
DynamoGraph: A Distributed System for Large-scale,
Temporal Graph Processing, its Implementation and First

Observations

Matthias Steinbauer
Institute of Telecooperation
Johannes Kepler University

Linz, Austria
matthias.steinbauer@jku.at

Gabriele Anderst-Kotsis
Institute of Telecooperation
Johannes Kepler University

Linz, Austria
gabriele.kotsis@jku.at

ABSTRACT
Graph models have a long standing history as models for
real world structures and processes. In recent research two
important dimensions of graphs are described of particular
importance. (1) Temporal aspects of graphs cannot be ne-
glected for many current application scenarios such as social
network analysis or the analysis of the global web graph. (2)
The mentioned graph structures have grown to very large
sizes such that traditional methodologies no longer hold. In
this work a distributed computing framework designed for
storing and processing of large-scale temporal graphs is pre-
sented. For this system a reference implementation in Java
was created. In this paper �rst insight on the implementa-
tion and observations in using the system are discussed.

Keywords
Distributed computing; Graph processing; Pregel; Temporal
graph; Large-scale graph

1. INTRODUCTION
Graph and graph models have a long standing history in

computer science. They serve as a model for real world
structures in various disciplines. In the social sciences graphs
are used to model social networks and sociometry is used
to compute metrics over these models [14]. Biological pro-
cesses such as protein-protein interaction can be modelled
as a graph. Digital road maps can be represented as graphs,
and �nally the global web graph can be seen as a very large
scale dynamic graph.

While there has been and still is continued research on
graphs we see a rise of graph related research in computer
science in the recent years. This is mainly due to two factors
inherent in graph models that still leave room for further
research. (1) In the past especially in applied computing
the dimension of time has been neglected in graph models.
Whereas real-world systems are subject to change over time.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2889293.

(2) Real-world systems can grow to very large scales such
that processing paradigms and algorithms suitable for small
graphs are not feasible. As discussed in section 2 both prob-
lems have been addressed. This paper argues that future
systems for graph analytics must support storage and pro-
cessing over large-scale, temporal graphs to provide better
insight.

In the real world structures are dynamic i.e. social net-
works are changing over time, protein-protein interactions
are in fact dynamic processes, digital road maps and of
course also the global web graph are under constant change.
Static views on these dynamic systems will show too much
data and thus can blur metrics computed on static views.
On the other hand for some applications the dynamics in
a system might be of interest. Thus it is necessary that
changes and their time of occurrence are saved alongside
with the graph. Some graph metrics will even show new
meaning when computed in the context of a temporal graph.
Reachability measures might vary depending on the tempo-
ral context they are computed in.

Real world systems often also scale to very large sizes.
Again the examples given above fall into this category. Sys-
tems modelled as graph will grow in two dimensions: (1)
their diameter might grow as new vertices are added to the
graph, and (2) the density of data will grow as new data is
added in the temporal dimension. Very large graph models
can easily grow to sizes where local memory of a single com-
puter might not be su�cient anymore. Also computing re-
sources of a single computer might prohibit that graph met-
rics over large data-sets can be computed in feasible time.

In this paper a distributed software system is proposed
which provides its users with scalable storage mechanisms
for large-scale temporal graphs alongside with a distributed
processing framework that can be used by developers to im-
plement distributed graph algorithms. The system aims to
hide some of the complexities coming with distributed com-
puting systems from software developers.

In this work the authors present related work from the
�elds of large-scale graph processing, and temporal graphs
(see section 2). A framework for temporal graph representa-
tion and processing that can accommodate large-scale real
world networks is discussed in section 3. A real-world refer-
ence implementation called DynamoGraph and some of its
implementation details are presented in section 4. First ob-
servations of processing tasks executed on top of Dynamo-
Graph are given in section 5 and section 6 concludes the
paper.

