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ABSTRACT
We present and evaluate a web-based architecture for moni-
toring student-system interaction indicators in Exploratory
Learning Environments (ELEs), using as our case study a
microworld for secondary school algebra. We discuss the
challenging role of teachers in exploratory learning settings
and motivate the need for visualisation and noti�cation tools
that can assist teachers in focusing their attention across the
class and inform teachers’ interventions. We present an ar-
chitecture that can support such Teacher Assistance tools
and demonstrate its scalability to allow concurrent usage by
thousands of users (students and teachers).

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
exploratory learning environments, monitoring, visualisation

1. INTRODUCTION
Exploratory Learning Environments (ELEs) are a type of

learning environment where the focus is on students’ explo-
ration and experimentation in a knowledge domain. ELEs
range from simple games to virtual labs, complex simulators
and microworlds. In order for students to bene�t from inter-
action with such ELEs, there is recognition for the need to
provide explicit pedagogical support to students [13]. This
has led to research into techniques for providing personalised
support to students to foster their productive interaction
with ELEs [8].

The role of the teacher in an exploratory learning setting
is that of a ‘facilitator’ or ‘orchestrator’ [9, 11]. However,
supporting the teacher in this role poses several challenges,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016 Companion, April 11-15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2891075.

compounded by a learning setting in which students are
each working with their own computer or handheld device.
Speci�cally, due to the open-ended nature of the tasks that
the students are working on, teachers can only be aware of
what a small number of students are doing at any one time
as they walk around the classroom | a typical class size in a
U.K. classroom being 30 students. It is therefore hard for the
teacher to know which students are progressing with the task
set, who is o�-task, and who is in need of additional support
from the teacher beyond the feedback provided by the ELE
itself. Our recognition of this di�culty has led to research
into the design and deployment of Teacher Assistance (TA)
tools to be used in conjunction with ELEs, with the aim of
reducing the cognitive load on the teacher and increasing
the teacher’s awareness of individual students’ progress and
of the classroom ‘state’ as a whole.

Earlier work has described the design, implementation
and evaluation of our TA tools [7, 12]. In contrast, the
present paper addresses the question of the scalability of
provision of such tools as software-as-a-service. Our case
study here is the MiGen system, an intelligent ELE that
aims to foster 11-14 year old students’ learning of algebraic
generalisation [16]. In its initial implementation, all the Mi-
Gen system components were implemented in Java and inte-
grated into a lightweight architecture based on REST, with
the aim of facilitating iterative prototyping and trialling in
schools during the course of the MiGen project [18]. Our
stress-testing of this implementation showed that it scales
up to a few hundred users (students and teachers) working
concurrently, which was su�cient for local installation and
usage of the system in individual schools but not su�cient
to be run nation-wide in a software-as-a-service fashion. Fol-
lowing the end of the MiGen project, we therefore decided
to re-implement the user-facing tools as browser applications
and to port the server software to Google’s App Engine, in
order to more fully investigate the scalability properties of
the MiGen architecture.

This paper describes this implementation and the perfor-
mance study conducted. The structure of the paper is as fol-
lows. Section 1 has introduced and motivated the research.
Section 2 gives an overview of the context and functionalities
of the MiGen system, and of related work in support for the
teacher and ELEs. Section 3 describes the implementation
of our architecture and Section 4 the performance study.
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Figure 1: The eXpresser: Students create building
blocks and use them to construct patterns, which
they subsequently colour. They need to use vari-
ables to specify how many tiles of each colour are
needed in a generalised pattern.

Section 5 gives our concluding remarks and directions of fu-
ture work.

2. BACKGROUND AND RELATED WORK

2.1 The MiGen System
The MiGen project (www.migen.org) has designed and

developed an intelligent, exploratory learning environment
to support 11 to 14-year-old students in learning algebraic
generalisation. In MiGen, students undertake tasks using a
mathematical microworld called eXpresser | see Figure 1.
These tasks ask students to create models consisting of 2-
dimensional tiled, coloured patterns constructed from one
or more building blocks. Firstly, speci�c instances of such
models need to be constructed and then generalised versions
in which one or more of the numbers in their construction
are replaced by \unlocked" numbers, i.e. variables. In paral-
lel, students are asked to formulate algebraic rules specifying
the number of tiles of each colour that are needed to fully
colour their models. The MiGen system includes an intelli-
gent component called the eGeneraliser which provides both
unsolicited and on-demand personalised feedback to stu-
dents, based on a three-layer architecture comprising Anal-
ysis, Reasoning and Feedback Generation sub-components
(see [8]).

