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ABSTRACT
How can web services that depend on user generated content
discern fake social engagement activities by spammers from
legitimate ones? In this paper, we focus on the social site of
YouTube and the problem of identifying bad actors posting
inorganic contents and inating the count of social engage-
ment metrics. We propose an e�ective method, Leas (Local
Expansion at Scale), and show how the fake engagement ac-
tivities on YouTube can be tracked over time by analyzing
the temporal graph based on the engagement behavior pat-
tern between users and YouTube videos. With the domain
knowledge of spammer seeds, we formulate and tackle the
problem in a semi-supervised manner | with the objective
of searching for individuals that have similar pattern of be-
havior as the known seeds | based on a graph di�usion
process via local spectral subspace. We o�er a fast, scalable
MapReduce deployment adapted from the localized spec-
tral clustering algorithm. We demonstrate the e�ectiveness
of our deployment at Google by achieving a manual review
accuracy of 98% on YouTube Comments graph in practice.
Comparing with the state-of-the-art algorithm CopyCatch,
Leas achieves 10 times faster running time on average. Leas
is now actively in use at Google, searching for daily deceptive
practices on YouTube’s engagement graph spanning over a
billion users.
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1. INTRODUCTION
Every day people generate a large amount of comments

on YouTube but not all of those engagement activities are
real. Bad actors have been trying to game the system by
posting inorganic contents and inating the count of social
engagement metrics.

We consider any practice that attempts to post fake con-
tents, or arti�cially inate the number of YouTube engage-
ment metrics through the use of automated means or as a
marketplace, as illegitimate activity. Generally speaking,
any engagement activity in online social media that does
not reect user’s genuine interest can be viewed as fake so-
cial engagement.

The issue of fake social engagement came into being partly
due to that third-party businesses attempt to boost YouTube
video engagement metrics in order for promoting contents
and increasing popularity. At Google, we have seen attack-
ers attempting to take advantage of the YouTube commu-
nity by using a variety of deceptive practices [2], including
malware, fake accounts, arti�cial tra�c spam and comment
spam. Among the various forms of spam activity, fake so-
cial engagement has become the most frequently seen yet
hardest to detect practice. In particular, we have discovered
that abusive YouTube Comments have evolved from tradi-
tionally explicit spammy-like (e.g. linked with bad URLs
or associated with obvious advertisement), to a more in-
sinuated outlook that makes them di�cult to discern from
those organic comments. For instance, one common type of
fake YouTube Comments comprises text pieces such as \cool
", \oh", which have made approaches largely basing on text
features and bad URL detection insu�cient in such scenario.

At Google, we note the importance of keeping the service
free of fake engagement activities that may potentially spoil
the online social ecosystem. As the YouTube o�cial policy
guide on subscription [1] states, for example:

Subscribing to a channel creates a relationship
between a content creator and a content consumer;
the creator keeps making great videos, and the
consumer keeps watching, like-ing, and comment-
ing. We take this relationship seriously. A sub-
scription is a user-initiated pledge of support to a
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YouTube channel; this means that a real human
being wants this channel’s content in their feed
every day. The amount of users subscribed to a
YouTube channel should be a metric that reflects
genuine interest in that channel, not a gauge of
automated or falsified activity.

And we believe that such policy does not only apply to
YouTube Subscribes, but can also be extended to other en-
gagement activities such as Comments as well. As a matter
of fact, YouTube is far from the only social media facing the
challenge of keeping its service free of deceptive practices.
Twitter Followers, Amazon Reviews and Facebook Likes are
all buyable by the thousand online [11], for example.

To address these issues, we study the temporal engage-
ment activity patterns on YouTube, making use of anonymized
aggregate daily logs of YouTube Comments. We create the
engagement relationship graph by taking account the fre-
quency of common engagement activities shared between
two individuals within a short period of time. The engage-
ment graph allows us to detect orchestrated actions by sets
of users which have a very low likelihood of happening spon-
taneously or organically. Such behavior of groups of users
acting together on the same videos or channels at around
the same time, is also known as lockstep behavior [7].

To detect the lockstep behavior on YouTube, we take a
semi-supervised learning approach, making use of existing
known abusive accounts as seeds. We demonstrate an e�ec-
tive method, Leas (Local Expansion at Scale)1, in detecting
deceitful user engagement based on the local spectral graph
di�usion [20]. Local spectral method has substantial ad-
vantage over traditional spectral techniques because of its
capability in prioritizing and �nding clusters only near a lo-
cal region of the engagement graph surrounding the seed.
Speci�cally, Leas searches for clusters consisting of suspi-
cious nodes with similar pattern of behavior as the given
seeds. We show Leas is scalable to massive datasets, with
a straightforward adaption to the MapReduce implementa-
tion. Moreover, the MapReduce deployment has the same
performance guarantee as the serialization since each di�u-
sion procedure is performed locally. By clustering YouTube
users based on their engagement behavior pattern, Leas can
greatly expand the coverage of daily fake engagement take-
down volume on YouTube. Our approach can be extended
to many other settings including Twitter followers, Amazon
product reviews and Facebook Likes etc.