861

2. RELATED WORK
The system presented in this paper is based on graph con-

cepts which have been de�ned and discussed in great detail
before. In general in graph theory the concept of dynamic
graphs was de�ned. Dynamic graphs can be modelled in
various di�erent ways [8]. In this work we use the follow-
ing de�nition: A dynamic graph is a pair (V,E) where V
denotes the set of vertices and E denotes the set of edges
between any v, u ∈ V . A graph is called vertex-dynamic if
the set V changes over time and edge-dynamic if the set E
changes over time. Moreover a graph can be called vertex-
and edge-dynamic if both sets change over time [4]. In a
dynamic graph changes are not necessarily traceable, if a
dynamic graph is observed at time t one observes a static
graph, its history is unknown.

Data structures that are able to preserve a graphs history
are called temporal graphs. A temporal graph T can be de-
scribed as a set of graphs T = {G1, G2, G3, . . . , Gt} where
each Gx ∈ T,Gx = (Vx, Ex) is called a static snapshot of T
at time x. Multiple such snapshots from tm to tn can be
selected from T we call the resulting Gtm...tn a timeframe
snapshot of T . For temporal graphs new metrics (temporal
proximity, temporal availability, etc.), and tactics for visu-
alisation are required [7].

Large and temporal graphs have also spiked interest in
applied science communities. Traditionally in applied sci-
ences graph databases have always played an important role.
Needless to say that graph databases still provide fast mech-
anisms for manipulating graph data and query mechanisms
to retrieve graph data. Temporal aspects have been inte-
grated in enterprise grade graph databases such as Neo4j
[1]. In graph databases temporal aspects are often modelled
as intermediate vertices representing timestamps. Which in-
tegrates well with these systems. However, graph databases
usually are not optimized for temporal graph processing.

Several systems for temporal graph processing thus have
been implemented in the past. From one thread of research
the systems Chronos [3] and Immortalgraph [13] originate.
Systems which try to optimize in-memory organization of
temporal graphs to guarantee fast access times for processing
tasks.

On the other hand there exist several approaches towards
large-scale graph processing. Obviously many are discussed
in the distributed computing communities. Many traditional
graph algorithms use graphs represented in their adjacency
matrix as their input. If these matrices are sparse and grow
to very large sizes distributed matrix processing can pro-
vide a viable solution [5]. However, the adjacency matrix
becomes impractical to handle if its cells contain complex
data-structures as it would be required by temporal graphs.

GraphLab PowerGraph [9] tackles the size dimension with
a parallel computing model which is designed for in-memory
processing in distributed compute clusters. Its main aim was
to create a graph based system that builds the foundation
layer for machine learning tasks. PowerGraph is also the
foundation of the commercially available Dato platform1 and
the in-memory graph processing system GraphChi2.

For vertex-centric processing (representing vertices as doc-
uments) the Pregel [11] processing paradigm and extensions
over it [16] have proven to be feasible in practice. For

1Dato create intelligence: https://dato.com
2GraphChi: https://github.com/GraphChi

this processing paradigm an open source implementation
(Apache Giraph3) exists that integrates well with state of
the art Big Data platforms such as the Apache Hadoop4

ecosystem. Similarly the Apache GraphX library provides
distributed graph processing in the context of the Apache
Spark project [21].

However, the mentioned systems are not designed for tem-
poral graph processing and thus lack framework support for
time-annotated data. In this work authors focus on the in-
tersection of large-scale and temporal graphs for which cur-
rently no systems exist that support both data-management
and processing tasks over such data.

3. PROCESSING FRAMEWORK
In the following the storage of temporal graph data in a

distributed compute cluster (see section 3.1) and distributed
processing over this data with extended Pregel concepts (see
section 3.2) are discussed.

3.1 Temporal Maps
Temporal graphs have two major dimensions of growth.

As more vertices get added to the graph the graph can grow
in diameter, and as more time-stamped edges get added the
graph grows in density. Partitioning of a temporal graph
is the decision of whether to split data alongside its tem-
poral or structural dimension. The problem of temporal
partitioning is solved by storing individual snapshots of an
individual graph on di�erent computers. Often the diame-
ter of the graph is the dominant dimension of growth such
that even individual static snapshots of the complete graph
cannot be hosted in memory of a single computer. Further
processing resources of a compute cluster might not be facil-
itated optimally if the temporal graph is partitioned in the
temporal dimension. This is why way was given to struc-
tural partitioning of the temporal graph in this particular
work.

