
Trust-aware Peer Assessment using Multi-armed Bandit
Algorithms

Hou Pong Chan, Tong Zhao, and Irwin King
Department of Computer Science and Engineering
The Chinese University of Hong Kong, Hong Kong

{hpchan, tzhao, king}@cse.cuhk.edu.hk

ABSTRACT
Massive Open Online Coursers (MOOCs) offer a convenient way
for people to access quality courses via the internet. However, the
problem of grading open-ended assignments at such a large scale
still remains challenging. Although peer assessment have been pro-
posed to handle the large-scale grading problem in MOOCs, exist-
ing methods still suffer several limitations: (1) most current peer
assessment research ignore the importance of how to allocate the
assessment tasks among peers, (2) existing approaches for peer
grading learn the complete ranking in an offline manner, (3) the-
oretical analysis for trust-aware peer grading is missing. In this
work, we consider the case that we have prior knowledge about all
students’ reliability. We formulate the problem of peer assessment
as a sequential noisy ranking aggregation problem. We derive a
trust-aware allocation scheme for peer assessment to maximize the
probability of constructing a correct ranking of assignments with a
budget constraint. Moreover, we also derive an upper bound for the
probability of prediction error on the inferred ranking of assign-
ments. Furthermore, we propose the Trust-aware Ranking-based
Multi-armed Bandit Algorithms to sequentially allocate the assess-
ment tasks to the students based on the derived allocation scheme
and learn an accurate peer grading result by taking students’ relia-
bility into consideration.

1. INTRODUCTION
Massive Open Online Courses (MOOCs) are indispensable as a

means of online education by offering quality courses to students
and sharing knowledge among people. With the great convenience
of online education, the scales of MOOCs are always enormous and
a MOOC from a famous university or a famous lecturer can easily
attract more than tens of thousands of students to enroll. Hence,
a challenging problem in MOOCs is the infeasibility of grading
assignments or examinations using traditional TA/lecturer grading
patterns. Due to this limitation, most MOOCs currently only of-
fer assignments that can be graded automatically, such as multiple
choice questions. However, the problem of grading open-ended as-
signments such as essay in MOOCs still remains challenging.
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To address this issue, peer assessment is proposed to handle the
large-scale grading problem in MOOCs [13]. In peer assessment,
each student grades a subset of his/her peers’ assignments and sub-
mit their assessment results to the TA/lecturer. The final grading
will be concluded based on the results of peer grading process.

Although peer grading shows a great efficacy in solving grading
problems in MOOCs [16], there are still several issues in current
peer grading methods.

• First, most of current peer grading research focus on the
aggregation of peer assessment results but ignore the im-
portance of how to allocate the assessment tasks among
peers. Since different students have different capacities in
grading assignments and they may also have different credi-
bilities of their grading results, an arbitrary allocation of peer
assignments may lead to uncertain and inaccurate peer grad-
ing results and also bring too much workload for some stu-
dents.

• Second, existing approaches for peer grading learn the
complete ranking in an offline manner. That is, the full
ranking of assignments is learned after all the partial rank-
ings have been collected [18]. Due to the offline manner
of learning, one cannot take advantage of the sequentially
gathered feedback to reduce the sample complexity. As a re-
sult, how to aggregate these partial orders sequentially and
efficiently with a theoretical guarantee is a challenging and
significant task.

• Third, a solid theoretical analysis for trust-aware peer
grading is missing. To obtain an accurate complete ranking
from peer grading, we need to estimate the reliability of each
student. Unreliable students may give lower ranks to good
assignments in order to increase their own relative scores in
the course. Such malicious behaviors will lead to an inaccu-
rate inferred ranking. There are some existing works [14, 12,
13, 15] incorporates grader reliability into their peer assess-
ment models. Although they provide empirical evaluations,
they do not give any theoretical bound on the sample com-
plexities and the confidence value.

