i.e.,
all items in a stratum have equal probability of inclusion [15]. If
the item is accepted, then we replace a randomly selected item
in the corresponding sub-reservoir with the accepted item.

After T interval of time, we re-allocate the sub-reservoir sizes
of each stratum, to ensure proportional allocation. This T interval
determines how frequently proportional allocation is verified.
Thus, T is selected based on frequency of change in the arrival
rate in each stratum (since change in arrival rate changes pro-
portional allocation), by counting the number of items of each
stratum per time unit at the stream aggregator. First, after in-
terval T, we compute the size of sub-reservoir to be allocated to
each it stratum at current time t’. It is computed proportional
to the total number of items seen so far in the corresponding
stratum within the window, using the equation:

IS

|
- @

|sampleli](t')| =sampleSize

where sampleSize is the total size allocated to reservoir, |Sj| is the
number of items seen so far in the stratum S; and k is the total
number of items seen so far in the window.

Thereafter, if the re-allocated sub-reservoir size [sampleli](t')|
at current point of time t’ is different from the previously adjusted
sub-reservoir size (i.e., if there is any change in sub-reservoir size),
we proceed with ARS—to adapt according to this change in size
(described in Algorithm 3) as follows: When sub-reservoir size
of Sj has increased by c, then from the incoming stream, we
insert ¢ items that belong to stratum S;, to the corresponding
sub-reservoir sample[i]. If the sub-reservoir size has decreased
by c, we evict ¢ number of items from the sub-reservoir. This
ensures that proportional allocation is retained.
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biasSample(sample, memo)

begin

S < sample.getAllStratal(); // Set of all strata in sample

foreach ith stratum S; in S do

X — memoli].size(); // no. of items memoized from S;

y < sample]i].size(); /7 no. of items in sample from S;
biasedSampleli] < @; 7/ List of items in biased sample from S;

if x >y then

// Add y items from memoli] to biasedSample[i] to enable re-use
Vj €{0, ..., y—1}: biasedSample[i].add(memoli].get(j));

end
else
// First add x items from memaoli] to biasedSample[i]
Vj € {0, ..., x—1} : biasedSample[i].add(memoli].get(j));
// Fill the remaining (y — x) items from the stratified sample
intj=0;
while (biasedSampleli].size() < y) do
biasedSample[i].add(sample]i].get(j));
j++
end

end

end
end

If the re-allocated sub-reservoir size of a stratum is unchanged,
we proceed with CRS for the stratum as explained before.

We perform stratified reservoir sampling until the window
terminates and the resulting stratified sample consists of samples
from each stratum, proportional to the size of corresponding
stratum seen in the whole window.

3.3 Biased Sampling

Biased sampling. Biased sampling enables result reuse by in-
cluding memoized data items in the sample, but at the same
time, ensures that the proportional allocation of samples from
each stratum is retained. In sliding window computations where
the window slides by small intervals, there is only a small change
in the input based on insertion and deletion from the window
(see Figure 2). Hence, we memoize and reuse the results of sub-
computations whose input is unchanged. However, if we reuse
all memoized results from the previous window, the proportional
allocation is lost, since proportions in different windows may
vary due to difference in the arrival rate of sub-streams. There-
fore, we select the number of memoized items for result reuse, based
on the number of items in the sample from each stratum.
Algorithm 4 describes our biased sampling algorithm. In this
algorithm, we bias the sample from each stratum separately.
Note that here, “memoized items" and “sample size" are specific
to each stratum. The algorithm works as follows: If the number
of memoized items x is greater than or equal to the sample size
y, then we create a biased sample with only y items from the
memoized list, and neglect the extra memoized items. If the
number of memoized items is less than the sample size, then we
give priority to memoized items and create a biased sample with
all memoized items first, and later we add more items to this
biased sample from the stratified sample until the size of biased
sample becomes equal to the size of stratified sample. This en-
sures proportional allocation. However, some of the memoized
items in memo might be already in the stratified sample, and
this might cause duplicates in the biased sample. Therefore, in
practice, we use a data structure such as a HashSet for storing
biasedSample to remove duplicates automatically. Finally, we get



a biased sample which includes all essential memoized items as
well as stratified samples based on the arrival rate, thus ensuring
both reuse and proportional allocation.