Structural graph partitioning is the task of distributing
N vertices over H host computers. Each of these comput-
ers is responsible for data management and computation of
its local graph partition PH . In structural processing arcs
between vertices can either connect vertices within a local
partition or vertices in di�erent partitions. The number of
the arcs spanning between partitions are called the graph
split (or cut). Since many graph algorithms i.e. reachability
measures [20], PageRank [15], etc. use the arcs of a graph
as guidelines to traverse the graph in structural graph par-
titioning algorithms aim to �nd minimal splits in the graph.
In this work existing it is assumed that a partitioning func-
tion p(v) exists that assigns a partition number to any given
vertex v.

In a graph partitioned as described above it is possible to
store each individual vertex of the graph as a single data
structure or document. In practice the system presented in
this paper stores data for individual vertices in-memory as
maps and as JSON documents or other serialized representa-
tions in persistent memory. JSON representation is mainly
used in scenarios where compatibility to other systems or
manual investigation of individual vertices is required (de-
bugging, data-manipulation through external tools). The
arcs are stored within these vertex documents in lists con-

3Apache Giraph: http://giraph.apache.org
4Apache Hadoop: https://hadoop.apache.org

862

taining the arcs alongside with their attributes. To avoid
loading of arc data from remote vertices and thus from re-
mote hosts during processing each vertex has separate lists
for incoming and outgoing arcs. This means that each arc
is stored in the system twice.

The concept of a map was extended to what is named a
temporal map. This is a map that can hold key-value pairs
tagged with time-stamps. It is con�gured with a temporal
resolution which de�nes the smallest unit of time that can
be used in the map. Just as a regular map the temporal
map de�nes a write operation w(M,k, o, t) which writes the
object o with key k into the map M . However the write op-
eration is tagged with time-stamp t. A read operation over a
temporal map r(M,k, b, e) returns an object with the key k
from map M which has a time-stamp t that lies between the
begin time b and end time e. The presented behaviour leads
to data conicts in practice i.e. two di�erent objects o1 and
o2 were inserted with two di�erent time-stamps. Real world
implementations of a temporal map address this issue with
conict solving strategies such as returning the newer item
by default, merging collections, and allowing developers to
specify custom conict solving strategies for certain keys.

In listing 1 the temporal representation of a vertex in
monthly resolution is presented. Attributes were added to
the temporal map at two di�erent timestamps. From the
listing it is clear that for each time-stamp a map can be
stored which again can contain arbitrary attributes. In the
example given, regular attributes and collections were added
to the map.

Listing 1: JSON document representing a temporal
vertex

1 {

2 id: 39827736,

3 resolution: ’MONTHS ’,

4 ’1420070400’: {

5 name: ’Rob Henderson ’,

6 description: ’’,

7 inEdges: [{

8 weight: 3.3,

9 edgeType: ’PHONE ’,

10 source: 39761932,

11 target: 39827736, }],

12 outEdges: [{

13 weight: 4.0,

14 edgeType: ’EMAIL ’,

15 source: 39827736,

16 target: 39761932, }],

17 },

18 ’1422748800’: {

19 inEdges: [{

20 weight: 4.0,

21 edgeType: ’PHONE ’,

22 source: 39761932,

23 target: 39827736, }],

24 outEdges: [{

25 weight: 6.0,

26 edgeType: ’EMAIL ’,

27 source: 39827736,

28 target: 39761932, }],

29 }

30 }

In the large-scale temporal graph framework presented in
this paper each graph partition PH is a list of temporal maps
M . Each map representing a single vertex in the temporal
graph. Each host H is responsible for data-management and
computation in its local partition PH .

3.2 Pregel Processing and its Extensions
The presented framework is inspired by Pregel [11] which

was originally developed at Google Inc. In Pregel algorithms
repeatedly execute a local compute function c(v) in the con-
text of each vertex v in the graph. The compute function c
can only read and write the vertex v and thus has no side-

e�ects on any other vertex in the graph. Furthermore, since
c relies on local information only, c can be executed in par-
allel for all vertices in the graph. From the computation
performed in c messages can be sent to any other vertex in
the graph through the use of the message passing function
m(vt, x) which sends a message x to vt.