In this work, we investigate the problem of assessment tasks al-
location of peer assessment. In our model, we consider the case that
we have prior knowledge about all students’ reliability from a sep-
arate reliability evaluation component. Our goal is to reduce the as-
sessment workload of students (minimize the total number of peer
assessments, known as sample complexity) by using a carefully
designed allocation scheme and achieve an accurate peer grading
result by taking students’ reliability into consideration. We formu-
late the problem of peer assessment as a sequential noisy ranking
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aggregation problem. Then, we derive a trust-aware strategy for
peer assessment allocation with a budget constraint, the assessment
workload of each student will not exceed a certain value. After
that, we provide a theoretical upper bound of probability of pre-
diction error on the inferred ranking of assignments. Finally, we
propose the Trust-aware Ranking-based Multi-armed Bandit Algo-
rithm to allocate the peer assessment tasks to the students based on
the derived allocation scheme and aggregate the full ranking using
a merge-sort based approach.

2. RELATED WORK
Existing peer assessment approaches can be divided into two

main groups: cardinal peer assessment and ordinal peer assess-
ment.

In cardinal peer assessment, each student gives cardinal grades,
e.g. B+, to their peers’ assignments. Traditional methods for peer
assessments used naive methods such as taking median or mean of
the received cardinal scores. [13] proposed a probabilistic learning
algorithm to improve the accuracy of peer grading. However, since
students are not well trained for grading assignments, different stu-
dents may have different grading standards. For example, a student
thinks that an assignment is deserved an A- grade, whereas another
student thinks that the same assignment is only worth a B grade.

Ordinal peer assessment has been proposed to address the prob-
lem of diversified grading standards of students [16]. Instead of
giving cardinal grades, each student ranks a subset of his/her peers’
assignments, e.g. a � c � e. All the partial rankings are then
aggregated to compute a complete ranking of all the assignments.
Classical probabilistic ranking models such as the Plackett-Luce
model [10], the Bradley & Terry model [2], and the Mallows model [11],
were used to learn the full ranking of all the assignments based on
the partial rankings of assignments collected from students[16, 14].

To obtain an accurate result from peer grading, we also need to
estimate the reliability of students. Several existing methods in-
troduced a variability parameter into their probabilistic models to
estimate the grader reliability [13, 14, 12]. Although they provided
an empirical evaluation using a peer grading dataset collected from
a real class, they did not give any theoretical bound on the sample
complexities and the confidence value.

In the theoretical aspect, ordinal peer grading can be viewed
as a noisy ranking aggregation problem. Recent ranking aggre-
gations studies transform the offline learning manner to an online
and sequential manner by formulating the task as a Dueling Bandit
problem [3, 20, 19, 17], which is a variant of Multi-armed Bandit
(MAB) problem.

The “multi-armed bandits" problem refers to the problem a gam-
bler faces at a row of slot machines, or “one-armed bandits", that
look identical at first, but produce different expected rewards [1].
The crucial issue is to trade off acquiring new information (explo-
ration) and capitalizing on the information available so far (ex-
ploitation). Dueling Bandit is a variant of Multi-armed Bandit
problem, instead of directly observing the reward of one arm, we
can only observe the result of a pairwise comparison between the
rewards of two arms [20].

However, we cannot directly apply these existing dueling bandit
approaches to peer grading because of the following limitations:
(1) The existing Dueling Bandit setups do not consider the relia-
bility of the grader and in fact, most of existing dueling bandits
assume that there is only one grader, (2) The existing sequential
setups do not consider the equality of two items, and (3) No exist-
ing method explores how to sequentially aggregate a set of partial
orders consisting of more than two items for each.

3. PRELIMINARIES
We assume that there exists a true ranking of all the assignments.

Suppose there are M students, let a1, ..., aM be a set of assign-
ments to be ranked. A ranking is represented as a bijection r :
{a1, ..., aM} → {1, ...,M}, which maps each assignment to its
rank. Thus, r(ai) is the rank of ai and r−1(i) is the item with
rank i. For simplicity, we define ri = r(ai) and r−1

i = r−1(i).
Let SM denotes the set of all possible rankings of M assignments.
We assume the occurrence of a particular ranking r follows a prob-
abilistic distribution P : SM → [0, 1], then the probability that
assignment ai is better than aj is defined as following.