The ultimate goal of our research e�ort is to help improve
social media environment as well as user experience, and
to ensure an online world where contents and clicks can be
translated into genuine and meaningful interactions. Toward
achieving the goal, this paper o�ers a number of contribu-
tions listed in the following:

1. Problem Formulation: We provide a novel prob-
lem formulation | a semi-supervised learning prob-
lem based on the local spectral graph di�usion | to
a real-world challenge realized at Google and relevant
in many online settings. One advantage of our set-
ting is its full generality. That is, it is applicable for
any similarity-based graph without much need for cus-
tomization.

1Interestingly, the word \leas" has the meaning of \well-
being" in old Irish.

2. Algorithm: We o�er a fast, scalable MapReduce im-
plementation adapted from the localized spectral clus-
tering algorithm [20]. This is the �rst large-scale de-
ployment of local spectral clustering to the best of our
knowledge.

3. Behavioral Analysis: We show comprehensive per-
formance evaluations on Leas | focusing on multi-
tudes of di�erent characteristics exhibited by abusive
accounts compared to that of general population |
using both structural and contextual information.

The remainder of the paper is organized as follows. Sec-
tion 2 describes related work on using graph-based approaches
in detecting anomalies. In Section 3 and Section 4 we math-
ematically formulate the problem and describe how it can
be solved in a semi-supervised learning framework. We in-
troduce the YouTube engagement graph dataset in Section
5. A MapReduce implementation is discussed in Section 6.
Finally in Section 7 we o�er experimental analysis, demon-
strating the usefulness of our deployment at Google; and
conclude our work in Section 8.

2. RELATED WORK
Online spam activities are evolving as fast as the web ser-

vices themselves. Abusive actions have been observed in a
wide range of domains, including Email [10], web search [4,
9, 25, 32, 34] and blogs [17]. In recent years, spam cam-
paigns have also been prevalently emerging on major social
media sites [12, 28], with a diverse set of application targets
spanning YouTube [6, 26], Facebook [7, 8, 11], Amazon [21,
24], Twitter [5, 30], eBay [27], and many others.

A number of content-based spam detection strategies have
been exploited in the past decade [9, 25, 32, 34]. Most of the
proposed methods rely on extracting evidences from textual
descriptions of the content, treating the text corpus as a set
of objects with associated attributes, and applying classi�-
cation method such as Support Vector Machine (SVM) [16]
to detect spam [14, 25]. A few other more sophisticated
methods also take into account the multimedia information
such as image features [23, 35].

Content and link based approaches, however, can be in-
feasible in identifying fake social engagement when contex-
tual information is unavailable, or faking to be organic-like.
Many papers tend to devise feature-based classi�ers incor-
porating various account-level as well as social relationship
features [6, 28, 37]. While these supervised training mod-
els are useful at depicting the spam strategy behind the
observed temporal dynamics, it is nonetheless unclear how
generalizable they are beyond the particular product or sig-
nal studied. Furthermore, it is practically di�cult to obtain
large volumes of training data because manual labeling can
be expensive. To this end, recent proposals based on behav-
ioral clustering have demonstrated to be e�ective in spotting
groups of users with similar behavior patterns in terms of
engagement activities [7, 8, 15, 24, 31, 29]. These meth-
ods often start with constructing a bipartite graph repre-
senting user-product engagement relationships. Various un-
supervised clustering techniques (e.g., co-clustering [7] and
community detection [29]) have been applied for detecting
groups of actors with similar behavior. Below we highlight
a few and illustrate how our work contributes to this line.

More related to our own work, Beutel et al. [7] investi-
gated the problem of fake Page Likes on Facebook and ob-
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served a lockstep behavior pattern exhibited by spammers,
where groups of users often acting together and Like-ing the
same Pages in a loosely synchronized manner. Such collabo-
rative spamming behavior was also observed in Twitter [18]
and Amazon product reviews [24], where paid groups of fre-
quent fake review writers have been trying to promote or de-
mote certain products on Amazon. [8] further extended the
CopyCatch approach [7] to several other applications such
as Facebook app install and Instagram follow. Note that
our setting advances [7] by making use of possible domain
information in a semi-supervised manner; and our problem
formulation is also complementary to [24] which required a
large number of both positive and negative examples in a
fully supervised manner.

