
Towards a distributed infrastructure for evolving graph
analytics

Vera Zaychik Moffitt
Drexel University

zaychik@drexel.edu

Julia Stoyanovich
Drexel University

stoyanovich@drexel.edu

ABSTRACT
Graphs are used to represent a plethora of phenomena, from
the Web and social networks, to biological pathways, to se-
mantic knowledge bases. Arguably the most interesting and
important questions one can ask about graphs have to do
with their evolution. Which Web pages are showing an in-
creasing popularity trend? How does influence propagate in
social networks? How does knowledge evolve?
In this paper we present our ongoing work on the Portal

system, an open-source distributed framework for evolving
graphs. Portal streamlines exploratory analysis of evolving
graphs, making it efficient and usable, and providing crit-
ical tools to computational and data scientists. Our sys-
tem implements a declarative query language by the same
name, which we briefly describe in this paper. Our basic
abstraction is a TGraph, which logically represents a series
of adjacent snapshots. We present different physical rep-
resentations of TGraphs and show results of a preliminary
experimental evaluation of these physical representations for
an important class of evolving graph analytics.

Keywords
evolving graphs, graph analytics, distributed computation

1. INTRODUCTION
The development of SQL, a declarative query language for

relational data analysis, had a tremendous impact on the
usability of database technology, leading to its wide-spread
adoption. At the same time, the separation between the
logical and the physical representations paved the way for
powerful performance optimizations. The motivation for our
research is to provide a similar tool for analyzing evolving
graphs, an area of interest in many research communities,
including the Web and social networks, sociology, epidemi-
ology, and others.
Analysis of evolving graphs has been receiving increas-

ing attention, with most progress taking place in the last
decade [1, 6, 10, 17, 19, 21]. Some areas where evolving

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2889290.

1

3 4

5 6

[2010,	 2011)	 [2011,	 2012)	 [2012,	 2013)	

1 2

4

5 6

[2013,	 2014)	

1 2

3 4

5

1 2

3 4

T1	 –	 4	 snapshots	

Figure 1: TGraph T1 with 4 snapshots.
graphs are being studied are social network analysis [8, 14,
15, 20], biological networks [2, 3, 22] and the Web [7, 18].
Despite much recent interest and activity on the topic, and

despite increased variety and availability of evolving graph
data, systematic support for scalable querying and analyt-
ics over evolving graphs still lacks. This support is urgently
needed, due first and foremost to the scalability and effi-
ciency challenges inherent in evolving graph analysis, but
also to considerations of usability.
In this paper we present our ongoing work on the Portal

system, an open-source distributed framework built on top
of Apache Spark, that fills this gap. Portal streamlines ex-
ploratory analysis of evolving graphs, making it efficient and
usable, and providing critical tools to computational and
data scientists. Importantly, Portal implements a declara-
tive query language for evolving graphs. We briefly describe
our query language (Section 2) and the system (Section 3)
that implements it. We then describe several physical repre-
sentations of evolving graphs that we developed (Section 4),
and show results of a preliminary experimental evaluation
(Section 5), which illustrates interesting performance trade-
offs when different physical representations are used for an
important class of analytics.

2. PORTAL BY EXAMPLE
Portal is a declarative query language for evolving graphs.

We give a brief overview of the language here, see [24] for a
detailed description.
Portal operates on a novel kind of a relation, called a

TGraph, which can be provided as a base relation or com-
puted as a view. A TGraph associates a sequence of consec-
utive non-overlapping open-closed time periods of the same
duration with a sequence of snapshots. An example of a 4-
snapshot TGraph is given in Figure 1, with vertex and edge
relations in Figure 2.
Portal supports unary and binary operations on TGraphs,

and is fully compositional. Portal uses SQL-like syntax, and
has the form TSelect . . .From . . .TWhere . . .TGroup. We
prefix temporal keywords with T, to make the distinction
between Portal and SQL operations explicit.