As Pregel algorithms are repeatedly executing the com-
pute function c(v), these algorithms are iterative processes.
Each iteration is called a superstep. Supersteps are num-
bered by the system global variable t. Messages sent through
the messaging function in iteration t can be processed in c
on the destination vertex in t+ 1.

To allow the iterative Pregel process to run to a comple-
tion during each c(v) run the algorithm can vote to halt the
algorithm. A vote to halt will mark the vertex v as inactive.
The framework will not execute c(v) for inactive vertices in
consecutive iterations. Vertices can return from inactive to
active state if they receive a message from another vertex.
The global algorithm controller can halt the Pregel process
if the number of active vertices reaches 0 meaning that all
vertices have voted to halt.

As the original Pregel framework lacks some mechanisms
to make it suitable for large-scale temporal graphs several
extensions were made. First of all our Pregel-inspired frame-
work supports temporal �ltering. This means when the
framework calls the compute function c(v, θ) only data from
a certain �ltering timespan θ, determined by the developer
when launching the algorithm, is visible in the data of v.
Data is �ltered in the framework, such that the results of po-
tentially expensive merge operations can be cached in mem-
ory.

Furthermore the framework was extended by a global map
�. This map can be used as global memory for algorithms.
Framework users can use it to provide user-de�ned settings
to algorithms (i.e. damping factor for a PageRank algo-
rithm) and to retrieve results back from algorithm execu-
tions (vertex identi�ers of the top-10 PageRank vertices).
The compute function gets changed to c(v, θ,�). Inside of
c local processing is performed over a local copy of �. In
between each iteration t and t+ 1 the global map � from all
partitions PH gets merged according to user-de�ned merge
strategies.

During algorithm setup an initialisation function κ(�) is
called. Developers can implement this function to gener-
ate the initial map � with global parameters. Further, in-
between each iteration the global function γ(�) is called.
This function can be implemented to manipulate the global
map after each superstep. The extensions over Pregel and
its inner workings are discussed in greater detail in related
work: [16, 18].

In order to create algorithms in this Pregel-inspired frame-
work, software developers need to provide implementations
of the functions c, κ, and γ. The framework in turn is
responsible for data-management, correctly executing the
compute functions in the distributed compute cluster, prop-
erly routing messages, and monitoring the Pregel process.
The support for κ, and γ are extensions over previous ver-
sions of DynamoGraph (see [19] for initial proof-of-concept
prototype, and [18] for more details and algorithms).

4. REFERENCE IMPLEMENTATION
In order to demonstrate the feasibility of the framework

presented in 3, a reference implementation was created us-

863

ZooKeeper

Private
Communication

Network

Host 0 (Master) Host 1 (Worker)Client

PartitionManager

SuperStepManager

CodeManager

Client API

MasterProcess

Public
Communication

Network

ClientApp WorkerProcess / Slots

Cassandra
Node

Partition

StepExecutor

MessageQueue

WorkerProcess / Slots

Cassandra
Node

Partition

StepExecutor

MessageQueue

Host n (Worker)

Figure 1: Architecture of the DynamoGraph plat-
form

ing Java technology. The architectural overview of this ref-
erence implementation is presented in �gure 1. In general
it is a distributed computing architecture with hosts taking
di�erent roles. On the very left a client host is depicted, of
which multiple instances can connect through a communica-
tion network to the host in master role. All the other hosts
in the system are of worker role and are connected through
a communication network with the master.

In typical setups on the master host also an instance of
Apache ZooKeeper5 service is running. While this service
could also run on a dedicated hosts, and is in fact designed
to run in ensembles of multiple distributed hosts. In smaller
setups (such as in our test lab) the master host is not under
heavy load such that ZooKeeper can run on the same ma-
chine. ZooKeeper is a distributed service which can provide
con�guration information, naming, and distributed synchro-
nisation. It is used as a service directory within the system
that holds relevant information such as IP-addresses and
ports of individual DynamoGraph services on the individ-
ual hosts. Further, a standardized master-election scheme
is used to determine which host is the master in the system.
Finally, ZooKeepers ephemeral storage mechanism is used
to monitor hosts for failure and to devise recovery strategies
such as re-electing a new master and recovering lost data
from backups.