Our work builds on these papers, providing advances in
two aspects: algorithmically, our clustering algorithm is op-
erated in a fully localized fashion, which is e�cient to com-
pute and easily parallelizable; practically, our framework
is fully generalizable, which can be extended to other be-
havioral clustering problems and applications without much
need for customization.

3. PROBLEM FORMULATION
We now describe the mathematical formulation of our

problem. We take a semi-supervised approach and de�ne
suspicious behavior in terms of graph structure and edge
creation times.

To make our problem de�nition more generalizable, we
adopt the notions of actor and target in representing the en-
tities involved in an engagement activity. For example, in
the context of YouTube Comments, a target can be trans-
lated into a video.

In the following, we introduce two types of graph that
can be created using the engagement activity information.
A straightforward way is to build an engagement bipartite
graph between the set of actors and the set of target, where
we use edge to indicate the engagement timestamp. Since we
are interested in clustering entities of actors, a more re�ned
way would be to construct an engagement relationship graph,
in which nodes consist of all the actors and two nodes share
an edge if they have acted upon the same target(s).

Mathematically, assuming we are provided with a set of

actors, V = {vi}|V|i=1 and a set of targets Q = {qj}|K|j=1. We

are also given a set of seeds S = {sr}|S|r=1. Each engagement
activity can be described by a tuple of (vi, qj , tvi→qj ), where
tvi→qj records the timestamp at which actor vi acted on
target qj .

• Engagement Bipartite: We de�ne B = (V,Q, T )
as a temporal engagement bipartite graph, where each
timestamped edge (vi, qj) ∈ T records the time at
which vi ∈ V acted on qj ∈ Q. We further enforce
the temporal constraint that all the actors acted on
the targets in a 2�t time window, i.e.,

∃tr ∈ R s.t. |tr − tvi→qj | ≤ �t ∀vi ∈ V, qj ∈ Q (1)

• Engagement Relationship Graph: We de�ne G =
(V, E ,W) as a temporal engagement relationship graph.
E is the edge set, where (vi, vj) ∈ E if actors vi and
vj have acted upon the same non-empty set of target
Qvi,vj ⊆ Q, with weight denoted by wvi,vj ∈ W. Fur-
ther details regarding the edge weight will be discussed
in Section 5.

Throughout the paper, our methods and analysis will be
focusing on the engagement relationship graph. And we will
henceforth use the term engagement graph for brevity.

Given: An engagement graph G = (V, E ,W) that models
the intensity engagement relationship between nodes; and
the seed set S.

Output: Accomplice clusters C1, C1,..., C|S| corresponding
to each seed in the set S. Each cluster consists of suspi-
cious nodes with similar pattern of behavior as the given
seed, which satisfy the de�nition of [n,m, ρ,�t]-temporally
approximate bipartite core (T-ABC) given below.

Definition 1. We define an [n,m, ρ,�t]-temporally ap-
proximate bipartite core (T-ABC) with respect to a given
seed s ∈ S, as a set of actors C′ ⊆ V associated with a set
of edges E ′ ⊆ E such that

s ∈ C′ (2)

|C′| ≥ n (3)

|E ′| ≥ ρ · n(n− 1)

2
(4)

wvi,vj ≥ m ∀(vi, vj) ∈ E
′ (5)

Here we introduce the term ρ ∈ [0, 1] to relax the constraint
in the original de�nition of [n,m,�t]-temporally coherent
bipartite core (TBC) in [7]. We make such change since
we �nd many loosely connected abusive clusters existing in
practice. Relaxing the constraint enables us �nding both
tightly and loosely connected groups of suspicious actors.

4. SEMI-SUPERVISED LEARNING VIA LO-
CAL SPECTRAL DIFFUSION

We use the semi-supervised learning method to tackle the
problem of detecting the suspicious actor groups de�ned in
previous Section. Graph-based learning approach can be
viewed as a probability di�usion that propagates large val-
ues from a small set of nodes with known labels | which
are usually referred to as seeds in literature | to the re-
maining nodes of the graph [13]. This type of approach
typically starts with a graph and the labeled sample matrix
S ∈ RN×K , where N is the number of nodes in the graph
and K is the number of classes. Si,j = 1 if node i is labeled
with class j, and Si,j = 0 otherwise.

A graph-based learning framework usually incorporates
two essential parts. The �rst is to produce an N×K matrix
Y which encodes the probability for each unlabeled node
to be in certain classes. Speci�cally, Yi,j should be large if
node i should be labeled as class j. In our problem setting
of binary classi�cation, the di�usion matrix can be reduced
to a vector y ∈ RN , where larger value indicates a higher
possibility being labeled the same as the seeds. And the sec-
ond key component is to decode the di�usion values in y into
a predicted label based on some graph metric optimization
criterion. In the following, we will provide details on both
components of our learning algorithm.