Precision and accuracy in biased sampling. We define precision
and accuracy in terms of statistics. An estimated result is precise
if similar results are obtained with repeated sampling, and it is
accurate if the estimated result is closer to the true result (a precise
result doesn’t necessarily be accurate always) [54]. Our stratified
sample is more precise than a random sample since it considers
every stratum, and uses proportional allocation. Accuracy of
a stratified sample is more if (i) different strata have major dif-
ferences and (ii) within each stratum, there is homogeneity [54].
Based on our assumptions in 2.3, our stratified sample is more
accurate than random sample since different stratum have differ-
ent distribution, and items within each stratum follow the same
distribution (homogenous).

We bias the sample from each stratum separately, thus pre-
serving the statistics of stratified sampling, i.e., after the bias, the
biased sample still consists of items from each stratum in the
same proportional allocation obtained from stratified sampling.
Further, even though the items selected within a stratum are
biased to include memoized items which belong to the same
stratum, since the items follow the same distribution, there is
little difference between items within a stratum.

3.4 Run Job Incrementally

Next, we run the user-specified streaming query as an incre-
mental data-parallel job on the biased sample (derived in § 3.3).
For that, we make use of self-adjusting computation [10, 11].

In self-adjusting computation, the computation is divided
into sub-computations, and a dynamic dependence graph is
constructed to record dependencies between these sub-comp-
utations. Formally, a Dynamic Dependence Graph DDG = (V,E)
consists of nodes (V) representing sub-computations and edges
(E) representing data and control dependencies between the sub-
computations. Thereafter, a change propagation algorithm is
used to update the output by propagating the input changes
through the dependence graph. The change propagation algo-
rithm identifies a set of sub-computations that directly depend
on the changed data and re-executes those sub-computations.
This in turn leads to re-computation of other data-dependent sub-
computations. Change propagation terminates when all transi-
tively dependent sub-computations are re-computed. For all the
unaffected sub-computations, the algorithm reuses memoized re-
sults from previous runs without re-computation. Lastly, results
for all re-computed (or newly computed) sub-computations are
memoized for the next incremental run.

Next, we illustrate the application of self-adjusting computa-
tion to a data-parallel job based on the MapReduce model [34].
(Note that our implementation is based on Spark Streaming [5],
which is a generic extended version of MapReduce.) Figure 3
shows the dependence graph built based on the data-flow graph
of the MapReduce model. The data-flow graph is represented
by a DAG, where map and reduce tasks represent nodes (or sub-
computations) in the dependence graph, and the directed edges
represent the dependencies between these tasks. For an incre-
mental run, we launch map tasks for the newly added data items
in the sample (M5 and Mg), and reuse the memoized results for
the map tasks from previous runs (M; to My). The output of
the newly computed map tasks invalidates the dependent reduce
tasks (R3 and Rs). However, all reduce tasks that are unaffected
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by the changed input can simply reuse their memoized results
without re-computation (Ry, Ry, and R,). Lastly, we memoize
the results for all freshly executed tasks for the next incremental
run. Note that the items removed from the window also act as
the input change (e.g., Mp), and sub-computations dependent
on the removed items are also re-computed (e.g., R3).

3.5 Estimation of Error Bounds

In order to provide a confidence interval for the approximate
output, we estimate the error bounds due to approximation.
Approximation for aggregate functions. Aggregate functions
require results based on all the data items or groups of data items
in the population. But since we compute only over a small sam-
ple from the population, we get an estimated result based on the
weightage of the sample.

Consider an input stream S, within a window, consisting of

n disjoint strata S;, S; ..., Sp, i.e, S = 2{‘:1 Si. Suppose the jth
stratum S; has B; items and each item j has an associated value
vij. Consider an example to take sum of these values, across
the whole window, represented as szl(Zjilvi j)- To find an ap-
proximate sum, we first select a sample from the window based
on stratified and biased sampling as described in § 3, i.e., from
each it stratum S; in the window, we sample b; items. Then we
. . s i b
estimate the sum from this sample as: T:Ele(E—iZj'zlvij) +e
where the error bound € is defined as:

e=try s/ Var(?)

@

Here, tfyl_% is the value of the t-distribution (i.e., t-score) with f
degrees of freedom and « = 1 — confidence level. The degree of
freedom f is expressed as:

f= ibi -n ®3)
i=1
The estimated variance for sum, Var (%) is represented as:
. s2
Var(T):i;Bi*(Bifbi)b—'i @)

where s;’- is the population variance in the it stratum. Since the
bias sampling is such that the statistics of stratified sampling is
preserved, we use the statistical theories [67] for stratified sam-
pling to compute the error bound.