µij = P(ai � aj) =
∑

r∈{SM |ai�aj}

P(r) (1)

If µij > 1
2

, then ai � aj in the true ranking, i.e. ai is better than
aj . If µij < 1

2
, then aj � ai in the true ranking.

Our goal is to find the most probable ranking of all the assign-
ments, which is defined as following.

r∗ = argmax
r∈SM

P(r) (2)

In the concrete implementation, we assume the probability dis-
tribution P on SM follows Mallows model [11], which is a well
known probabilistic ranking model. As shown in Equation 3, Mal-
lows Model is parameterized by two parameters: dispersion φ and
reference ranking r̃.

P(r|φ, r̃) = 1

Z(φ)
φd(r,r̃) (3)

The parameter φ ∈ (0, 1] controls the dispersion of the probabil-
ity distribution. If φ = 1, the probability distribution of rankings is
uniform. If φ→ 0, the probability distribution of rankings concen-
trates around the reference ranking, i.e. P(r̃|φ, r̃) → 1. Thus, the
reference ranking r̃ is the mode ranking of P, we consider it as the
true ranking of all the assignments.
Z(φ) is a normalization factor which ensures that the sum of the

probability of all rankings equals to one. As shown in Equation 4,
it only depends on the dispersion parameter φ [5].

Z(φ) =
∑
r∈SM

P(r|φ, r̃) =
M−1∏
i=1

i∑
j=0

φj (4)

The distance function d(r, r̃) is the Kendall tau rank distance
[8], which measures the dissimilarity between two rankings [3].
The Kendall tau distance is defined as the following, where ri is
the rank of assignment i in a particular ranking r.

d(r, r̃) =
∑

1≤i<j≤M

I{(ri − rj)(r̃i − r̃j) < 0} (5)

4. TRUST-AWARE ONLINE RANKING ELIC-
ITATION

4.1 Trust-aware MAB framework
With the aforementioned probabilistic assumptions, we can for-

mulate the Trust-aware Multi-armed Bandit (MAB) framework as
follows. In each iteration t = 1, 2, ..., T

1. The algorithm A allocates two students, i and j’s assign-
ments (ai, aj) to a student k to compare.
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2. A observes a noisy binary feedback oijk ∈ {0, 1}, indicating
which assignment is better than the other, e.g. oijk = 1
means ai � aj .

3. Based on the new observation oijk, A updates the value of
µ̂tij , which is the empirical proportion of "wins" of ai against
aj by time t.

4. A determines the next assessment tasks allocation.

On the basis of this Multi-armed Bandit framework, if we want
to infer the most probable ranking of all the assignments, the algo-
rithm A would need to solve a noisy sorting problem. Hence, we
devise an algorithm based on the well known merge sort algorithm
and we will discuss our proposed algorithm in details in section 4.3.

4.2 Trust-aware allocation scheme
In our model, we assume that we have prior knowledge about all

students’ reliability from a separate reliability evaluation compo-
nent. The reliability evaluation component estimates the trust value
of each student, denoted by ck for all students k ∈ [1,M ]. Each
trust value is fixed in the interval (0, 1], which represents a belief
about the probability that a student k gives a correct judgement.

Then, we estimate the trust-aware empirical probability that ai �
aj in the reference ranking using the trust value of each student as
the corresponding weight. Equation 6 shows the estimation of the
trust-aware empirical probability that ai � aj at iteration t, where
ntijk is the number of comparisons between ai and aj judged by
a student k among the first t iterations. Equation 7 shows the es-
timation of the trust-aware empirical probability that ai � aj at
the end of the algorithm, where nijk is the number of comparisons
between ai and aj judged by a student k at end of the algorithm.