Local spectra vs. global spectra
Spectral method is one of the most widely used techniques
for exploratory data analysis, with applications ranging from
data clustering, image segmentation to community detection
etc. Spectral clustering makes use of the �rst few singular
vectors of the Laplacian matrix associated with a graph,
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which are inherently global quantities and may not be sensi-
tive to very local information [22]. For example, in the case
when provided with domain knowledge about a target region
in the graph, one might be interested in �nding clusters only
near the speci�ed local region in a semi-supervised manner,
which might not be otherwise well captured by a method
using global eigenvectors. Therefore, in the semi-supervised
setting, our pioneer work on local spectral clustering [20]
have substantial advantage over traditional spectral tech-
niques, with the capability of prioritizing and learning more
about a local region of the graph surrounding the seeds.

4.1 Degree-thresholded Sampling
We apply a degree-thresholded sampling procedure using

breadth-�rst-search (BFS) to get a small subgraph Gs cover-
ing a local neighborhood region surrounding the seed. Start-
ing from the given seed s, we take the set of frontier nodes |
except for those nodes with degree larger than dmax | into
the subgraph node set and repeat the process until the size
of the subgraph reaches the speci�ed upper limit N . We en-
force the degree thresholding to prevent including extremely
high-degree nodes, which are less likely to be spammers2. In
practice, we choose the parameter of N to be at least several
times larger than the maximum size of the cluster of interest
|Cs|, in order to capture as many nodes in the target group
as possible.

4.2 Local Spectral Subspace
Consider the subgraph graph Gs extracted from the neigh-

borhood surrounding the seed s. We de�ne the normalized
adjacency matrix Ās of the graph Gs as

Ās
def
= D−1/2

s (As + I)D−1/2
s , (6)

where As and Ds denotes the adjacency matrix and the di-
agonal degree matrix of Gs, respectively. Let p0 denote the
initial probability vector with element 1 in the entry of the
seed node and 0 elsewhere. We then describe how to e�-
ciently construct the local spectra by iteratively transform-
ing the orthonormal basis starting with a Krylov subspace
de�ned below.

Definition 2. The order-l Krylov subspace generated by
the matrix A and vector p0 is the linear spanned subspace
defined by the probability vectors in l successive random walks

Kl(A,p0) = span
(
p0,Ap0, ...,A

l−1p0

)
. (7)

In Algorithm 1, we briey summarize the procedure of
calculating the local spectral subspace from a speci�ed seed.
We start by calculating the initial invariant subspace V0,l,
which is the orthonormal basis of the order-l Krylov sub-
space Kl(AS ,p0). And the local spectral subspace can be
then obtained by iterating the process speci�ed in Line 4
- 6 of Algorithm 1. The random walk step k and the sub-
space dimension l are the key parameters in the local spec-
tral clustering algorithm. Following the heuristics described
in [20], we set k = 3 and l = 3 respectively. Figure 1 [19]
shows an example local spectral subspace V3,3, generated
from a synthetic graph of size 500 with Erd}os-R�enyi G(n, p)

2We set dmax to be 500 by default. This is because the
degree of most known spammer nodes is smaller than 500,
as shown in Figure 3.

subspace
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4.4 Round Diffusion Vector via Sweeping Cut
The optimization result y obtained above is a real-valued

vector, where each element yi hints the propensity for node
i to be labeled the same as seed. A commonly adopted
method of rounding the di�usion values into labels is to
perform a sweep-cut procedure on the nodes ranked by the
di�usion value, with an objective of minimizing the graph
cut metric such as conductance [3, 22, 33].

Definition 3. Let x ∈ {0, 1}N denote the binary indi-
cator vector for the subset V ′ ⊆ Vs and H ∈ RN×N is any
symmetric matrix. The Rayleigh quotient with respect to H
is expressed as the quadratic form of

ρH(x) =
xTHx

xTx
. (12)

In particular, conductance of the set V ′ measures the frac-
tion of edges leaving V ′ among all the edges incident on V ′,
and can be expressed using a generalized Rayleigh quotient

�(V ′) = ρLs,Ds(x) =
xTLsx

xTDsx
=

xT (Ds −As)x

xTDsx
. (13)

We label each node in Vs by �rst ranking nodes in decreasing
order based on the corresponding value in y. For each pre�x
set of node V ′(|V ′| ≥ n) in the sorted list, we then compute
the conductance of that set and return the set that achieves
the minimum, i.e.,

C′ = arg min
V′⊆Vs

�(V ′). (14)

Lemma 1. The set C′ ⊆ Vs found by the local spectral dif-

fusion method is an [n,m, xTAsx
xT (J−I)x

,�t]-temporally approxi-

mate bipartite core, where x ∈ {0, 1}N is the binary indicator
vector for C′ and J ∈ RN×N is a matrix of all ones.