The master node is responsible for data management and
partition management (all implemented in the Partition-
Manager component). The PartitionManager selects a par-
titioning function (which can be provided by the frame-
work users) p(v) and wraps it in a Java object called Par-
titionTable. This partition table is distributed to all worker
nodes in regular intervals to allow the workers to perform
partition lookups locally. In the simplest case the Parti-
tionTable is implemented as mathematical function such as
a modulo operation over the vertex identi�er and the num-
ber of partitions.

Further the master node hosts a code repository called
CodeManager which is responsible for importing and reg-
istering user provided code. Framework users can submit
their user de�ned code (implementations of the functions c,
γ, and κ) as implementation of the abstract class SuperStep
bundled in a JAR �le. These JAR �les get unpacked, ver-
i�ed, and loaded to all worker nodes as per instructions of
the CodeManager.

In the component SuperStepManager actually executing

5Apache ZooKeeper: https://zookeeper.apache.org

code is administered. When client code schedules a super-
step execution in the cluster, the instruction to execute code
gets registered with this component and the master, through
message passing mechanisms, instructs all worker nodes to
execute the individual phases of the superstep (execution of
c for all active vertices, and message routing) in their local
partition. The master node awaits feedback from the indi-
vidual partitions and executes κ (if required) before schedul-
ing further iterations or halting the algorithm.

On the worker role hosts in real-world installations multi-
ple instances of the worker process, named slot, are executed
in parallel. This is to facilitate all the processors installed
in the worker nodes. Each slot is responsible for a single
partition. In an individual slot the component Parititon is
responsible for data-management in the local data-partition.
Data manipulation jobs are executed within this component.

The StepExecutor component inside of the slots is respon-
sible for locally executing the superstep function c for each
active vertex in the graph. In parallel to executing c the
slots start with message routing. Messages stored in the lo-
cal message queues (component MessageQueue) are bundled
up in larger packages and routed to their destination parti-
tions. After a slot has completed c for each active vertex in
its partition it waits for the MessageQueue to complete rout-
ing and then reports back successful step execution along-
side with the number of active vertices in the partition to
the SuperStepManager at the master.

4.1 Extended Requirements
A real-world implementation of such a framework poses

further requirements. For DynamoGraph mainly the re-
quirements of multi-tenancy, fault-tolerance, and persistency
were identi�ed. For real-world application scenarios users of
DynamoGraph will obviously not be willing to setup a com-
pute cluster for just a single analysis task. It is far more
likely that multiple di�erent datasets or even versions of the
same dataset are subject to be analysed in a certain project.
This means that DynamoGraph must support multi-tenancy
in such a way that multiple temporal graphs can be hosted
on the same cluster system. In DynamoGraph this is im-
plemented by namespaces. Just like tablespaces segregate
di�erent database schemas, namespaces segregate di�erent
temporal graphs. Data manipulation operations and algo-
rithm execution are always executed in the context of a sin-
gle namespace.

It is well known that distributed systems have a higher
probability of failing. Especially in the cloud-computing
arena systems must be built in a fashion that individual
components of larger systems can fail. In DynamoGraph
failure of a single compute node could mean loss of multi-
ple graph partitions. To counteract DynamoGraph clusters
can run in a fault-tolerant mode where for each partition
a con�gurable number of backup partitions are maintained.
All data manipulation operations executed in the context of
any vertex are repeated in the backup partition. Currently
the system only supports an eventual consistency model. In
case of node-failure all running algorithms are stopped, the
master process computes a new partition table and instructs
all partitions (also the backup partitions) to apply the new
partition schema.

