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ABSTRACT
As the website is a primary customer touch-point, millions
are spent to gather web data about customer visits. Sadly,
the trove of data and corresponding analytics have not lived
up to the promise. Current marketing practice relies on am-
biguous summary statistics or small-sample usability stud-
ies. Idiosyncratic browsing and low conversion (browser-to-
buyer) make modeling hard. In this paper, we model brows-
ing patterns (sequence of clicks) via Markov chain theory
to predict users’ propensity to buy within a session. We
focus on model complexity, imputing missing values, data
augmentation, and other attendant issues that impact per-
formance. The paper addresses the following aspects; (1)
Determine appropriate order of the Markov chain (assess
the influence of prior history in prediction), (2) Impute miss-
ing transitions by exploiting the inherent link structure in
the page sequences, (3) predict the likelihood of a purchase
based on variable-length page sequences, and (4) Augment
the training set of buyers (which is typically very small:
∼ 2%) by viewing the page transitions as a graph and ex-
ploiting its link structure to improve performance. The cock-
tail of solutions address important issues in practical digital
marketing. Extensive analysis of data applied to a large
commercial web-site shows that Markov chain based classi-
fiers are useful predictors of user intent.

Keywords
Click Streams, Markov Chains, Link Analysis, Imputation,
Prediction

1. INTRODUCTION
More recently, The Big Data movement of injecting ana-

lytics into business processes is driving the urgency to har-
ness clickstream data for online analytics. It has been re-
ported that the Chief Marketing Officer (CMO) may have a
higher budget than the CIO and more particularly, the on-
line analytics market is projected to be approximately 4 bil-
lion USD with a compounded annual growth rate (CAGR)
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of 22.5% by 2017(source Frost and Sullivan). In this con-
text, the cutting edge is moving to digital marketing that
utilizes data generated by customer interactions with web-
sites. In spite of the steady growth of Internet commerce,
and investment in website infrastructures, the average global
conversion (turning a visitor into a buyer) rate is approx-
imately 2 − 3%, an abandonment (browsers dropping off
websites) rate of 75%, and for every dollar invested on con-
verting a customer, 92 cents is spent on acquiring the cus-
tomer (source: Gartner/marketing). Therefore, improving
the conversion rate by a small fraction translates to billions
in revenue.

Marketers have elaborate infrastructures to collect, store,
manage and analyze vast amounts of customer data via web
content management, reporting, multivariate testing and
rudimentary analytics. However, ability to describe browser
actions on websites are sadly confined to counting discrete
web events such number of visits, number of pages clicked in
a session, session duration, average page duration, abandon-
ment, conversion, etc., followed by rudimentary predictive
analytics. This paper is premised on the idea that a commer-
cial website is a coherent network of related pages connected
by a set of hyperlinks. A visitor’s session-level sequence of
clicks is viewed as navigation through a set of relevant pages
(augmenting her/his knowledge about products and services
rendered by the vendor) to eventually make a purchasing
decision. It is therefore assumed that web navigation is an
appropriate abstraction of browser intent and can be used
to predict the likelihood of a buying-event. The presumed
inter-relationships between pages in visitor sessions lend to
modeling by a class of stochastic processes known as Markov
chains (MC). Markov chains are studied extensively in web
usage mining [1, 2, 3, 4]. Unlike other efforts in the litera-
ture, however, we will apply Markov chains to predict the
likelihood of conversion based on variable-length page se-
quences within a session, while providing new techniques to
enrich the Markov graph structures. Web sessions evolve as
visitors traverse the website by clicking on links successively
on pages. Thus, a session is a finite sequence of inter-linked
pages. So, arrival at a given page is conditioned on being on
a prior page. Markov chains postulate that the joint proba-
bility of a sequence of pages can be decomposed into a prod-
uct of conditionally independent probabilities. Therefore, a
Markov chain is specified by conditional independence and
order. The notion of conditional independence assumes that
the sequence of clicks is not a series of independent events.
And conditional independence is parametrized by the de-
gree of influence of past clicks (order). Treating the website
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as a graph where the URLs serve as nodes and the edges
as transition probabilities [10], the simplest Markov model
is of the 1storder in which the probability of being on the
present URL page depends only on the previous page clicked
(page transition probability). Higher order chains trace his-
tory to previously clicked pages 2, 3, . . . . While application
of MC in clickstream analytics seems straight forward, id-
iosyncratic customer browsing, arbitrary session definitions
and page instrumentation makes modeling difficult. It is
further exacerbated by low conversion rates for certain con-
sumer electronic products. Despite the challenges, as we
shall see, MC models successfully predict customer browsing
behavior.