µ̂tij =

∑M
k=1 n

t
ijkckoijk∑M

k=1 n
t
ijk

(6)

µ̂ij =

∑M
k=1 nijkckoijk∑M

k=1 nijk
(7)

As we will use a merge-sort based algorithm to compute the most
probable ranking of all the assignments, we need to decide the order
of every pair of assignments to be compared with high probability.
Hence, we need to find a confidence interval for our estimation. By
using Hoeffding Inequality [6], we can obtain the confidence in-
terval εij for the trust-aware empirical probability µ̂ij . Equation 8
shows the upper bound of the probability that our estimated answer
µ̂ij deviates from the expected answer µij by εij , where µij is the
expected probability that ai � aj in the reference ranking.

Pr(|µ̂ij − µij | ≥ εij) ≤ 2 exp(−
2ε2ij(

∑M
k=1 nijk)

2∑M
k=1 nijkc

2
k

) (8)

We let 2 exp(− 2ε2ij(
∑M

k=1 nijk)2∑M
k=1

nijkc
2
k

= δ, where δ ∈ [0, 1], such that

with probability at least 1 − δ, it holds for particular ai and aj ,
µ̂ij ∈ [µij − εij , µij + εij ]. Thus, we express the confidence
interval εij as follows,

εij =

√
log 2

δ

∑M
k=1 nijkc

2
k

2(
∑M
k=1 nijk)

2
(9)

Moreover, if we set εij as follows,

εij =

√
log 4MCM

δ

∑M
k=1 nijkc

2
k

2(
∑M
k=1 nijk)

2
(10)

We can obtain a restrict condition that for any pair of ai and aj ,
µ̂ij ∈ [µij − εij , µij + εij ] with probability at least 1 − δ

CM
,

where CM = dM log2M − 0.91392M + 1e is the upper bound
of the number of comparisons of the two-way top-down merge sort
algorithm in the worst case performance [4, Theorem 1].

Based on Equation 7 and 10, our goal is to bound the total num-
ber of comparisons, nijk, while minimize the probability of predic-
tion error on the order of every pair of assignments to be compared.
Therefore, we need to express the probability of prediction error in
terms of nijk. Without loss of generality, we consider the case
when aj is better than ai in the reference ranking. Then, according
to [3, Corollary 3], we have µij ≤ φ

1+φ
< 1

2
. Suppose we have a

prediction error on the order of ai and aj , i.e. (r̂i− r̂j)(r̃i− r̃j) <
0, where r̂i and r̂j are the predicted rankings of ai and aj respec-
tively. Then, µ̂ij ≥ 1

2
and µ̂ij ∈ [µij − εij , µij + εij ], we express

the error probability Pr((r̂i − r̂j)(r̃i − r̃j) < 0) as follows,

Pr((r̂i − r̂j)(r̃i − r̃j) < 0)

=
µij + εij − 1

2

2εij

≤
φ

1+φ
+ εij − 1

2

2εij

=
1

2
− (

1

2
− φ

1 + φ
)
1

εij

=
1

2
− (

1− φ
2(1 + φ)

)
1

εij

=
1

2
− 1− φ

2(1 + φ)

√
2(
∑M
k=1 nijk)

2

log( 4MCM
δ

)
∑M
k=1 nijkC

2
k

(11)

Next, we formulate an objective function to minimize Pr((r̂i −
r̂j)(r̃i − r̃j) < 0) on every assignment pairs (ai, aj) to be com-
pared as follows,

minimize
nijk

∑
i,j

Pr((r̂i − r̂j)(r̃i − r̃j) < 0)

⇐⇒ minimize
nijk

−
∑
i,j

1− φ
2(1 + φ)

√
2(
∑M
k=1 nijk)

2

log( 4MCM
δ

)
∑M
k=1 nijkC

2
k

⇐⇒ minimize
nijk

−
∑
i,j

1− φ
2(1 + φ)

√
2

log( 4MCM
δ

)

√
(
∑M
k=1 nijk)

2∑M
k=1 nijkC

2
k

(12)