843

[2010,	 2011)	
vid	 name	 salary	

1	 Alice	 $150K	

2	 Bob	 $103K	

3	 Cathy	 $98K	

4	 Dave	 $55K	

vid1	 vid2	 cnt	

1	 2	 3	

1	 3	 4	

1	 4	 1	

2	 4	 8	

3	 4	 1	

V	

E	

[2011,	 2012)	
vid	 name	 salary	

1	 Alice	 $155K	

2	 Bob	 $113K	

3	 Cathy	 $105K	

4	 Dave	 $55K	

5	 Eve	 $80K	

vid1	 vid2	 cnt	

1	 2	 3	

1	 3	 2	

2	 4	 9	

3	 4	 2	

3	 5	 1	

[2012,	 2013)	
vid	 name	 salary	

1	 Alice	 $155K	

3	 Cathy	 $105K	

4	 Dave	 $55K	

5	 Eve	 $80K	

6	 Frank	 $73	

vid1	 vid2	 cnt	

1	 3	 2	 	

1	 4	 2	 	

3	 4	 4	 	

5	 6	 1	

[2013,	 2014)	
vid	 name	 salary	

1	 Alice	 $160K	

2	 Bob	 $100K	

4	 Dave	 $55K	

5	 Eve	 $90K	

6	 Frank	 $70	

vid1	 vid2	 cnt	

1	 2	 2	 	

1	 4	 2	 	

2	 4	 7	 	

5	 6	 5	

T1-‐	 4	 snapshots	

Figure 2: Vertex and edge attributes of TGraph T1.

Consider query Q1 below. This query is concise, yet it
specifies a sophisticated analysis task.

Q1: TSelect V [vid, pagerank()] ;
E [vid1, vid2, sum(cnt)]

From T1 TOr T2
TWhere Start >= 2010 And End < 2014
TGroup by 2 years

Q1 combines TGraphs T1 and T2, restricts the result to the
[2010, 2014) range, groups the result into 2-year windows,
computes pagerank() for each vertex in each time window,
and sums values of the attribute cnt for each edge.
Note the use of TOr in Q1. This is one kind of a tem-

poral join supported in Portal, returning the union of the
snapshots of the two operands. (Portal also support tempo-
ral intersection TAnd, illustrated in Q2). Temporal join is
a binary operation that requires its operands to be union-
compatible. There are two parts to union-compatibility –
structural and temporal. Structural union-compatibility
states that vertex and edge relations of the two TGraphs
must be union-compatible. Temporal union-compatibility
states that temporal sequences of T1 and T2 must have the
same resolution, and they must align.
As part of query Q1, Portal performs structural aggre-

gation. This operation is used by temporal aggregation
(TGroup) and temporal join (TOr). The default is to take
the union of vertices and edges; it can be overridden to com-
pute an intersection of the edges, or of the vertices, or both.
Portal supports two families of analytics. The first are

snapshot analytics, which are executed on each graph in a se-
ries of temporally-adjacent snapshots. The second are trend
analytics, computed across groups of temporally-adjacent
snapshots. Both are illustrated in Q2 below.

Q2: TSelect V [vid, trend(pr)];
E [vid1, vid2]

From (TSelect V [vid, pagerank() as pr];
E [vid1, vid2]

From T1 TAnd T2)
TGroup by Size

Q2 executes a temporal join of T1 and T2 and invokes
pagerank(), a snapshot analytic, on consecutive snapshots of
the result. Our current focus is on Pregel-style analytics.
We may accommodate additional classes in the future.
Consider the use of the trend analytic function trend(pr),

which aggregates the sequence of PageRank scores of each
vertex. In our implementation we use a common definition
of trend: compute the slope of the least squares line using
linear regression, making an adjustment when a vertex value

Portal	

Interac,ve	Shell	

Query	Parser	

Portal	Run,me	
(op,mizer,	operators,	etc)	

Spark	Run,me	
GraphX	

Data	Structures	

Worker	

Spark	Run,me	

HDFS	

Worker	

Spark	Run,me	

HDFS	

…

System	
Catalog	

Figure 3: Portal system architecture.

is missing. While this is the only trend analytic we currently
support, we are working on an API that will allow developers
to implement custom trend analytics, taking attributes of
both atomic and complex type as input, and computing a
value of either an atomic or a complex type.