Additionally, while the application of Markov models in
clickstreams may be seen largely as web usage mining, it
has implications in the idea of web of data and the semantic
web. The predictions derived from web usage models can be
connected to other web sources. For example, fundamental
to clickstream data collection is the IP (Internet protocol)
address and technology allows IP addresses to be mapped to
Zip codes (zoned geographical areas in the US). The connec-
tion between IP addresses and ZIP codes paints a broader
and richer picture of the browsers as clickstreams, and demo-
graphic features get combined. In machine learning terms,
once the Markov model identifies a subset of browsers with
high likelihood of conversion, the associated zipcode level
features are leveraged to identify homogeneous subgroups
by statistical clustering. The unique characteristics within
the sub-groups contextualize the usage patterns which can
then could be used as pointers to make specific product rec-
ommendations. The demographics and lifestyles features
therefore can be construed as semantic terms defined for
the agent (algorithm). Clearly, the combined data sources
in conjunction with the algorithms create an ecosystem as
enunciated by Berners-Lee et al [5] to bring meaning and
structure to serve the end-users (marketers). Mabroukeh et
al [6] propose using semantic information in sequential pat-
tern mining. In this framework, if the website ontology is
avaiable, it is exploited to prune the state-space and a lower
order Markov chain is used to reduce computational com-
plexity and obtain accurate predictions. In many commer-
cial marketing optimization models, the webpage semantic
information is used together with the clickstreams to contex-
tualize user navigation and dynamically modify pages with
appropriate offers to nudge customer into buying. In this
paper however, we will focus on web navigations patterns
for predictions.

2. RELATED WORK
Markov models were used for predicting online customer

satisfaction by Lakshminarayan et al [9] in surveys of online
browsers. Also, as we have pointed out in the Introduction,
Markov chains were studied extensively in web usage min-
ing [1, 2, 3, 4]. Borges and Levene [1] discuss predicting
likelihood of the next link based on variable length Markov
chains. Deshpande and Karypis [3] propose higher order
Markov models and present different techniques for intelli-
gently selecting parts of different order Markov models so
that the resulting model has a reduced state complexity,
while maintaining a high predictive accuracy. Eirinaki et
al [4] incorporate the pagerank method to provide web rec-
ommendations. They propose the use of a Pagerank-style
algorithm for assigning prior probabilities to the web pages

based on their importance on the website. Mobasher [2]
in an excellent review paper, outlines ways to predict the
next user-action proposed in the literature. Srivastava et
al investigated web data to discover usage patterns in or-
der to understand and better serve the needs of web based
applications [7]. In all these cases, the problem of on-line
buyer behavior is not explicitly addressed. In the Digital
Marketing arena, where customers have unlimited access to
commercial websites, the volume of browsers is very high,
while the conversion rate is but a tiny fraction. In this set-
ting, understanding buyer behavior is a complicated prob-
lem. Unlike what was proposed in the literature, we will see
in the consumer electronics space, higher order chains do not
necessarily yield higher returns (predictions). We advance
the literature by approaching the problem determining the
probability of a next link using the Chapman-Kolmogorov
equations [11] which we use as primary tool for missing value
imputation as well. The Chapman-Kolmogorov equations go
beyond merely predicting the next link. It enables to cal-
culate the probability of future link n steps ahead. It is
achieved by computing the product of the one-level tran-
sition probability matrix n times. Section 5 presents new
techniques that are shown to be useful when conversion rates
are very low (such as less than 0.2%).