Currently, we support error estimation only for aggregate
queries. For supporting queries that compute extreme values,



such as minimum and maximum, we can make use of extreme
value theory [31, 52] to compute the error bounds.

Error bound estimation. For error bound estimation, we first
identify the sample statistic used to estimate a population param-
eter, e.g., sum, and we select a desired confidence level, e.g., 95%.
In order to compute the margin of error e using t-score as given
in Equation 2, the sampling distribution must be nearly normal.
The Central Limit Theorem (CLT) states that when the size of
sample is sufficiently large (>= 30), then the sampling distribu-
tion of a statistic approximates to normal distribution, regardless
of the underlying distribution of values in the data [67]. Hence,
we compute t-score using a t-distribution calculator [57], with
the given degree of freedom f (see Equation 3), and cumulative
probability as 1—a/2 where o« = 1 — confidence level [54]. There-
after, we estimate the variance using the corresponding equation
for the sample statistic considered (for sum, the Equation is 4).
Finally, we use this t-score and estimated variance of the sample
statistic and compute the margin of error using Equation 2.

4. IMPLEMENTATION

We implemented INCAPPROX based on the Apache Spark
Streaming framework [5]. Figure 4 presents the high-level ar-
chitecture of our prototype, where the shaded boxes depict the
implemented modules. In this section, we first give a brief neces-
sary background on Spark Streaming, and next, we present the
design details of the implemented modules.

Background. Spark Streaming is a scalable and fault-tolerant dis-
tributed stream processing framework. It offers batched stream
processing APIs (as described in § 2.3), where a streaming com-
putation is treated as a series of batch computations on small time
intervals. For each interval, the received input data stream is first
stored on a cluster’s memory and a distributed file system such
as HDFS [4] or Tachyon [51]. Thereafter, the input data is pro-
cessed using Apache Spark [71], a distributed data-parallel job
processing framework similar to MapReduce [34] or Dryad [49].

Spark Streaming is built on top of Apache Spark, which uses
Resilient Distributed Datasets (RDDs) [71] for distributed data-
parallel computing. An RDD is an immutable and fault-tolerant
collection of elements (objects) that is distributed or partitioned
across a set of nodes in a cluster. Spark Streaming extends the
RDD abstraction by introducing the DStreams APIs [72], which
is a sequence of RDDs arrived during a time window.

INCAPPROX implementation. Our implementation builds on
the Spark Streaming APIs to implement the approximate and in-
cremental computing mechanisms. At a high-level (see Figure 4),
the input data stream is split into batches based on a pre-defined
interval (e.g., one second). Each batch is defined as a sequence
of RDDs. Next, the RDDs in each batch are sampled by the
sampling module, with an initial sampling rate computed from
the query budget using the virtual cost function. The sampled
RDDs are inputs for the incremental computation module. In
this module, the sampled RDDs are processed incrementally to
provide the query result to the user. Finally, the error is estimated
by the error estimation module. If the value of the error is higher
than the error bound target, a feedback mechanism is activated
to tune the sampling rate in the sampling module to provide
higher accuracy in the subsequent query results. We next explain
the details for the implemented modules.

I: Sampling module. The sampling module implements the ap-
proximation mechanism as described in § 3. For that, we adapt

1139

Virtual cost Streaming
Query budget function query
Initial
sampling rate
Batched Sampled
Batch Incremental
atc RDDs Sampling RDDs '
generator edule computation
(Spark) module
I Refined Error
sampling rate estimation
Data stream L | : A
module

Query output

Figure 4. Architecture of INCAPPROX prototype (shaded boxes
depict the implemented modules)

sampling methods available in Spark, namely sample(), to imple-
ment our sampling algorithm.

11I: Incremental computation module. The incremental compu-
tation module implements the self-adjusting computation mech-
anism as described in § 3.4. For that, we reuse the caching mech-
anism available in Spark to memoize the intermediate results for
the tasks. For the reduction operations, we adapt a windowing
operation in Spark Streaming, namely reduceByKeyAndWindow()
to incrementally update the output. Finally, the dependence
graph is maintained at Spark’s job controller.

I11: Error estimation module. Finally, the error estimation mod-
ule calculates the error bounds for the output and sends feedback
to the sampling module to tune the sample size in order to satisfy
the accuracy constraint. We implement the algorithm described
in § 3.5 using the Apache Common Math library [57].