Finally, with large dataset sizes that get loaded for real-
world analysis tasks the upload of datasets takes signi�cant
time and failure or the need to restart the complete cluster

864

will lead to data loss. Thus DynamoGraph not only supports
graph models to be kept in memory (volatile mode) but
also provides a persistence backend. Persistence modules
can be added to the system through a plugin infrastructure
with implementations for JSON �les and the Cassandra6

key-value store being provided by the framework. In the
case the Cassandra persistence backend is used, each worker
node also runs a node of a Cassandra ring (see �gure 1). In
this case fault-tolerance is delegated to Cassandra.

4.2 Exemplary Algorithm
To illustrate how prospective developers can use the Dy-

namoGraph framework the following section will discuss the
implementation of an exemplary algorithm in greater detail.
As an example the PageRank citation ranking algorithm
[15] was implemented for DynamoGraph. The algorithm
was chosen because it itself is an iterative process. Initially
Pregel style processing was developed exactly for such iter-
ative processes.

In the PageRank algorithm �rst all vertices in the graph
get initialized with an initial rank value r0. After initializa-
tion the compute function c performs the following steps: (1)
Divide the current rank (optionally multiplied by a damp-
ing factor) of vertex v by the number of outgoing arcs of
v. (2) Use the messaging function m to send the computed
value to all neighbouring vertices connected through out-
going arcs. In the next iteration each vertex sums up the
received PageRank values and sets the result as their new
PageRank, then the process continues as described above.

Halting of the algorithm can be implemented through dif-
ferent criteria. Either PageRank is computed for a �xed
amount of iterations which will give su�cient results for
many applications i.e. �nding the top ranked vertices in
the graph or a constant swinging threshold φ is used. If
a vertices PageRank is changed by less than φ instead of
continuing processing the vertex simply votes to halt. The
vertices’ PageRanks will converge towards an optimum with
an accepted error of φ.

Listing 2: PageRank implemented for Dynamo-
Graph

1 public void execute(

2 List <VertexMsg > messages, VertexContext vertexContext,

3 SuperStepContext superstepContext,

4 Timeframe timeframe, Vertex vertex) {

5 if(this.getStep () >= PageRank.MAX_ITER) {

6 voteToHalt(vertexContext); return;

7 }

8 if(this.getStep () == 0L) {

9 setPageRank(vertexContext, PageRank.INITRANK);

10 Collection <Edge > outEdges = vertex.getWeightedOutEdgesReading ();

11 float outRank = (pageRank * PageRank.DAMP) / outEdges.size();

12 for(Edge out : outEdges) {

13 sendMessage(out.getTarget (), outRank);

14 }

15 }else{

16 if(messages.size() > 0) {

17 float changedby = 0.0f; float sumIncoming = 0.0f;

18 for(VertexMessage m : messages) {

19 sumIncoming += m.getFloatValue ();

20 }

21 changedby = setPageRank(vertexContext, sumIncoming);

22 if(changedby >= PageRank.SWING_THRESHOLD) {

23 Collection <Edge > outEdges = vertex.getWeightedOutEdgesReading ();

24 float pageRank = getPageRank(vertexContext);

25 float outRank = (pageRank * PageRank.DAMP) / outEdges.size();

26 for(Edge out : outEdges) {

27 sendMessage(out.getTarget (), outRank);

28 }

29 }

30 }

31 voteToHalt(vertexContext);

32 }

33 }

6Cassandra: https://cassandra.apache.org

In listing 2 a Java source code listing of the compute func-
tion c of PageRank is given. In practice c is implemented
by overriding the method execute of the abstract class Su-

perStep. In the listing the �rst parameter (messages) refers
to a list of incoming messages, vertexContext is a map for
volatile vertex-local storage, superstepContext refers to the
global map �, timeframe denotes the �ltering timeframe
θ, and �nally the parameter vertex describes the vertex v
which is currently processed.

The presented implementation performs the initialization
steps in iteration t = 0 (code lines 9 to 14). Regular it-
erations of computing PageRank and distributing updated
values to neighboring vertices are implemented in lines 16
to 31. A halt condition with a swinging threshold is imple-
mented in the if-block starting from line 22. To avoid non-
halting algorithms a backup halt condition, which stops the
algorithm after a developer de�ned maximum of iterations,
is implemented at line 5.