As students work using the eXpresser on the current task
they have been set, a series of indicators are automatically
detected by the system. The indicators that are mean-
ingful and useful for teachers in their role were identi�ed
through an iterative process undertaken collaboratively with
our group of teacher collaborators on the MiGen project
(see [12]). There are two categories of indicators: task inde-
pendent (TI) and task dependent (TD). TI indicators refer
to aspects of the student’s interaction that are related to
the eXpresser microworld itself and do not depend on the
speci�c task the student is working on, e.g. ‘student has
placed a tile on the canvas’, ‘student has made a build-

Figure 2: MiGen Logical Architecture

ing block’, ‘student has unlocked a number’. In contrast,
TD indicators are inferred by the eGeneraliser based on the
students’ actions and on knowledge speci�c to the current
task, e.g. ‘student has made a plausible building block for
this task’, ‘student has unlocked too many numbers for this
task’, ‘student has achieved task goal n’. We refer readers
to [7] for the full list of indicator types | there are some 60
di�erent types | and for details of how the TD indicators
are inferred. All the occurrences of TI and TD indicators
detected by the eXpresser or inferred by the eGeneraliser
are sent to the MiGen server and are stored in the MiGen
database, leading to potentially large volumes of such data.

Figure 2 (from [16]) illustrates the logical architecture of
the MiGen system. Shown in white are the components com-
prising the Student software running on the students’ com-
puters, in light grey the components comprising the Teacher
software running on the teacher’s computer, and in dark
grey the Server components. Also shown is the informa-
tion ow between components. Each of the user-facing tools
consists of a User Interface (UI) component and an Informa-
tion Layer (IL) component. Each tool’s UI is responsible for
interaction with the user, while its IL is responsible for man-
aging the data structures and computation required to sup-
port the UI and for communicating with the Server software.
The Server software in turn provides access to the MiGen
database. ‘Act.Doc.’ denotes ‘Activity Document’, within
which tasks are presented to students and they record their
reections as they undertake these tasks using eXpresser.
The Act. & Task Design Tool is used to create tasks and
activity documents.

In Figure 2, ‘TA tools’ denotes ‘Teacher Assistance tools’.
The TA Tools receive real-time information from the MiGen
Server relating to occurrences of TI and TD indicators for
each student, and each TA tool presents visually a selection
of this information to the teacher. MiGen’s suite of TA
tools includes Student Tracking (ST), Classroom Dynamics
(CD), and Goal Achievements (GA) tools (see [16, 12]). For
example, Figures 3 and 4 illustrate the web browser versions
of the CD and GA tools.

The CD tool gives the teacher an at-a-glance overview of
which students are currently engaged with the task and who
may be in di�culty and in need of help from the teacher. It
represents each student by a colour-coded circle, containing
the student’s initials. Hovering over a circle with the cursor
displays the student’s full name. Clicking on a circle shows
the student’s current model and rule. Circles can be dragged
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and moved around on the canvas, enabling the teacher to set
up the display so as to match the spatial positioning of the
students in the classroom. This helps the teacher to match
the information being displayed in the tool with her own
observations. It also helps the teacher to identify situations
that may be location-dependent. For example, if several
students seated near each other show as Amber this may
indicate that they are distracting each other and that the
teacher should intervene to refocus their attention on the
task.

Figure 3: Class Dynamics tool. The colour of a
student’s circle reflects the student’s current activity
status, as perceived by the system. Green circles
indicate students working productively on the task
set. Amber circles indicate students who have not
interacted with eXpresser for some time (by default,
five minutes). Red circles indicate students who may
benefit from immediate help. An optional feature in
the CD tool shows within each student’s circle the
number of goals achieved so far, as a fraction of the
total number of goals of the task.

The GA tool shows a tabular display of students and task
goals. Each row shows the progress of one student (iden-
ti�ed by their initials) in completing the task goals. Each
column shows the completion status of one task goal across
all students. Hovering over a cell with the cursor displays
a full description of the goal, the name of the student, and
the achievement status of that goal for that student.

2.2 Related Work
To our knowledge, MiGen’s TA tools represent the �rst

work targeted at providing teachers with information about
students’ progress during exploratory learning activities in
the classroom (preliminary results appeared in [18, 19]).

Other early work on teacher support focused on monitor-
ing log data generated by course management systems to
help instructors’ awareness of students’ activities [14]; de-
riving statistics of students’ interactions [6]; analysing sys-
tem logs to help teachers understand students’ behaviour in
adaptive tutorials [2]; analysing CSCL synchronous interac-
tion using rules to identify speci�c landmarks in the interac-

Figure 4: Goal Achievement tool. The colour each
cell reflects the current achievement status of each
task goal by each student, as perceived by the sys-
tem. Green and white cells show whether a goal has
been achieved or not. Amber shows that the goal
was achieved by the student at some point during
the course of the current task, but is not currently
being achieved by the student’s construction.

tion [20]; and providing awareness information to teachers to
support their role as moderators of multiple e-discussions [21]
or class-wide collaborative activities [3].