This objective function is not necessary convex. Since ck ∈ (0, 1],∑M
k=1 nijk ≥

∑M
k=1 nijkc

2
k. We can relax −

√
(
∑M

k=1
nijk)2∑M

k=1
nijkC

2
k

to

its upperbound −
√∑M

k=1 nijkC
2
k [9]. This relaxation results in a

convex objective function as follows,

⇐⇒ minimize
nijk

−
∑
i,j

1− φ
2(1 + φ)

√
2

log( 4MCM
δ

)

√√√√ M∑
k=1

nijkC2
k

(13)

After ignore all those constant terms, we formulate the objective
function as shown in Equation 14. Moreover, we also impose sev-
eral constraints on it. First of all, nijk cannot be negative, as shown
in Equation 15. Moreover, we would like a more reliable student to
grade more assignments, as shown in Equation 16. [13] conducts an
experiment to model the relations between the students’ scores and
their reliability, and the results showed that students with higher
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scores tend to have higher reliability. On the basis of the result, we
assume that a student with a higher reliability tends to have a higher
score. Hence, if the difference of reliability between two students
i and j is large, we can assume that the difference of their scores
is also high, so the number of pairwise comparisons between their
assignments, i.e.

∑M
k=1 nijk can be small. Moreover, the total

number of comparisons cannot exceeds a peer assessment work-
load limit B, as shown in Equation 17. The complete optimization
problem is shown as follows.

minimize
nijk

−
∑
i,j

√∑
k

nijkc2k (14)

subject to nijk ≥ 0, ∀i, j, k, i 6= j 6= k. (15)

(
∑
i,j

nijk −
∑
i,j

nijk′)(ck − ck′) ≥ 0

∀i, j, k, k′ ∈ [1,M ], i 6= j 6= k 6= k′ (16)∑
ij

[(
∑
k

nijk
ck

)(ci − cj)2] ≤ B

∀i, j, k ∈ [1,M ] i 6= j 6= k (17)

The analytic solution n∗ijk of the above optimization problem is
the required number of comparisons of ai and aj by student k that
maximize the probability of constructing a full ranking correctly.
As it is a convex optimization problem, we can use Karush-Kuhn-
Tucker (KKT) conditions to solve the analytic solution [7]. Then,
we derive the following allocation scheme,

THEOREM 1. Assume the probability distribution of P on SM
follows Mallows model, and we have prior knowledge about all
students’ trust and these trust values are fixed in a known inter-
val ∈ (0, 1]. To maximize the probability of constructing a cor-
rect ranking of assignment with a budget constraintB, the required
number of comparisons between ai and aj by student k is

n∗ijk =


(ci∗

k
−cj∗

k
)2B

∑
k′

(ci∗
k′
−cj∗

k′
)2

c
k′

if i = i∗k, j = j∗k

0 otherwise

where i∗k, j
∗
k = argmax

i,j

(ci − cj)2

ck
and i, j, k = 1, 2, ...,M

By substituting the n∗ijk into Equation 11, we derive the follow-
ing corollary,

COROLLARY 2. The upper bound of the probability of predic-
tion error
Pr((r̂i − r̂j)(r̃i − r̃j) < 0) on every assignment pairs (ai, aj) to
be compared in a two-way top-down merge sort algorithm is

CM
2
−

∑
i,j

1− φ
2(1 + φ)

√
2

log( 4MCM
δ

)

√√√√√ M∑
k=1

(ci∗
k
− cj∗

k
+ α)2c2kB∑

k′

(ci∗
k′
−cj∗

k′
)2

ck′

4.3 Trust-aware ranking based MAB Algorithm
With the required number of comparisons of ai and aj by student

k, we can devise an efficient algorithm to sequentially allocate the
assessment tasks with a trust-aware strategy and learn an accurate
ranking of all the assignments by taking students’ reliability into
consideration.

As shown in Algorithms 1, 2 and 3, the proposed algorithms are
based on the two-way top-down merge sort algorithm and a Dueling

Bandit algorithm, MALLOWSMPR[3]. Firstly, the TRUSTAWAR-
ERANKINGBASEDMAB procedure calls the SPLITMERGE proce-
dure. Then, the procedure SPLITMERGE recursively splits the un-
ordered set of assignments into smaller subsets until the size of the
subset is 1. Then all the subsets are merged to a sorted list by call-
ing the procedure TRUSTAWAREMERGE.