3. DATASETS, DESCRIPTION, AND CLAS-
SIFICATION METHODOLOGY

The products we studied consumer are electronic goods
such as desktops, notebooks, printers and supplies. The
dataset for a given product is a table (T) where each row con-
sists of a Session-id, Page name (URL), a class label (′Buy,′
′No Buy′). The objective is to identify prospects who will
convert based on their session-level page navigation. To do
this, we divide the dataset into two classes (Ci, i = 1, 2):
′buyers,′ and ′non−buyers.′ The training data is composed
by obtaining 70% from (Ci, i = 1, 2) and the testing set is
obtained by combining the remaining 30%. In the next step
we collect all URL sequences from the training set to create
transition probability matrices (TPM) for the two classes C1

and C2. Each session-level URL sequence in C1 is decom-
posed into pair-wise URLs i→ j. Note that the transitions
i → j are the ′From′ and ′To′ pages occurring in the ses-
sions contiguously. For example, if a session consisted of
page transitions U1 → U2 → U3, the pair-wise transitions
would be, U1 → U2 and U2 → U3. From the set of all
(i, j) ∈ C1, we compute transition probabilities pij . The
pair-wise probabilities pij form the TPM (P1) . Similarly,
we generate the matrix P2 for class C2. When a session from
the testing set is presented to the MC, it is classified based
on following reasoning. Let a new session denoted by U con-
sist of the sequence of pages (U1, U2, . . . Uk). We compute
class-conditional joint probabilities;

P (U1, U2, . . . , Uk|C1) , P (U1, U2, . . . , Uk|C2)

denoted by L1, L2 respectively. The joint probability by the
application of Markov chains, decomposes into condition-
ally independent one-level page transition probabilities(pij)
stored in P1 and P2. For example, the joint probability,
P (U1, U2, . . . , Uk|C1) is decomposed as follows:
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Session Name Page Class
320611406779612746869641750-4 us:welcome-home 0
320611406779612746869641750-4 us:sale:static:springsale 0
320611406779612746869641750-4 us:en-us:laptops notebook pc 0
320611406779612746869641750-4 us:laptops pavilion 15t-n200 notebook pc with windows 7 1

Table 1: A sample user session

P (U1, U2, . . . Uk) = P (Uk|Uk−1 . . . , U3, U2, U1)

∗ P (Uk−1|Uk−2, . . . , U3, U2, U1) . . .

∗ P (U3|U2, U1) ∗ P (U2|U1) ∗ P (U1)
(1)

= P (U1)

k∏
i=2

P (Ui|Ui−1) (2)

As we can see, Eq. 1 is simply the decomposition of the
joint probability of the page sequence into product of con-
ditionally independent events. Eq. 2 is a result of invoking
the property of the first-order Markov chain. We dropped
the class label C1 for simplicity of notation.

Figure 1 is an overview of the modeling methodology in-
cluding the decision rule. The integers ′1′ and ′0′ in the
flow chart represent the ′Buy′ and ′No Buy′ classes. The
decision rule for classifying sequences is determined by the
ratio, D = L1

L2
. If D ≤ 1 then U ∈ C2, else U ∈ C1.

Repeating the procedure for each session in the testing set,
the performance metrics; recall (re)= TP

TP+FN
and false pos-

itive rate (FPR) = FP
TN+FP

are evaluated. The quantities
TP, TN, FN, FP are respectively true positives, true neg-
atives, false negatives, and false positives. In practice the
model ought to predict conversion based on a user’s current
session-depth (length). Next section summarizes model per-
formance (recall, and FPR) as a function of session length
(l).

We show the schema of the dataset in the Table 1. During
a session, a user visits many pages. The class column con-
tains a 1 or 0 depending on whether user made a purchase at
the end of the session. The total number of sessions is more
than 2 million; the number of distinct pages is 5800; the
collected data recorded purchases of desktops, notebooks,
printers, and supplies, with conversion rates of 0.2 %, 0.2%,
0.1%, 1% respectively. The conversion rate is about 1.5%
when all purchases are consolidated.