Developers can wrap up code with all relevant dependen-
cies and a manifest �le into a JAR �le. Using the Dynamo-
Graph Java API it is possible to upload such JAR �les to
the compute cluster and instruct the cluster to execute the
algorithm in the context of a namespace and in the context
of a certain timeframe present in the data. In listing 3 the
necessary steps are presented, in the example it is assumed
that the variable service is a properly con�gured and con-
nected DynamoGraph Java API instance. In lines 1 to 6 the
�le pagerank.jar gets loaded to a byte array, uploaded to
the cluster, and the code gets registered with its class name
at.jku.tk.dynamo.step.PageRank. In lines 8 through 10
the uploaded code gets executed in the cluster. On line 8
a global map is generated, however, not further initialized.
Line 9 shows the de�nition of a timeframe object which re-
stricts the temporal dimension of the processed data.

It is also possible to query the status of currently executing
jobs. Lines 12 to 18 show how a developer can make her
local process wait for a currently running job. In the case
the algorithm ran to to completion the global memory with
results can be retrieved from the cluster. In the error case it
is possible to query the exceptions that lead to the algorithm
failing.

Listing 3: Code Upload and Execution
1 File testFile = new File("pagerank.jar");

2 FileInputStream in = new FileInputStream(testFile);

3 ByteArrayOutputStream bout = new ByteArrayOutputStream ();

4 IOUtils.copy(in, bout);

5 String clasz = "at.jku.tk.dynamo.step.PageRank";

6 service.loadCode(clasz, bout.toByteArray ());

7
8 SuperStepContext context = new SuperStepContext ();

9 TimeFrame timeframe = new TimeFrame(1420070400L, 1422748800L);

10 long id = service.executeAlgorithm("testgraph",

11 "at.jku.tk.dynamo.step.PageRank", context, timeframe);

12 if(service.waitForCompletion(id) == ExecutionProfileState.Completed) {;

13 context = service.queryAlgorithmContext(id);

14 }else{

15 System.err.println("Step failed !!! " + service.queryAlgorithmState(id));

16 Exception e = service.queryExceptions(id);

17 e.printStackTrace ();

18 }

5. OBSERVATIONS
DynamoGraph as a software stack has now matured enough

to be usable for �rst test-drives. In general the algorithm
execution scales in that sense that a larger number of proces-
sors can be used to compute faster or to process over larger
problem sets. This has already been shown in previous work,
on a work-in-progress prototype of DynamoGraph [18].

865

In current research e�orts DynamoGraph is analyzed in
greater detail. Datasets of di�erent size are uploaded to the
cluster, �rst experiments with visualization and temporal
graph algorithms are conducted. Currently data from three
di�erent sources are available.

Firstly, data from the Enron dataset [6] which was made
available to the scienti�c community during the Enron scan-
dal was uploaded see also [18]. This dataset is of medium
size, it contains 200,399 email messages (edges) belonging to
158 users with an average of 757 messages per user. While
the dataset can still be easily analysed on a single computer
using traditional methods it is already large enough to see
performance bene�ts from running analysis tasks in parallel
and in a distributed system.

Consequently further datasets forming temporal graphs
were obtained and imported. Especially the MIT Reality
Commons7 project has proven to be a valuable source of
temporal graph data. Importers for the Reality Mining [2]
and Social Evolution [10] datasets were created. While these
datasets are rather small in diameter (80 to 100 vertices)
they contain dense temporal information over longer periods
of time. Thus these datasets have proven to be valuable to
test implementations of distributed algorithms.

Finally, the data available in the Click Dataset [12] was ob-
tained from the Center for Complex Networks and Systems
Research group at Indiana University Bloomington. This
data contains anonymized and condensed HTTP header in-
formation from incoming and outgoing web tra�c of the In-
diana University Bloomington for the time period from Sept
2006 through May 2010. This amounts to 53.5 billion HTTP
requests that are available as a compressed and encrypted
dataset of 2.5 TB size. This data is currently imported
to DynamoGraph with plans to run temporal PageRank in
sliding time-windows of varying size (3 to 6 month).