In general, our modifications in Spark Streaming are fairly
straightforward, and could easily be adapted to other batched
streaming processing frameworks (described in § 2.3). More im-
portantly, we support unmodified applications since we did not
modify the application programming interface.

5. EVALUATION

In this section, we first present a micro-benchmarks based eval-
uation (8§ 5.1), and next, we report our experience on deploying
INCAPPROX for the real-world case-studies (§ 5.2).

5.1 Micro-benchmarks

For analyzing the effectiveness of memoization in improving
the result reuse rate, we evaluate INCAPPROX using a simulated
data stream. In particular, our evaluation analyzes the impact
of varying four different parameters, namely, sample size, slide
interval, window size, and arrival rate for sub-streams.

We generated a synthetic data stream with three different sub-
streams. Each sub-stream is generated with an independent
Poisson distribution and different mean arrival rates. For the first
three experiments, i.e., to analyze the impact of sample size, slide
interval, and window size on memoization, we generated three
sub-streams with a mean arrival rate of 3:4:5 data items per unit
time respectively. To analyze the impact of the fluctuating arrival
rate of events, we generated two sub-streams with fluctuating ar-
rival rates, and kept the third sub-stream with a constant arrival
rate, for a comparative analysis.

5.1.1 What is the effect of varying sample sizes?

We first study the effect of varying sample sizes on memoiza-
tion by applying our algorithm to the synthetic data stream. For



(a) Sample size (b) Slide interval

600
Sub-streams I Sub-streams
03000 - —e— S Lopol —*— S
5 —— 5 L 82— s,
S —8— 53 ° —=—_ S;
® 400 M
82000 , 3400 '_'\'\-\.
; :
g B30 T ]
* 1000 = 1»—4_.\.\‘
) 2200 »

o
s)

4 8
Slide interval (%)

20 40 60 2
Sample size (%)

80

16

1050

# samples

(c) Window size (d) Arrival rate
1100
| Memoized 102 - Sub-streams
— Sample size — S SSSNS, E==15;

o

o

o
Memoization (%)

950 |

VIIIIIIIIIIIIIIIIID]

PP IIIIIIIIIIID)

§
s
[N

V7 77/

v
¥

900
+200 -100 +300 -150 +200
A change in window size

1:5:2 3:5:2 2142 4:2:2
Arrival rate of substreams S4:S,:S3

Figure 5: Effect of various parameters such as sample size, slide interval, window size and arrival rate on memoization

the experiment, we keep the other parameters—window size
and slide interval—fixed. We measure the average number of
memoized items from each sub-stream S;, Sy, S3 with different
arrival rates 3:4:5 respectively, by varying the total sample size.
Figure 5 (a) shows our measurements with a fixed window
size of 10,000 items, 4% slide interval (i.e., 400) and varying
sample sizes (on x-axis): 10%, 20%, 40%, 60% and 80% of the
window size. We observe that the average number of data items
memoized is directly proportional to the sample size and the
arrival rate. When the sample size increases, the average number
of data items memoized increases constantly because more items
from the previous window is available for memoization. We also
observe a higher memoization rate for sub-streams with higher
arrival rates due to proportional allocation of sub-sample sizes.

5.1.2  What is the effect of varying slide intervals?

Next, we evaluate the impact of varying slide intervals on
memoization with constant window and sample sizes. \We mea-
sure the average number of items memoized from each sub-
stream with different slide intervals.

Figure 5 (b) shows our measurements with a fixed window
size of 10,000 and sample size of 10% window size (i.e., 1000), but
varying slide intervals (on x-axis): 1%, 2%, 4%, 8%, and 16% of the
window size. We observe that when the slide interval is 1%, our
algorithm memoizes an average of 99.5% of total samples, which
greatly improves the reuse rate, and thus, leads to higher effi-
ciency. As evident from the plot, when the slide interval increases,
the percentage of memoized items decreases, because larger
slides allow fewer samples to reuse from the previous window.
We also repeated the experiments with different window sizes,
but observed very similar results. Thus, the results illustrate that
smaller slides (which is the usual case for an incremental work-
flow) allow higher memoization and thus higher result reuse.