4. RESULTS
We will examine results for the product categories ”sup-

plies,” and ”notebooks.” We chose supplies and notebooks
because, the product category ′supplies′ has the highest con-
version among all the products, and notebooks have multiple
product lines giving a richer sequential patterns. Also, we
only report results for Markov chains up to 3 orders since
performance decays at higher orders. More specifically, for
the product category ′supplies′, recall is in the range of
(0.55-0.66) range, while FPR is dismally high in the range
of (0.5, 0.66) over the session depth (5-35). Thus the de-
cision to limit analyses to chains up to third order Markov
chains. The metrics recall and FPR shown are averages

calculated from multiple datasets randomly generated from
the original table (T). Repetition over multiple sets provides
an estimate of the standard error (se) to assess algorithm
stability. Figures 2 and 3 summarize the results for the
product category ”supplies.” Note that the X-axis is session
depth (length). Clearly, there are no significant differences
between Markov chains of various orders. At smaller ses-
sion lengths the models deliver impressive recall (85%) and
false positive (≤ 10%). So a 1st order MC is preferable
due to low complexity, manageable bookkeeping and ease of
implementation. We notice likelihood of purchase is high
when the session (l) is between 5 and 30 pages. The decline
in recall has a slightly steeper gradient for session lengths
> 30. So we call attention to length (l) in the interval [5,
30]. In order to study repeatability of the classifier, we gen-
erate the training and testing sets by resampling in 70/30
proportions multiple times (6). The purpose is to evaluate
the stability of the classifier in the presence of randomness.
The variability from sample to sample is measured by the
standard error(s) (s.e.) of the metric(s). The standard er-
ror of recall increases being in the interval [0.001, 0.04] at
session-length (5 ≤ l ≤ 30). Similarly, the standard error of
FPR is in the interval [0.01-0.02] when (5 ≤ l ≤ 30). This
analysis confirms algorithm stability. Note that we report
standard errors for the 1st − order Markov chain only. The
actionable insight is that in a real-time setting, marketers
should target sessions (l ≤ 30) when customers are likely
to buy. The product category notebooks whose conversion
rate is 0.2% is analyzed next. The performance summary
is depicted in Figures 4 and 5. The average Recall is lower
compared to ”supplies” obviously due to low conversion in
this product category. However, FPR is small and decreases
with increasing session-length. The standard errors are in
the ranges [0.06, 0.11], and [0.02, 0.04] for recall and FPR
respectively. The small bump at session length 40 (Figure
3) is an artifact of the dataset (unexplainable variation).
Needless to say, higher conversion rate will yield better per-
formance. The product categories Desktops and printers are
excluded due to space constraints. The results for the prod-
ucts desktops (DT) and printers (Pr) are given in Table 2.
The columns in the Table are self explanatory. In summary,
the recall declines gradually as the session length increases.
The FPR rate shows similar behavior as well. Due to low
conversion, the recall is poor, but the algorithm is able to
identify the true negatives (non-buyers). The results for
the product category printers follow the same pattern. In
spite the sub optimal performance, the standard error (se)
is small, demonstrating the stability of the algorithm. An-
other common problem in MC modeling is missing transition
probabilities pij in the training set, but appear in the testing
phase. Missing transitions (values) is a vexing research issue
and can not be understated. We impute missing probabili-
ties by the Chapman and Kolmogorov (C-K) equations[11].
C-K equations is a tool to estimate (n− level, n ≥ 2) transi-
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Divide Data into 2 classes 
(purchase ID, None)

1 0
SAMPLE DATA: Training
Session ID, Page URL
.                    .                   .

.                    .                   .

SAMPLE DATA: Training
Session ID, Page URL
.                    .                   .

.                    .                   .

1. Get Unique Pages
2. Create “From” and “To” pages
3. Count 1-step page transitions 

(𝑛𝑖𝑗)

4. Calculate transition probabilities:

5. 𝑝𝑖𝑗 =
𝑛𝑖𝑗

𝑛𝑖.

What if a transition is missing?