Proof. The constraint of |C′| ≥ n is automatically met
by the sweeping cut procedure. The fact that Gs only con-
sists of edges with weight greater than m also ensures the

constraint speci�ed in (5). Furthermore, xTAsx
xT (J−I)x

is the

quadratic equivalence to the internal density measurement
of a cluster, i.e., 2|E ′|/n(n− 1).

5. USER ENGAGEMENT GRAPH

5.1 Graph Builder
We create engagement graph by using interactions be-

tween users to model the way users interact with a video
or a channel. This allows us to detect orchestrated actions
by sets of users which have a very low likelihood of happen-
ing spontaneously or organically.

In practice, the YouTube Comment engagement graph is
built with the anonymized aggregate YouTube user activity
logs from the past 30 days window, and is updated on a daily
basis using a MapReduce implementation. Here we take the
snapshot of graph created on August 3rd, 2015. The Com-
ment engagement graph consists of hundreds of thousands
of nodes and tens of millions of edges. The detailed statis-
tics of the engagement graph in use are not discussed here
for privacy reasons. Note that the engagement graph we
created here constitutes a subgraph of the entire YouTube
engagement graph, where we only captured entities that had
activities within the scope of a month.

In the engagement graph, nodes represent users and edges
represent common videos or channels in which the users
engage. Users that have interacted with a common video
will share an edge and are consequently joined in the graph.
Edge weights are by default computed based on the num-
ber of common engagement activities between two nodes.
For example, in the case of users commenting on a YouTube
video, this approach translates into users having and edge
weight between them equal to the number of common videos
they have commented upon.

Adding weight penalty

The way we built the YouTube Comments engagement graph
is essentially the same as above except for the subtle di�er-
ence that node can be two types of entities { a user or a
Google+ Page. It is worthwhile noting here that YouTube
Comments can be made through the Google+ social plat-
form, without having to log into the YouTube sites. Such
feature was powered by YouTube’s Google+ comment inte-
gration system introduced in November, 2013. Each Plus-
Page behaves like a unique user ID and can be used to write
comments across platforms including YouTube.

U
1

U
2

A

B

C

D

E

Google+ pages

Users

Videos

1

2

3

4

5

6

7

8

B C

D E

A
5 4

3

3

1 1 1 1

Figure 2: Example of constructing Google+ pages
engaged graph. It shows a group of two users using
their PlusPages to spam video #1.

In order to detect abuse originating from PlusPages, we
add an additional step when constructing the graph. This
modi�cation tends to penalize those PlusPages created by
the same user the following way:

~wpi,pj = 1(u(pi) = u(pj)) · |P(u(pi))|+ wpi,pj , (15)

where 1(·) is the indicator function; u(·) de�nes the owner
of a PlusPages and P(·) gives the set of PlusPages a user has
created. We use wpi,pj to denote the original edge weight
between PlusPages pi and pj , and is calculated by the num-
ber of common videos both pi and pj commented on. ~wpi,pj

is the updated edge weight, and is equal to wpi,pj when pi
and pj share di�erent owners. In the case where pi and pj
are created by the same user, we add extra weight regulated
by the total number of PlusPages the user has created. The
rationale being that owning a larger number of PlusPages
indicates a stronger signal of being potentially abusive.

Figure 2 gives an example of constructing Google+ pages
engaged graph. It shows that the edge weight between
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10-510-410-310-210-1100fraction of nodes

Figure 3: Comparison of node degree distribution
between spammers and the general population in
YouTube Comment engagement graph. The degree
distribution of seeds is depicted in magenta, whereas
the distribution of general population is depicted in
blue. The number of seeds used for plotting is 2k.
To plot the general population distribution, we first
randomly sampled 10k nodes from the engagement
graph. We further excluded those known abusive
nodes from the sampled population, which left us
with 9,957 nodes. Note that the sampled population
may contain unknown malicious nodes.

(A,B), (A,C) and (B,C) are all increased by 3, which is
the total number of PlusPages the user U1 has created. The
clique structure formed by node A,B and C becomes more
noticeable after applying the penalty.

5.2 Spammer Seeds
In the context of anomaly detection, when we �nd suspi-

cious users, we often want to quickly �nd additional users
with similar patterns of behavior that should be disabled as
well. Leas makes use of those users that are identi�ed to be
abusive from other YouTube’s security mechanisms as seeds.