Several similar works to ours have appeared more recently,
for example: Dragon et al. [4] build on our work in pro-
viding tools to support teachers using the Metafora system,
which targets science and mathematics education; Martinez-
Maldonado et al. [10] explore patterns of students’ collabo-
rative interactions with the aim of providing information on
students’ learning processes; Mercier et al. [15] study collab-
orative problem solving processes in the context of multi-
touch technology. The interest in teacher support is grow-
ing also in the Learning Analytics community [5, 17, 22].
However, with the exception of a few works, e.g. [1] that
visualises students’ inferred plans in an ELE for chemistry,
none of this work focuses on exploratory learning activities
nor on the question of the scalability of provision of teacher
assistance tools in such settings.

3. SYSTEM IMPLEMENTATION
The initial implementation of the MiGen system was con-

ceived to be installed and used locally in schools. It was
assumed that each school would have a copy of the Mi-
Gen server installed on their own facilities, and that clients
(i.e. students’ and teachers’ computers) would connect to
this server through the school’s local area network. As men-
tioned earlier, the initial Java and REST-based implementa-
tion was su�ciently performant and scalable for this deploy-
ment scenario. However, to allow larger-scale dissemination
and uptake of the system in schools after the end of the
MiGen project, we decided to reimplement the system as a
cloud-based service.

The eXpresser, eGeneraliser and server-side components
of the MiGen architecture were ported onto Google’s App
Engine1 (GAE) by using GWT. In particular, this trans-

1appengine.google.com
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formed eXpresser into a web browser application. The TA
tools were also transformed into a web browser application,
by porting them directly onto Javascript, and connected to
the server software running on Google’s cloud2.

For the new TA tools implementation, a typical 3-tier
architecture was used, employing Google App Engine at
the back-end as a data store. This decision was based on
the premise that GAE can dynamically allocate processing
power and memory space to adapt to variable workload. The
amount of data that can be exchanged and the number of
requests that this system can satisfy is theoretically limit-
less. This means that it is theoretically impossible for this
part of the system to become a bottleneck in terms of scal-
ability. For the middle tier, the cloud-based web service of
Dropbox3 was used. Although this system is not intended
to be used as a web server, it proved to be very reliable, fast
and convenient in terms of development, deployment, porta-
bility and administration. The fact that it does not support
the deployment of server-side components did not present a
problem because all the logic is implemented in the front-
end tier. The client side is a relatively ‘fat’ browser-based
application. Apart from the usual components that consti-
tute a typical web page, we implemented a local in-memory
database4 to cache information about the tasks assigned to
students, the set of students whose progress is being moni-
tored, and the indicator occurrences generated by these stu-
dents’ interactions.

The data format used for data interchange in the system
is XML. The indicator data sent from the MiGen client web
application to the MiGen server running in the Google cloud
is stored in a NoSQL datastore. A TA tools web applica-
tion instance requests an update of the indicator data from
the MiGen server every �ve seconds (by default | this is a
con�gurable parameter). Updates are incremental: the re-
quest is parameterised according to the time stamp of the
previous such request and according to the classroom ID,
so that only the data required by the speci�c TA tools ap-
plication instance is sent by the MiGen server. The data
is retrieved directly from GAE in XML form. The data is
then transformed into JSON through XSLT using the XML
processor that is built into the browser. This data is then
directly consumable by the Javascript environment without
further processing. It can be directly inserted into the local
in-memory database and used by the TA tools application
to instantly update its visualisations.

Such updates are partial, in the sense that they do not
require a full reload of the page. Ajax is used to asyn-
chronously query GAE and incrementally update the local
data structures. Apart from the obvious performance bene-
�t, there is an additional administrative bene�t that relates
to the fact that there is no need to maintain the state of the
TA tools user interface between the calls since there is no
need to redraw the parts that do not change.

2The decision to use GWT for porting most of the initial
implementation and pure Javascript to port the TA tools
was based largely on pragmatic considerations, taking into
account the development skills of the project team at the
time.
3www.dropbox.com
4The JavaScript library Ta�yDB (www.ta�ydb.com) was
used for implementing the database.

4. EVALUATION
In order to test this new implementation in a scenario as

close to reality as possible, we reused real data arising from
a class of students working with the original MiGen system
with their teacher in a school. This session involved 15 stu-
dents who interacted with the eXpresser in the context of a
Mathematics lesson for roughly one hour. All occurrences of
indicators that were generated during this lesson had been
stored in the MiGen database: approximately 1,000 indi-
cator occurrences had been generated by the 15 students
working with eXpresser over the one-hour lesson.