𝑝𝑟𝑜𝑏 𝑝1𝑝2𝑝3⋯𝑝𝑘 1 =?
The sequence is drawn from Test Set

ℓ1 = 𝑝𝑟𝑜𝑏 𝑝𝑘 𝑝𝑘−1 ⋯𝑝𝑟𝑜𝑏 𝑝2|𝑝1 𝑝𝑟𝑜𝑏 𝑝1
By the first order Markovian Property

𝑝𝑟𝑜𝑏 𝑝1𝑝2𝑝3⋯𝑝𝑘 0 =?
The sequence is drawn from Test Set

ℓ2
= 𝑝𝑟𝑜𝑏 𝑝𝑘 𝑝𝑘−1 ⋯𝑝𝑟𝑜𝑏 𝑝2|𝑝1 𝑝𝑟𝑜𝑏 𝑝1
By the first order Markovian Property

Probability 
calculations for no-

buy class

Figure 1: A flowchart describing the proposed classifier

Figure 2: Recall(Supplies): Performance is ∼ equal across
1st, 2nd, 3rd orders. X-axis is the partial length of sequence
within a session

tion probabilities. If pages i→ k are linked and pages k → j
are linked, C-K imputes pij from i → k → j by marginal-
izing over all k ∈ S, S is the collection of all pages on the
website. In conclusion, Markov models are practical tools to
identify prime prospects. Despite low conversions for con-
sumer electronic products products, idiosyncratic browser
behavior, similarity of product offerings (laptops, desktops
yielding similar navigation paths), missing probabilities, and
large number of pages hosted (5800), results show Markov
chains are viable. As a cautionary note, issues cited require
a deliberative approach; modifying, evaluating until a suit-
able model is found.

5. AUGMENTED GRAPHS WHEN CONVER-
SION IS LOW

In practice, the training set for the class ′Buy′ is much
smaller than that of the class ′No Buy′; a phenomenon that

Figure 3: FPR(Supplies): 1st order MC is within range of
higher order chains. X-axis is the partial length of sequence
within a session

Figure 4: Recall(Notebooks): 1st order MC delivers superior
performance. X-axis is the partial length of sequence within
a session
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Length Re(DT) FPR(DT) se(Re:DT) se(FPR:DT) Re(Pr) FPR(Pr) se(Re:Pr) se(FPR:Pr) Order

5 0.65 0.11 0.04 0.01 0.60 0.11 0.04 0.01 1
10 0.49 0.06 0.05 0.01 0.52 0.06 0.03 0.01 1
15 0.36 0.04 0.08 0.01 0.39 0.04 0.03 0.01 1
20 0.29 0.03 0.05 0.01 0.30 0.03 0.06 0.01 1
25 0.24 0.02 0.09 0.02 0.23 0.02 0.07 0.02 1
30 0.25 0.02 0.07 0.02 0.19 0.01 0.02 0.02 1

Table 2: Performance Summary of Desktops(DT) and Printers (Pr).

Figure 5: FPR(Notebooks): 1st order MC has slightly
higher false positives, but within range. X-axis is the partial
length of sequence within a session.

we call information asymmetry. Information asymmetry
known in the machine learning literature as skewed data
and affects the predictive power of the classifier resulting in
an inflation of false positives and false negatives. Therefore,
the classifier-influenced business processes might be incor-
rect with a negative impact on the desired business outcome;
For example, The Wall Street Journal [12] claims that rec-
ommendations from algorithms on e-commerce websites are
often unreliable. There may be multiple reasons for this, but
this condition could be ameliorated by augmenting the link
structure of the ′Buy′ class. In other words by adding new
links to the graph structure associated with the ′Buy′ class,
we seek to enrich the graph to improve the classification.
As most sequences are in ′No Buy′ class we do not aug-
ment the corresponding graphs. We augment the training
set of the class “buy” to improve the classification and apply
Markov chains of various orders (complexity) to distinguish
buyers from non-buyers. The techniques are also used for
multi-class classification and are thus extensible. Establish-
ing new edges (augmenting a graph) and consequently es-
timating transition probabilities is demonstrably beneficial.
When conversion rates are low (<0.5%), our experimental
results show improved performance.

The idea is to build new graphs from the existing URL
links in the website by identifying paths from i→ j via many
intermediate layers (pages), i.e., i → k → l → j (where k
and l are pages in the intermediate nodes on the path from
i to j). In a Ga

3 graph (the index ”a” denotes augmented
graph), path i → k → l → j is computed, using a G2 path
i→ k → l and an existing edge l→ j from G1. So by linking
i → k → l and l → j and marginalizing over nodes k and
l with edge k → l we obtain pij . Most sequences belong to
the “no buy” class (about 98% of the sequences), therefore
the corresponding graphs are not augmented. These graphs
are labeled nGi where i = 1, 2, 3, . . . They are constructed
using sampling from the training data set of the “no buy”
class; sampling is used so that number of sessions from the

training dataset is about 10 times that of the number of
entries from the training data set of the buy class.