In practice, spammer seeds are also updated on a daily
basis together with the engagement graph. Since the number
of available seeds can be limited, Leas can greatly expand
the coverage of daily fake engagement take-down volume.

Degree distribution

We started probing into the behavior pattern between the
spammer nodes and the general population by examining
the node degree distribution. A salient observation from
Figure 3 is that the degree distribution of seeds (depicted in
magenta) has a dissimilar tail e�ect compared to that of the
general population (depicted in blue). And the di�erence
can be been across all engagement-level activities, and is
mostly evident in the Comments graph.

This observation surprisingly corresponds with the fact
that spam campaigns and companies involved in selling fake
engagements may have e�orts in relatively modest scope and
scale. For example, we looked into several existing online
vendor sites that claim to sell YouTube fake engagement.
Through investigation we found that YouTube Comments
are usually sold with package size ranging from 15 to several
hundred, which matches exactly with the seed degree dis-
tribution in Figure 3. For example, we �nd spammer nodes
rarely have degree greater than 781 in the Comments graph.

6. A MAPREDUCE IMPLEMENTATION
Our local spectral di�usion method enables a straightfor-

ward adaption to the MapReduce implementation frame-
work. In this Section, we introduce practical details and
also potential caveats in applying the method at scale. The
implementation is provably scalable to massive datasets and
trivially parallelizable, with the capability of searching for
many clusters simultaneously. Furthermore, our pipeline has
the same performance guarantee as the serialization since
each di�usion procedure is performed locally on the graph.

Data Server The engagement graph is served using SSTa-
bleService, a distributed in-memory key-value serving sys-
tem within Google. Each data server holds a partition con-
taining 1/P of the total amount of data, where P denotes
the number of shards (partitions) of the data. SSTable-
Service allows serving graph queries in a much faster speed
compared to on-disk queries. The SSTableService is shared
across mappers when running the job.

Data Format We use Protocol Buffers3 for de�ning the
I/O data streams in our implementation. Each protocol
bu�er message is a small logical record of information, con-
taining a series of name-value pairs. The graph protocol
namely stores the weighted adjacency list keyed by each
node; the seed protocol contains the IDs of the spammer
seeds; and the accomplice protocol de�nes the output of
detected accomplice clusters consisting of suspicious nodes
with similar pattern of behavior as the seed. Addition-
ally, we de�ne config protocol for conveniently encapsu-
lating and passing con�guration parameters to each mapper
when initializing the jobs. Some tunable parameters in our
pipeline include, for example, the dimensionality of local
spectral subspace l, the number of short random walk steps
k, the minimum cluster size n, the maximum size of the sam-
pled subgraph N , the degree threshold dmax for sampling the
subgraph, the edge weight threshold m.

Algorithm 2 MapReduce Leas

Globals:graph G = (A, E ,W), con�guration parameters
1: InitializeReplica()
2: for s ∈ S do
3: if deg(s) ≤ dmax then
4: Sample subgraph Gs

5: Vk,l = LocalSpectral(Gs, s) . compute local
spectral subspace

6: Solve the optimization objective y in Section 4.3
7: C′ = SweepCut(y)
8: emit 〈s, accomplice C′〉
9: end if

10: end for

The core of the MapReduce Leas algorithm can be seen
in Algorithm 2. The module of InitializeReplica passes
the parameters de�ned by the con�guration protocol to all
the mappers. And each mapper job processes one seed at a
time independently. The entire pipeline of fake engagement
detection is illustrated in Figure 4, which encompasses the
main components of graph builder and seed expander. The
graph builder is also implemented using MapReduce frame-
work, where the details are omitted here due to space limit.

3https://developers.google.com/protocol-buffers/
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Figure 4: MapReduce implementation of YouTube fake engagement detection pipeline.

7. EXPERIMENTAL ANALYSIS

7.1 Scalability
YouTube now has over a billion users and is continuing to
grow. Therefore, it is important for the algorithm scales
well to large datasets in order to e�ciently catch the fake
engagement activities on a daily basis. We test and compare
the performance with CopyCatch, which is the state-of-
the-art algorithm that detects fake Page Likes by analyzing
the engagement graph of user-Page interaction.