3. SYSTEM
The Portal system builds on GraphX [9], an Apache Spark

library, as depicted in Figure 3. Green boxes indicate built-
in components, while blue are those we added for Portal. We
selected Apache Spark because it is a popular open-source
system, and because of its in-memory processing approach.
All language operators on TGraphs are available through the
public API of the Portal library, and may be used like any
other library in an Apache Spark application.

Query evaluation. Portal query execution follows the
traditional query processing steps: parsing, logical plan gen-
eration and verification, and physical plan generation. Portal
re-uses and extends SparkSQL abstractions for these steps.
A Portal query is rewritten into a sequence of operators,
and some operators are reordered to improve performance.
For example, pushing temporal aggregation before temporal
join can sometimes lead to better performance. A temporal
join query may be rewritten to include additional temporal
selection conditions, based on information about the tem-
poral schema of the TGraphs being joined, which in turn
significantly reduces data load time.
We developed several physical representations and parti-

tioning strategies, which are selected at the physical plan
generation stage. These are described in Section 4. The
TGraphs are read from the distributed file system HDFS
and processed by Spark Workers, with the tasks assigned
and managed by the runtime. The System Catalog contains
information about each TGraph, including its temporal and
structural schema.

Integration with SQL. The Portal system includes an
interactive shell for exploratory data analysis. Shell users
can define TGraph views, inspect query execution plans and
execute SQL queries with an embedded Portal view. Con-
sider SQL query Q3 that returns vid and tr values of 20 ver-
tices with the most significantly increasing pagerank trend.

Q3: Select VF.vid, VF.tr
From T5.toVerticesFlat() as VF
Order by tr
Limit 20

An important part of Q3 is the use of T5.toVerticesFlat()
in the From clause. This is an operation provided by the
Portal framework, which collects all vertices in the union of
snapshots of T5 into a single nested vertex collection and

844

(Alice, 150)
1 2

3 4

(Bob, 103)

(Cathy, 98) (Dave, 55)

[2010, 2011)

3

4 8 1

1

[2011, 2012)

1 2

3 4

5

(Alice, 155) (Bob, 113)

(Cathy, 105) (Dave, 55)

(Eve, 80)

3

2 9

2

1

1

3 4

5 6

[2012, 2013)

(Alice, 155)

(Cathy, 105) (Dave, 55)

(Eve, 80) (Frank, 73)

2

4

1

2

[2013, 2014)

1

4

5 6

(Alice, 160)

(Dave, 55)

(Eve, 90) (Frank, 70)

5

2

2
(Bob, 100)

2

7

Figure 4: SG representation of T1 from Figure 1.

flattens it into VF (vid:int, start:date, end:date, tr:float,
mx:float). VF can be used in SQL queries. Portal also
provides an operation that returns a flattened collection of
edges, called toEdgesFlat().

4. PHYSICAL REPRESENATATIONS
We considered three in-memory TGraph representations

that differ in compactness, but also, perhaps more impor-
tantly, in the kind of locality they prioritize. With structural
locality, neighboring vertices of the same snapshot are laid
out together, while with temporal locality, consecutive states
of the same vertex are laid out together. SnapshotGraph
(SG), a representation in which each snapshot is stored ex-
plicitly, naturally preserves structural locality, but temporal
locality is lost. OneGraph (OG) stores all vertices and edges
of an evolving graph once, in a single data structure. This
representation emphasizes temporal locality, while also pre-
serving structural locality. HybridGraph (HG) trades com-
pactness for better structural locality, by aggregating to-
gether several consecutive snapshots, and computing a One-
Graph for each snapshot cluster.

SnapshotGraph (SG). The simplest way to represent
an evolving graph is by representing each snapshot individ-
ually, a direct translation of our logical data model. We call
this data structure SnapshotGraph, or SG for short. An ex-
ample of an SG is depicted in Figure 4. SG is a collection
of snapshots, where vertices and edges store the attribute
values for the specific time interval. A TSelect operation on
this representation is a slice of the snapshot sequence, while
TGroup and temporal joins (TAnd and TOr) require a group
by key within each aggregate set of vertices and edges.
While the SG representation is simple, it is not com-

pact, considering that in many real-world evolving graphs
there is a 80% or larger similarity between consecutive snap-
shots [17]. In a distributed architecture, however, this data
structure provides some benefits as operations on it can be
easily parallelized, by assigning different snapshots to differ-
ent workers, or by partitioning a snapshot across workers.