For our performance study, we downloaded this set of indi-
cator occurrences into a �le and replicated the indicator data
as many times as needed, in order to simulate the activity
of larger numbers of students interacting with the system
in a similar fashion. For each replication of the indicator
data, we added a random delay to the timestamp associated
with each indicator occurrence (between -2 and +2 seconds
for each timestamp), taking care not to overlap with the
indicator occurrences before and after. We wrote also a pro-
gram, to run on a client web brower, that reads this indicator
data �le and generates the indicator occurrences contained
in it at the speci�ed times, just as if this was the MiGen
client software running in the web browser. The program
also assigns to each student ID a class ID, assuming that
there are 30 students in each classroom. From the point
of view of the MiGen server software running in the Google
cloud, all this activity looks like a set of students all working
with eXpresser concurrently, dispersed across their di�erent
classrooms.

We evaluated the scalability of the implementation by
measuring the average ‘round-trip’ time taken by an indi-
cator occurrence from the moment that it is generated by
the client software until the moment after it is ‘pulled’ from
the MiGen server by the TA tools application and processed
so as to update the information being displayed by the TA
tools UI (as described in the previous section).

Our �rst set of simulations was performed by using only
one machine to generate all the indicator occurrences and
one machine to run the TA tools application. We reached
a limit on linear performance at about 25,000 indicator oc-
currences over one hour (equivalent to the activity of a bit
less than 400 concurrent students being monitored by one
teacher, which is well above practical classroom sizes), after
which it was noticed some of the indicator data began to be
lost in transit. Subsequent analysis showed that the reason
for this was the web browser running the TA tools appli-
cation5. Browsers allocate a certain amount of memory for
user space (regardless of the total amount of memory avail-
able on the computer) and we had �lled this space up. At
this point, the browser started silently discarding some of
the indicator data.

In order to overcome this barrier to our scalability study,
we decided to use several web browsers in parallel, within
the limits of the hardware resources that we could obtain
from our institution, which was a computer lab comprising
69 PCs. All these computers were connected to Google’s
cloud through the university network.

We therefore evaluated our implementation again using
these 69 computers. Two thirds of the computers simu-
lated 375 concurrent students each, while the remaining

5We trialled with both Firefox and Chrome.
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Figure 5: Evaluation setup based on triplets of com-
puters. Two ‘student’ computers simulate 375 stu-
dents each, and the third computer runs an instance
of the TA tools application, that retrieves indicator
occurrences for all of these students. There were 23
of these triplets, 69 PCs in total. The dashed lines
represent the computers sending indicators as they
occur in the simulation. The solid line represents
the TA tools application requesting updates to its
local cache of indicator occurrences every five sec-
onds.

computers each ran one instance of the TA tools applica-
tion, drawing indicator occurrences from the MiGen server
for the students being simulated by two corresponding ‘stu-
dent’ computers. In other words, there were 23 student{
student{teacher triplets of PCs (see Figure 5). As the in-
dicator data being handled by each TA tool application in-
stance was within the limit of 25,000, this now allowed us
to stress-test the architecture to its limits.

Results are depicted in Figure 6. The average round-trip
time for the indicator occurences in each one of the 23 ‘con-
texts’ (i.e. triplets of two PCs simulating students and one
PC simulating a teacher) was measured. The average de-
lay was under the 5-second upper bound (arising from the
5-second interval between indicator update requests) which
is an aceptable delay in the time that it would take for a
teacher to be appraised of the current state of a classrom
of students. The number of simulated indicator occurrences
was approximately 1,150,000, corresponding to the activity
of 17,250 students interacting concurrently with the MiGen
system over one hour.

5. CONCLUSIONS
We have discussed the challenging role of teachers in sup-

porting students who are working on exploratory learning
tasks in the classroom, motivating the need to design tools
that support the teacher in being aware of the progress of
individual students and of the classroom ‘state’ as a whole.
We have presented a web-based architecture that can sup-
port such Teacher Assistance tools, have described an im-
plementation based on standard web and cloud computing

Figure 6: Measurements of average round-trip delay
of indicator data updates for the 23 contexts.

technologies, and have demonstrated its scalability to allow
concurrent usage by thousands of users, simulating concur-
rent classes of students and their teachers interacting with
an Exploratory Learning Environment. Due to its usage of
Google App Engine to store and retrieve the data relating
to indicator occurrences, the scalability of our architecture
is theoretically limitless.

Although developed and evaluated in the context of the
MiGen ELE, our architecture and implementation are generic
and could be used for monitoring students’ progress in any
ELE in which key indicators relating to student-system in-
teractions are detected by the system as students work with
the ELE. Our work presented in this paper has demonstrated
that it is feasible to provide such ELEs and accompanying
Teacher Assistance tools at a national level as software-as-
a-service.
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