Firstly, we test the scalability of the algorithm by running
our implementation on the YouTube Comments graph over
di�erent number of seeds. To make the test results compara-
ble, we choose the same set of seed numbers as that reported
in [7]. The number of seeds varies from 100 to 5,000. We
additionally run the pipeline with only 10 seeds to test the
system starting-up time. Depending on the resources avail-
ability, it usually takes about 4 ∼ 6 minutes for the system
to allocate and set up the data servers and the MapReduce
clusters. Figure 5a shows the comparison of running time
between CopyCatch and Leas4. It is worthwhile noting
that Leas achieves 10 times faster running time with much
fewer machines. For example, 3,000 mappers and 500 reduc-
ers were used for all the testing data points in [7], whereas at
most 1,500 mappers and 2 reducers are required in Leas test
run with 5,000 seeds. Even fewer mappers are required for
those tests with smaller number of seeds. For example, run-
ning the pipeline with 1,000 seeds uses 295 mappers, 2,000
seeds uses 597 mappers and 10,000 seeds uses 2,999 mappers.

As seen in the results, we �nd that the running time of
Leas is almost independent of the number of seeds. This is
reassuring that our implementation exploits the parallelism
of the problem and can continue to scale as the data scales.

7.2 Performance Evaluation

7.2.1 Graph Metrics
To evaluate the accomplice clusters found by Leas, we

�rst measure the structural properties using two commonly
adopted metrics [36].

4We refer to the experimental results originally reported in
[7] for evaluation.

• Internal density measures the internal edge density
of a node set V ′. A larger internal density value indi-
cates a more densely connected community-like struc-
ture among nodes.

f(V ′) =
2|E ′|

|V ′|(|V ′| − 1)

• Flake-ODF is a cluster metric that takes into account
both the internal and external connectivity of a set. It
measure the fraction of nodes in V ′ that have fewer
edges pointing inside than to the outside of the set.
Ideally, a smaller Flake-ODF value indicates a better
cluster quality.

f(V ′) =
|{v : v ∈ V ′, |{(v, u) ∈ E ′ : u ∈ V ′}| < deg(v)/2}|

|V ′|

Figure 5 presents the measurement scores of accomplice
clusters detected in three YouTube Comments engagement
graph. The most striking observation is the di�erence con-
cerning the internal density distribution exhibited by the
Comments graph. We see that clusters detected from the
engagement graph in general are compact with high internal
density, which may signify the orchestration strategy when
performing fake engagement | that the YouTube fake Com-
ments spammers are exposed to have stronger lockstep be-
havior pattern, where groups of users acting together, com-
menting on the same videos at around the same time. The
clusters corresponding to the tail part of the curve, on the
other hand, displays a less orchestrated pattern with more
likelihood to be incentivized campaigns. Our probe into the
structural properties of the detected clusters also suggests
that further evaluation is imperative.

7.2.2 YouTube Comment: Manual Review Results
To verify the e�ectiveness of the algorithm, we ran the

pipeline on the engagement graph built on August 3rd, 2015
within 30 days of time window, and performed intensive
manual review on the detected accounts. In total, the pipeline
detected roughly 24,000 unique accounts with 955 spammer
seeds. Among the newly detected accounts, we �nd that
8,500 of them are found by more than one seed; while the
other 15,500 accounts are detected by only one seed. Figure
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Figure 5: (a) Comparison of pipeline running time with state-of-the-art as the number of seeds increases. (b)
Internal density and Flake-ODF of detected accomplice clusters in YouTube Comments engagement graph.
We filtered those seeds with degree greater than 500, i.e., dmax=500 and performed the diffusion algorithm on
the rest of the seeds. The number clusters in plot is 955. Cluster indices are sorted by the internal density
value.
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hard cases: 98% precision 
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Figure 6: Detection frequency distribution of among
the accounts detected by LEAS.

6 depicts the distribution of the frequency for each account
being detected by certain seed(s). The fact that an account
detected by several seeds is a stronger indication of being
potentially abusive. We therefore divide the results into two
types and perform analysis accordingly:

• Tier I: accounts that are repeatedly detected by more
than one seed (35%).

• Tier II: accounts that are uniquely detected by only
one seed (65%).

To investigate the Tier I accounts, we randomly selected
36 accounts without applying any metric thresholding. We
manually examined each account’s information and YouTube
post history. We also take into consideration the Google in-
ternal security measures associated with each account, but
will not discuss in detail here for security reasons. The man-
ual review shows that 100% of the Tier I accounts were
veri�ed to be fake. Among the Tier I accounts, the most
frequently detected account was found by 64 seeds. We

�nd that this particular account was created less than 10
days ago yet had posted more than 253 posts with many
quota exceeded. We manually clicked through the com-
ments posted by these accounts, and found that most com-
ments are short text pieces such as \good videos", \very cool
", \nice", \oh", \lol" or emoji of smile faces. We also �nd
the common pattern for accounts to post exactly the same
or similar short, fake comments to di�erent videos. Besides,
we also discovered a few accounts posting comments under
popular songs, the contents of which are irrelevant to the
video content itself but rather asking for view and subscribe
(e.g., \please subscribe" or \subscribe now"). Additionally,
several other spammy accounts posting comments including
malicious URLs and advertisement were detected.