5.1.3 What is the effect of varying window sizes?

Next, we evaluate the impact of varying window sizes on
memoization. We measure the number of items in a sample
and the number of items memoized from the previous window,
and analyze the reuse rate based on this measurement. \We be-
gin our experiment with a window of 10,000 items, and then
increase/decrease the window size, e.g., we first increase the
window size by 200, then decrease it by 100, etc.

Figure 5 (c) shows our measurements, with a fixed 2% slide in-
terval and 10% sample size for each corresponding window size.
The x-axis represents A, i.e., the change in window size between
two adjacent windows (see Figure 2). The figure illustrates that
whenever the window size decreases (i.e., A is negative), memo-
ized samples are more than the samples needed in the current
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window. For example, when A is —100, sample size is 1010 and
we have 1017 memoized items from the previous window i.e.,
decreasing window size can allow a 100% re-use rate, provided
the slide interval is considerably low (here 2%). The figure also
depicts that when window size increases (i.e, A is positive), the
sample size is higher than the number of memoized items from
the previous window, and the larger the increase in the window
size, the larger is the difference between samples needed and
memoized. This implies a lesser result reuse rate.

5.1.4 What is the effect of fluctuating arrival rates?

Lastly, we evaluate the effect of fluctuating arrival rate of sub-
streams. As mentioned earlier, we generated two sub-streams,
each with fluctuating arrival rates, and a third sub-stream with a
constant arrival rate for the analysis. We measure the percentage
of items memoized from each sub-stream.

Figure 5 (d) depicts the memoization based on fluctuating
arrival rates, for a fixed window of 10,000 items and sample
size of 10%. The x-axis shows the arrival rate for the three sub-
streams Sy, Sy, and S3. The figure illustrates that memoization
is inversely proportional to the arrival rate. For example, for
sub-stream S;, when the arrival rate increases from 1 to 3, the
percentage of memoization decreases, because the sample size
gets higher due to proportional allocation, but memoized items
available are lesser. When S;’s arrival rate decreases from 3 to 2,
we observe that the memoization increases since we have more
items memoized from the previous window. Sub-stream S, also
depicts similar behaviour. However we notice that even though
arrival rate is constant for the third sub-stream, its memoization
rate differs relative to the other two sub-streams since we use
a proportional allocation of sample sizes. The figure illustrates
that in spite of the fluctuations in arrival rates, INCAPPROX has
a memoization rate greater than 97%.

5.2 Case-studies

Next, we present our experience on deploying INCAPPROX
for the following two real-world case-studies: (i) network traffic
monitoring, and (ii) data analytics on Twitter stream.

Experimental setup. For the evaluation, we used a cluster of 24
nodes connected via Gigabit Ethernet (1000BaseT full duplex).
Each node has 2 Intel Xeon E5405 CPUs (quad core), 8GB of
RAM, and a SATA-2 hard disk, running Debian Linux 5.0 with
kernel 2.6.26. We deployed INCAPPROX 0n 20 nodes and Apache
Kafka [7] stream aggregator on the remaining 4 nodes (the setup
is similar to Figure 1).

Measurements. We evaluated two key metrics: throughput and
accuracy loss. The throughput is defined as the number of pro-
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cessed records per second, and the accuracy loss is defined as
(approx — exact)/exact where approx and exact are the results
obtained from approximate and native executions respectively.
We report the average over 20 runs for all measurements.

Finally, to assess the individual performance benefits of incre-
mental (Inc) and approximate (Approx) computing paradigms,
we switched on Inc (incremental computation) and Approx (sam-
pling + error estimation) modules separately. For Inc, the window
size is set to 10 seconds, and the window slide interval is set to
2 seconds. For Approx, the sampling fraction is set to 60%.

5.2.1 Network Traffic Monitoring

Network traffic monitoring plays an important role in network
management [50]. In this case study, we evaluated INCAPPROX’S
performance in a traffic monitoring application that measures
the number of TCP, UDP, and ICMP packets over time.

Dataset. We used network traffic traces from CAIDA [27] cap-
tured on the high-speed Internet backbone links in Chicago (la-
beled as A) containing around 670 GB of data in year 2015.

Methodology. From the CAIDA traces, we created a NetFlow [30]
dataset for our experiments. We developed a tool that allows us
to tune the throughput of the NetFlow stream, i.e., the number
of messages sent per second and the number of NetFlow records
per message. The experiment was conducted for 30 minutes.
The throughput of the stream is tuned to measure the system
throughput. The stream starts with 1000 messages/second and
continues to increase throughput until the system is exhausted.
Each message from the stream contains 200 NetFlow records.