OneGraph (OG). The most topologically compact rep-
resentation of graph structure is to store each vertex and
each edge only once for the whole evolving graph, by taking
a union of the snapshot vertex and edge sets. The OneGraph
data structure, or OG for short, uses this representation in
our system. The drawback is that OG is much denser than
individual snapshots of SG. OG stores vertex and edge at-
tribute information separately. This is not as compact as
storing attributes within the graph elements, but is faster in
many operations where only graph topology is required.

HybridGraph (HG). As an intermediate representation
between SG and OG, we implement the HybridGraph (HG)
data structure. HG is a series of OGs, with each OG repre-
senting some number of temporally adjacent snapshots.

1 2

3 4

5

BitSet(1,2,3,4) BitSet(1,2,4)

BitSet(1,2,3,4)

BitSet(2,3,4) BitSet(3,4) 6BitSet(3,4)

BitSet(1,3,4)

BitSet(1,2,3)

BitSet(1,2,4)

BitSet(1,2,3)

BitSet(1,2,3)

BitSet(1,2,4)

vid	 index	 name	 salary	

1	 1	 Alice	 $150K	

2	 1	 Bob	 $103K	

1	 2	 Alice	 $155K	

2	 2	 Bob	 $113K	
…

vid1	 vid2	 index	 cnt	

1	 2	 1	 3	

1	 3	 1	 4	
…

BitSet(2)

Figure 5: OG representation of T1 from 1.

In our current implementation each OG in the sequence
corresponds to an equal number of temporally adjacent snap-
shots. This is the simplest snapshot clustering method,
yet, as we will see in Section 5, it already improves per-
formance compared to OG. However, we also observed that
placing the same number of snapshots into each cluster of-
ten results in unbalanced cluster sizes. This is because net-
works commonly exhibit strong temporal skew, with later
snapshots being significantly larger than earlier ones. Con-
sequently, we are currently working on more sophisticated
clustering approaches that would lead to better balance, and
ultimately to better performance.

Partitioning strategies. Graph partitioning can have
a tremendous impact on system performance. A good par-
titioning strategy needs to (1) be balanced, assigning an
approximately equal number of units to each partition, and
(2) limit the number of cuts across partitions, to reduce
cross-partition communication.
In our experiments we compare performance of SG, OG

and HG with (1) no repartitioning after load, and (2) with
repartitioning using the 2D edge partitioning strategy (E2D).
This strategy is available in GraphX and was used without
modification. In E2D, a sparse edge adjacency matrix is
partitioned in two dimensions, guaranteeing a 2

√
n bound

on vertex replication, where n is the number of partitions.
As we will see in Section 5, E2D provides good performance
for Pregel-style analytics.
We implemented and are experimenting with additional

partitioning strategies as part of our ongoing work.

5. EXPERIMENTAL EVALUATION
Experimental environment. All experiments in this

section were conducted on an 8-slave in-house Open Stack
cloud, using Linux Ubuntu 14.04 and Spark v1.4. Each node
has 4 cores and 16 GB of RAM. Spark Standalone cluster
manager and Hadoop 2.6 were used.
Because Spark is a lazy evaluation system, a materialize

operation was appended to the end of each query, which
consisted of the count of nodes and edges. In cases where
the goal was to evaluate a specific operation in isolation,
we used warm start, which consisted of materializing the
graph upon load. Each experiment was conducted 3 times,
we report the average running time, which is representative
because we took great care to control variability. Standard
deviation for each measure is at or below 5% of the mean
except in cases of very small running times.

Data. We evaluate performance of our framework on two
real open-source datasets. DBLP1 is a 250 MB dataset that
contains co-authorship information from 1936 through 2015,
with over 1.5 million author nodes and over 6 million undi-
1http://dblp.uni-trier.de/

845

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

0	 20	 40	 60	 80	 100	 120	 140	

De
gr
ee
	&
m
e,
	se

c	

Data	size,	MB	

OG-E2D	

OG	

HG-E2D	

HG	

SG	

SG-E2D	

5	 80	10	

Figure 6: Degrees time, DBLP.