Besides the contextual information, we also looked into
the lifespan of each suspicious account. Although one might
expect most spammer accounts to have relatively young age,
it was actually quite surprising to see the age heterogeneity
of those accounts, as shown in Figure 7a. Among the 36
accounts, the most frequent age falls into the range between
0.5 and 1.5 years; whereas the oldest spammer account have
already been existent for more than 6 years.

The Tier II accounts are the harder cases. In order to
guarantee the FP guards in production, we randomly se-
lected 100 Tier II accounts that belong to an accomplice
cluster with internal density greater than 0.7. The manual
investigation shows that 98% detected Tier II accounts to
be fake5. The comments posted by these accounts share
similar pattern as those made by Tier I accounts. Quite
interestingly, we indeed found a detected cluster of 15 ac-
counts posting the same comments of either \i love pets",
\yeah" or URLs under certain videos. This further veri�ed
that the suspicious groups detected by the algorithm are of
high accuracy. As for the other two accounts we are uncer-
tain about, one has huge amount of Google+ shares of good
deals although it posted nothing on YouTube comments; an-
other 4-month old account posts a mixture of both organic
and fake-like comments, which might be incentivized.

5In practice, we treat activities made by both Tier I and
Tier II accounts as fake engagement.
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Figure 7: (a) Age distribution of 36 manually reviewed Tier I suspicious accounts. (b) Google live runs on
YouTube engagement graphs with portion of the seeds, dating from August 6th to August 13th, 2015. The
magenta curve depicts the daily volume of unique accounts detected by LEAS pipeline, and the blue curve
indicates the daily number of videos these accounts have acted upon.

7.3 Deployment at Google
Leas now runs regularly at Google, expanding the cover-

age of fake engagement activities on YouTube. Parameters
have been chosen to signi�cantly distinguish organic user
behavior from fake social engagement. There are two levels
of take-down actions in practice | engagement level and
account level. Engagement level take-down is a soft penalty
which removes all the fake engagement activities happened
during the day associated with the detected accounts; ac-
count level take-down is a more severe outcome, which is
applied when we have very high con�dence in certain bad
actors committing fake engagement from time to time. Fig-
ure 7b shows the daily aggregate volume of detected ac-
counts when running our pipeline on YouTube Comments
graphs with portion of the spammer seeds, dating from Au-
gust 6th to August 13th, 20156. We do not display the entire
daily take-down volume here for security reasons. Note that
engagement level take-down was the main penalty applied
during our test runs, henceforth the detected accounts didn’t
exhibit a uctuation from day to day | otherwise we would
expect to see a decreasing volume of detected accounts when
applying the account level take-down policy. Overall, this
method, in combination with other existing abuse infras-
tructure at Google, is e�ective in decreasing the volume of
fake social engagement on YouTube.

8. CONCLUSION AND EXTENSIONS
In this paper, we show how fake social engagement ac-

tivities on YouTube can be tracked over time by analyzing
the temporal engagement graph, which models the inter-
actions between users and YouTube video objects. With
the domain knowledge of spammer seeds, we formulate and
tackle the problem of detecting fake social engagement in a
semi-supervised manner | with the objective of searching
for individuals that have similar pattern of behavior as the
known seeds | based on a graph di�usion process via local

6The decreased amount of detected account on August 8th
and 9th was due to the reduced number of available seeds.
In practice, the seeds data is provided by YouTube abuse
team and the quantity of which may vary from day to day.

spectral subspace. We show our method, Leas, is scalable
to massive datasets, with a straightforward adaption to the
MapReduce implementation. We demonstrate the e�ective-
ness of our deployment at Google by achieving a manual
review accuracy of 98% on YouTube Comments graph in
practice. Our examination on the anonymized YouTube log
data also revealed multitudes of di�erent patterns of behav-
ior between abusive accounts and the general population,
measured by the average co-engagement intensity, monthly
aggregate activity, for instance.

By clustering YouTube users based on their engagement
behavior pattern, Leas has shown to greatly expand the
coverage of daily fake engagement take-down volume on
YouTube. Our approach can be extended to many other set-
tings including Twitter followers, Amazon product reviews
and Facebook Likes etc. We envision two future directions
towards which our work can evolve. First, while this paper
describes the approach in a generic setting, our method can
be extended by incorporating other meta signals such as IP
address the engagement activities were made from. Second,
we believe that better detection model can be derived by
taking into account the incentivized engagement behavior,
where users are o�ered incentives (e.g. bonus point rewards)
to act on a target such as writing product reviews.
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