Now the classification using augmented graphs follows by
slightly modifying the logic used in Figure 1: The 3rd order
Markov chain (Ga

3) enables computation of conditional prob-
ability P (j|l, k, i) for the path i→ k → l→ j. Using Ga

3 , we
have P (i → k → l → m → j) = P (j|m, l, k) ∗ P (m|l, k, i) ∗
P (l|k, i) ∗ P (k|i) ∗ P (i). Using Ga

2 , we have P (i→ k → l→
m → j) = P (j|m, l) ∗ P (m|l, k) ∗ P (l|k, i) ∗ P (k|i) ∗ P (i).
By viewing a session as a walk on the buy graph Ga

i or the
no-buy graph nGi, we compute joint probability of the walk
from both the graphs Ga

i or nGi where i=2,3,. . . ; we choose
the higher of the two joint probabilities to classify the ses-
sion. We use sessions from the testing dataset to query the
graphs to obtain joint probability. It is clear that there is no
augmented Ga

1 graph and hence we use Ga
i for i = 2, 3 . . ..

5.1 Results
Experiment 1: We show that the metric FPR is much

better when using Ga
2 over G2. We combined all buy ses-

sions into one class. Using the training data, we constructed
graphs Gi, nGi for i = 1, 2, 3 to model the ith order Markov
chain. Similarly we constructed augmented Ga

i for i=2,3.
Figures 6 and 7 show performance of the 2nd order Markov
chain using G2, nG2 and augmented Ga

2 . Figure 6 com-
pares how performance of FPR changes over session length:
FPR(TC) shows the false positive ratio when Ga

2 , nG2 are
used for classification, that is, TC is for the augmented case.
FPR(MC) shows false positive ratio in the normal case, that
is, MC is for normal case. FPR is much better in the aug-
mented scenario compared to normal scenario across all ses-
sion lengths. Recall is slightly better in the standard sce-
nario when session length ≥ 30. This is under analysis.
Experiment 2: We consider the notebook purchases that

have a conversion rate ≤ 0.2%. This experiment clearly
shows the power of augmentation where both metrics per-
form better when using augmented graphs. We trained a 3rd

order Markov chain by constructing the three graphs G3, Ga
3

and nG3. Using the testing data we queried G3 and nG3 to
classify our testing data to report FPR (MC). We queried
the augmented Ga

3 and the no-buy nG3 to classify our test-
ing data to report FPR (TC). Figure 8 shows that FPRs
from the augmented case outperform the normal case. We
also report the performance of metric Recall in Figure 9. For
notebooks, we used 3866 sessions in the training set for the
buy class; 314400 sessions are used to construct the graphs
for the no-buy class. The size of testing sets are 383, 30991
for the “buy′′ class and the “No Buy′′ class respectively.

6. CONCLUSION
Maintaining large transition probability matrices requires

bookkeeping and in real time may affect speedy response.
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Figure 6: False positive rates are much better with TC. X-
axis is the partial length of sequence within a session.

Figure 7: Recall could be better with TC. X-axis is the
partial length of sequence within a session.

Figure 8: False positive rates are much better with TC. X-
axis is the partial length of sequence within a session.

Figure 9: Recall rates are much better with TC. X-axis is
the partial length of sequence within a session.

We are working on equivalent, sufficient statistics for tran-
sition probabilities to overcome the potential bottleneck.
When conversion rates are low, augmenting the higher or-
der Markov chains results in better classification. A possible
next step is to look for a way to parallelize the construc-
tion of graphs so that we can build higher order Markov
chains; some applications may benefit from more history on
the random walk for a given query. In conclusion, Markov
chain models due to their simplicity and elegance are a suit-
able alternative approach. As we could not cover several
aspects, detailed reports are available upon request.
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