Results. Figure 6 (a) shows the throughput comparison between
Approx, Inc, INCAPPROX, and native Spark Streaming. The indi-
vidual throughput for approximate computing (Approx) and in-
cremental computing (Inc) is 1.41x and 1.43x higher than native
Spark Streaming execution, respectively. However, INCAPPROX
performs significantly better with the combined benefits of both
paradigms, an improvement of 2.1x over the native execution.
Figure 6 (b) indicates that the throughput decreases quickly
with the increasing sampling fraction. With the sampling fraction
of 5%, the throughput of INCAPPROX reaches up to around 2.1
million flows/second, whereas the throughput of Approx peaks
at 1.8 million flows/second. At the sampling fraction of 90%, the
throughput is 1.58 x and 1.9x less than the throughput with 5%
sampling fraction for INCAPPROX and Approx, respectively.
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Figure 6 (c) shows the accuracy loss during the approximation
under different sampling rates. As the sample size increases, the
accuracy loss gets smaller (in other words, accuracy improves).
Since we randomly sample the diverse data, the loss is not linear.

5.2.2  Twitter Analytics

Analyzing online social networks is an active research area [59].
In the second case-study, we evaluated INCAPPROX 0N a real-
time Twitter data stream to compute trending topics.

Dataset. For this case study, we developed a crawler using the
Twitter API [9] to collect publicly available tweets during three
days, from September 17 to September 19, 2015.

Methodology. Since the Twitter API rate limits the number of
returned tweets per request, we first dumped the crawled tweets
dataset to a CSV file, and developed a tool to replay the tweets as
a Twitter stream. This tool allows to control the throughput of the
tweet stream. In our experiments, the throughput of the tweet
stream is started with 1000 messages/second and continuously
increased until the system is exhausted.

Results. Figure 6 (a) represents the throughput of each approach
while processing the tweet stream. Approx and Inc achieve
1.49x and 1.51x higher throughput than native Spark Streaming.
INCAPPROX is 2x better than native in terms of throughput.

Figure 6 (b) indicates that sampling fractions directly affect
the throughput of INCAPPROX and Approx. With the sampling
fraction of 5%, the throughput of INCAPPROX reaches up to
nearly 1.9 million tweets/second, whereas this value of Approx
is 1.5 million tweets/second. At the sampling fraction of 90%,
the throughput is 1.6 x and 1.7 x less than the throughput with
5% sampling fraction for INCAPPROX and Approx, respectively.

Figure 6 (c) shows the accuracy loss with different sampling
rates. The accuracy loss in case of Twitter analytics has a similar
but slightly higher curve as for network monitoring.

6. DISCUSSION

The design of INCAPPROX is based on three assumptions (see
§ 2.3). Solving these assumptions is beyond the scope of this pa-
per; however, in this section, we discuss some of the approaches
that could be used to meet our assumptions.
I: Stratification of sub-streams. Currently we assume that sub-
streams are stratified, i.e., the data items of individual sub-streams
have the same distribution. However, it may not be the case.



Next, we discuss two alternative approaches, namely bootstrap [37,
38, 63] and a semi-supervised learning algorithm [56] to classify
evolving data streams.

Bootstrap [37, 38, 63] is a non parametric re-sampling tech-
nique used to estimate parameters of a population. It works by
randomly selecting a large number of bootstrap samples with
replacement and with the same size as in the original sample. Un-
known parameters of a population can be estimated by averaging
these bootstrap samples. We could create such a bootstrap-based
classifier from the initial reservoir of data, and the classifier could
be used to classify sub-streams. Alternatively, we could employ
a semi-supervised algorithm [56] to stratify a data stream. This
algorithm manipulates both unlabeled and labeled data items to
train a classification model.