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

14.0	

0	 100	 200	 300	 400	 500	

De
gr
ee
s	'

m
e,
	se

c	

Date	Size,	MB	

HG	
HG-E2D	
OG	
OG-E2D	
SG	
SG-E2D	

8	 64	32	16	

Figure 7: Degrees time, nGrams.

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

7.00	

0	 100	 200	 300	 400	 500	

Co
nn

ec
te
d	
co
m
po

ne
nt
s	,

m
e,
	m

in
	

Data	Size,	MB	

OG	

OG-E2D	

HG	

HG-E2D	

SG	

SG-E2D	

8	 64	32	16	 128	

Figure 8: Connected Components, nGrams.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	

Pa
ge
Ra

nk
)
m
e,
	m

in
	

Data	size,	MB	

OG	

OG-E2D	

HG	

HG-E2D	

SG	

SG-E2D	

8	 64	32	16	

Figure 9: PageRank, nGrams.
rected co-authorship edges. nGrams2 is a 40 GB dataset
that contains word co-occurrences from 1520 through 2008,
with over 1.5 million word nodes and over 65 million undi-
rected co-occurrence edges.
The nGrams dataset is of comparable size to the LiveJour-

nal dataset in [23] and is commensurate with our cluster size.
DBLP and nGrams differ not only in size, but also in the
evolutionary properties: co-authorship network nodes and
edges have limited lifespan, while the nGrams network grows
over time, with nodes and edges persisting for long duration.
We plan to experiment with a larger DELIS dataset [5] as
we grow our cluster in the near future.

Degrees. Computation of the number of edges for each
vertex is performed using a single round of messages be-
tween nodes, with batch mode for HG and OG. We used
the following query to evaluate data structure performance
over varying number of snapshots:

TSelect V[vid, degrees()]; E[vid1, vid2]
From nGrams
TWhere Start >= :x And End < :y

The results of this experiment are presented in Figures 6
and 7, both with warm start. Observe that SG outperforms
HG and OG for smaller data sizes. This is contrary to our
expectation that batch mode of HG and OG would always
be faster than SG. SG performance can be explained if we
consider that each snapshot is spread out over fewer par-
titions than in the aggregate data structures. Thus, more
communication occurs intra-partition rather than between
partitions, which in turn dominates the overall running time.
Furthermore, we expected HG performance to be between
SG and OG, the two data structures that it combines. We
2http://storage.googleapis.com/books/ngrams/books/
datasetsv2.html

do observe this in most cases, but not consistently. We be-
lieve that HG does not consistently outperform OG due to
its sensitivity to temporal skew. This effect is particularly
pronounced for fast-running operations like Degree.

Connected components. Snapshot analytics like Con-
nected Components are implemented using the Pregel API
in GraphX, with batch mode for HG and OG. The algorithm
was executed until convergence, with no limit to the number
of iterations. We used the following query to evaluate data
structure performance over varying number of snapshots:

TSelect V[vid, components()]; E[vid1, vid2]
From nGrams
TWhere Start >= :x And End < :y

SG performs better than the other data structures in this
experiment, contrary to our expectation that batch mode
of HG and OG would be faster (Figure 8). This can be
explained by HG and OG using significantly more cross-
partition communication due to the following factors:
1. Each individual snapshot is less dense than the aggregate

(although this depends on the rate of change), and dense
graphs do worse with Pregel analytics.

2. Individual snapshots are smaller and take fewer parti-
tions, so less communication happens across partitions.

3. Iterations get faster as vertex values converge, and ver-
tices stop sending messages. In OG/HG, a vertex con-
verges only when it does so in all represented snapshots.
However, note that as the number of total snapshots in-

creases, HG performance improves compared to SG, and in
fact for the largest size (128 snapshots) HG surpasses SG in
performance. We saw this trend in both data sets.