6. CONCLUSIONS
In this paper the DynamoGraph framework for distributed

data-management and processing over large-scale tempo-
ral graphs was presented. It was highlighted how poten-
tial framework users (software developers, researchers, etc.)
are able to utilize the system to run data analysis tasks
over potentially large datasets. From code examples it was
made clear, that the complexities of distributed computing
(message passing, synchronization, etc.) are mostly hidden
from software developers. It was elaborated how real world
datasets of di�erent sizes are currently made available in the
framework such that the system can be tested and its per-
formance being evaluated in depth in future work. Work-
in-progress projects, that utilize DynamoGraph, and their
application scenarios are discussed in greater detail in [17].

7. REFERENCES
[1] C. Cattuto, M. Quaggiotto, A. Panisson, and

A. Averbuch. Time-Varying Social Networks in a
Graph Database: a Neo4j Use Case. In GRADES,
New York, USA, June 2013. ACM.

[2] N. Eagle and A. Pentland. Reality Mining: Sensing
Complex Social Systems. Personal and Ubiquitous
Computing, 2006.

7MIT Reality Commons: http://realitycommons.media.
mit.edu/

[3] W. Hant, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, W. Chen, and E. Chen. Chronos. In
EuroSys, New York, USA, 2014. ACM Press.

[4] F. Harary and G. Gupta. Dynamic Graph Models.
Mathl. Comput. Modelling, 25(7):79{87, 1997.

[5] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
PEGASUS: A Peta-Scale Graph Mining System -
Implementation and Observations. In ICDM, 2009.

[6] B. Klimt and Y. Yang. Introducing the Enron Corpus.
Technical report, Language Technology Institute,
Carnegie Mellon University, 2009.

[7] V. Kostakos. Temporal graphs. Physica A: Statistical
Mechanics and its Applications, 388(6):1007{1023,
2009.

[8] F. Kuhn and R. Oshman. Dynamic networks. ACM
SIGACT News, 42(1):82, Mar. 2011.

[9] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A New
Parallel Framework for Machine Learning. In UAI,
July 2010.

[10] A. Madan, M. Cebrian, S. Moturu, K. Farrahi, and
A. Pentland. Sensing the \Health State" of a
community. IEEE Pervasive Computing, 11(4):36{45,
2011.

[11] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for
Large-Scale Graph Processing. In ACM SIGMOD,
2010.

[12] M. Meiss, F. Menczer, S. Fortunato, A. Flammini, and
A. Vespignani. Ranking Web Sites with Real User
Tra�c. In WSDM, 2008.

[13] Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, E. Chen, and W. Chen.
ImmortalGraph: A System for Storage and Analysis of
Temporal Graphs. ACM TOS, 11(3):14{34, July 2015.

[14] M. D. Moreno. Who Shall Survive? 2nd edition, 1953.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Technical report, Stanford InfoLab, 1999.

[16] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In SSDBM. ACM, July 2013.

[17] M. Steinbauer and G. Anderst-Kotsis. Using
DynamoGraph: Application Scenarios for Large-scale
Temporal Graph Processing. In iiWAS, Brussels,
Belgium, 2015.

[18] M. Steinbauer and G. Anderst-Kotsis. DynamoGraph:
Extending the Pregel Paradigm for Large-scale
Temporal Graph Processing. IJGUC, to appear 2016.

[19] M. Steinbauer and G. Kotsis. Towards Cloud-based
Distributed Scaleable Processing over Large-scale
Temporal Graphs. In WETICE, 2014.

[20] J. Tang, M. Musolesi, C. Mascolo, and V. Latora.
Characterising temporal distance and reachability in
mobile and online social networks. In SIGCOMM.
ACM, Jan. 2010.

[21] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and
I. Stoica. GraphX: A Resilient Distributed Graph
System on Spark. GRADES ’13, New York, USA,
2013. ACM.

866

	Introduction
	Related Work
	Processing Framework
	Temporal Maps
	Pregel Processing and its Extensions

	Reference Implementation
	Extended Requirements
	Exemplary Algorithm

	Observations
	Conclusions
	References