11: Virtual cost function. Secondly, we assume that there exists a
virtual function that computes the sample-size based on the user-
specified query budget. The query budget could be specified as
either available computing resources or latency requirements. We
suggest two existing approaches—Pulsar [17] and resource pre-
diction model [40, 55]—to design such a virtual function for given
computing resources and latency requirements, respectively.
Pulsar [17] is a system that allocates resources based on tenants’
demand, using a multi-resource token bucket. It provides a work-
load independent guarantee using a pre-advertised cost model,
i.e., for each appliance and network, it advertises a virtual cost
function that maps a request to its cost in tokens. We could adopt
a similar cost model as follows: An “item", i.e., a data block to be
processed, could be considered as a request and “amount of re-
sources" needed to process it could be the cost in tokens. Since the
resource budget gives total resources (here tokens) to be used, we
could find the number of items, i.e., the sample size, that can be
processed using these resources, ruling out faults and stragglers.
To find the sample-size for a given latency budget, we could
use a resource prediction model based on performance metrics
and QoS parameters in SLAs. Such a model could analyze the
diurnal patterns of resource usage [28], e.g., off-line predictions
based on pre-recorded resource usage log or predictions based
on statistical machine learning [40, 55], to predict the future re-
source requirements based on workload and latency. From this
predicted resource requirement, we could find the sample-size
needed by using the above suggested method similar to Pulsar.

I11: Fault tolerance. Our current algorithm does not take into ac-
count the failure of nodes in the cluster where memoized results
are stored. We discuss three different approaches that could be
adopted for fault tolerance if memoized results are unavailable:
(i) we could continue processing the window without using any
memoized items, albeit with lower efficiency; (ii) we could use
a similar approach for fault tolerance as provided in Spark [71],
where the lineage of memoized RDDs is used to recompute only
the lost RDD patrtitions; (iii) we could make use of underlying dis-
tributed fault tolerant file-systems (HDFS [4]) to asynchronously
replicate the memoized results.

7. RELATED WORK

INCAPPROX builds on two computing paradigms, namely,
incremental and approximate computing. In this section, we
survey the techniques proposed in these two paradigms.

Incremental computation. Since modifying the output of com-
putation incrementally is asymptotically more efficient than re-
computing everything from scratch, incremental computation is
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an active area of research for “big data" analytics. Earlier big data
systems for incremental computation proposed an alternative
programming model where the programmer is asked to imple-
ment an efficient incremental-update mechanism. Examples of
non-transparent systems include Google’s Percolator [62], and
Yahoo'’s CBP [53]. A downside of these early proposals is that
they depart from the existing programming model, and also re-
quire implementation of dynamic algorithms on per-application
basis, which could be difficult to design and implement.

To overcome the limitations of the aforementioned systems,
researchers proposed transparent approaches for incremental
computation and job deployment [68, 69, 70]. Examples of trans-
parent systems include Incoop [24, 23], Comet [47], DryadInc [64],
Slider [19, 20], and NOVA [26]. These systems leverage the under-
lying data-parallel programming model such as MapReduce [34]
or Dryad [49] for supporting incremental computation. Our
work builds on transparent big data systems for incremental
computation. In particular, we leverage the advancements in
self-adjusting computation [10, 18] to improve the efficiency of
incremental computation. In contrast to the existing approaches,
our approach extends incremental computation with the idea of
approximation, thus further improving the performance.

Approximate computation. Approximation techniques such as
sampling [15, 41], sketches [33], and online aggregation [48] have
been well-studied over the decades in the context of traditional
(centralized) database systems. Recently proposed systems such
as ApproxHadoop [42] and BlinkDB [13, 14] showed that it is
possible to achieve the benefits of approximate computing also
in the context of distributed big data analytics.

ApproxHadoop [42] uses multi-stage sampling [54] for approx-
imate MapReduce [34] job execution. BlinkDB [13, 14] proposed
an approximate distributed query processing engine that uses
stratified sampling [15] to support ad-hoc queries with error
and response time constraints. Our system builds on the ad-
vancements in approximate computing for big data analytics.
However, our system is different from the existing approximate
computing systems in two crucial aspects. First, unlike the ex-
isting systems, ApproxHadoop and BlinkDB, that are designed
for batch processing—we target stream processing. Second, we
extend approximate computing with incremental computation.

8. CONCLUSION

In this paper, we presented the marriage of incremental and
approximate computations. Our approach transparently benefits
unmodified applications, i.e., programmers do not have to de-
sign and implement application-specific dynamic algorithms or
sampling techniques. We build on the observation that both com-
puting paradigms rely on computing over a subset of data items
instead of computing over the entire dataset. We marry these
two paradigms by designing a sampling algorithm that biases
the sample selection to the memoized data items from previous
runs. We implemented our algorithm in a data analytics system
called INCAPPROX based on Apache Spark Streaming. Our eval-
uation shows that INCAPPROX achieves improved benefits of
low-latency execution and efficient utilization of resources.
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