In the setting of a merge sort algorithm, we can directly observe
the pairwise relation between two items. While in the scenario of
peer assessment, we can only observe the pairwise relation between
ai and aj by the peer assessment feedback provided by students.
As a result, whenever the algorithm needs to know the pairwise
relation between ai and aj , it allocates the assessment tasks of
(ai, aj) to a student k according to the value of n∗ijk.

However, the value of n∗ijk may be larger than 1, and it is point-
less to ask the same person to judge the same pair of assignments
for multiple times. Therefore, we only choose student k to compare
a pair of assignments (ai, aj) once if nijk > 0.

Algorithm 1 TRUSTAWARERANKINGBASEDMAB
1: for i = 1→M do ri = i, r′i = 0

2: (r′, r)=SPLITMERGE(r, r′, 1,M )
3: for i = 1→M do r′i = i

4: return r

Algorithm 2 SPLITMERGE(r, r′, begin, end)
1: if end− begin > 1 then
2: mid = b(begin+ end)/2c
3: (r, r′) = SPLITMERGE(r, r′, begin,mid)
4: (r, r′) =SPLITMERGE(r, r′,mid, end)
5: (r, r′) = TRUSTAWAREMERGE(r, r′, begin,mid, end)
6: for l = begin→ end do rl = r′l
7: return (r, r′)

Algorithm 3 TRUSTAWAREMERGE(r, r′, begin,mid, end)
1: l = begin, l′ = mid
2: for q = begin→ end do
3: if (l < mid)&(l′ ≤ end) then
4: for k′ = 1→M do
5: if n∗ll′k′ > 0 then
6: Allocate (al, al′) to student k′

7: Observe otll′k′ = Ik′{rl < rl′}
8: µ̂l,l′ = µ̂l,l′ + otll′k′

9: if 1/2 < µ̂l,l′ − εl,l′ then
10: r′q = rl, l = l + 1
11: else
12: r′q = rl′ , l

′ = l′ + 1

13: else
14: if (l < mid) then
15: r′q = rl, l = l + 1
16: else
17: r′q = rl′ , l

′ = l′ + 1

18: return (r, r′)

5. CONCLUSION AND FUTURE WORK
In this work, we study the problem of trust-aware peer assess-

ment in MOOCs. To address the limitations of existing peer assess-
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ment methods, we transform the current offline learning manner of
peer assessment into an online and sequential manner.

We derive a trust-aware allocation scheme to allocate peer as-
sessment tasks to students while maximizing the probability of con-
structing a correct ranking of assignments with a budget constraint.
Moreover, we also derive the upper bound of the corresponding
probability of prediction error on the inferred ranking of assign-
ments. Furthermore, we propose the Trust-aware Ranking-based
Multi-armed Bandit Algorithms to sequentially allocate the assess-
ment tasks to the students based on the derived allocation scheme
and aggregate the full ranking using a merge-sort based approach.

However, the allocation scheme exhibits sparsity feature, in other
words, some pairs of assignments may have no comparisons at
all, while other pairs of assignments may have many comparisons.
Hence, we will address this problem by introducing a regularization
term in the objective function to penalize the sparse behavior and
derive a new allocation scheme based on the new optimal solution.
In the future, we will conduct experiments to evaluate the accuracy
and efficiency of the proposed algorithms using both synthetic data
and dataset in real-world MOOCs. Furthermore, we would like to
collaborate with MOOCs providers and apply the proposed peer as-
sessment framework into their MOOCs platforms. As the derived
allocation scheme and the proposed algorithms assume that when
we have prior knowledge about all students’ reliability and the trust
values are fixed in a known interval, we will consider the case that
we do not have prior knowledge about all students’ reliability. We
will extend the proposed Trust-aware Ranking-based Multi-armed
Bandit algorithm to learn reliability of all the students adaptively
during the peer assessment process.
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