PageRank. Like Connected Components, PageRank is
implemented using Pregel. The query in this experiment
is the same, replacing components with pagerank. PageR-
ank was executed for 10 iterations or until convergence,

846

0.00	

5.00	

10.00	

15.00	

20.00	

25.00	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Ti
m
e,
	m

in
	

Data	size,	GB	

SG-E2D	

SG	

OG	

OG-E2D	

128	64	32	16	

Figure 10: trend(degrees()).

0	

5	

10	

15	

20	

25	

30	

0	 3	 6	 9	 12	 15	

Ti
m
e,
	m

in
	

Data	size,	GB	

OG	

SG-E2D	

OG-E2D	

SG	

128	64	32	16	

Figure 11: TGroup, PageRank, trend.

whichever came first. Results of this experiment (Figure 9)
are similar to those of Connected Components. SG outper-
forms the other data structures, but HG exhibits the same
slope and its performance improves relative to the other data
structures as the number of snapshots is increased. E2D
partitioning leads to performance improvements for SG, but
inconsistent for HG/OG.

Mixed queries. All the experiments so far evaluated
performance of individual Portal snapshot analytics opera-
tions. Our final experiment considers performance of snap-
shot and trend analytics that are executed as part of a query
that also includes temporal selection (TWhere) and aggre-
gation (TGroup). Note that we do not currently have an
implementation of temporal aggregation for HG, and so HG
is not used in this experiment.

TSelect V[vid, trend(deg)]; E
From (TSelect V[vid, degrees() as deg];

E[vid1, vid2]
From nGrams
TWhere Start >= :x And End < :y)

TGroup by 16 years

This query computes the degree of each vertex in each
snapshot, aggregates snapshots in groups of 16, and uses
trend as the aggregation function on degrees. We have shown
above that in most cases SG provides the most efficient per-
formance for snapshot analytics. We have also shown in [24]
that aggregate data structures (OG, HG, others) take longer
to load but are more efficient for TGroup. Figure 10 (warm
start) shows that, when these operations are combined, OG
outperforms SG. Temporal aggregation is a more expensive
operation in this scenario that the degrees analytic.
We conclude this section with a cold-start execution of

the following SQL-Portal query:

Select vid, pr
From (TSelect V[vid, trend(prank) as pr]; E

From (TSelect All V[vid, pagerank() as prank];
All E

From nGrams
TWhere Start >= :x And End < :y
TGroup by 16 years)

TGroup by size).toVerticesFlat()
Order by pr
Limit 10

Here, SG with no partitioning, and OG with E2D show
comparable performances, as seen in Figure 11.

In summary, running times of the best-performing data
structure for each experiment are reasonable, and show a
linear trend with increasing data size. Interestingly, no one

data structure is most efficient across all operations. SG
is most efficient for snapshot analytics in most cases, but
HG outperforms it for larger data sizes, while OG provides
a good balance for mixed queries. These insights motivate
future work on query optimization in Portal.

6. RELATED WORK
Querying and analytics. There has been much recent

work on analytics for evolving graphs, see [1] for a survey.
This line of work is synergistic with ours, since our aim
is to provide systematic support for scalable querying and
analysis of evolving graphs.
Several researchers have proposed individual queries, or

classes of queries, for evolving graphs, but without a uni-
fying syntax or general framework. Kan et al. [10] propose
a query model for discovering subgraphs that match a spe-
cific spatio-temporal pattern. Chan et al. [6] query evolving
graphs for patterns represented by waveforms. Semertzidis
et al. [21] focus on historical reachability queries.
Our work shares motivation with Miao et al. [17], who de-

veloped an in-memory execution engine for temporal graph
analytics called ImmortalGraph. Unlike Miao et al., who
focus on in-memory layout and locality-aware scheduling
mechanisms, we work in a distributed processing environ-
ment. A further difference is that our work is in scope of
Apache Spark, a widely-used open source platform, while
ImmortalGraph is a proprietary stand-alone prototype.

Temporal SQL. Like Temporal SQL [13], Portal assigns
temporal meaning to data. To that effect, we use the def-
inition of a time period from the SQL:2011 standard, and
support temporal predicates including overlaps, precedes and
contains in the TWhere clause. Unlike Temporal SQL, Por-
tal explicitly incorporates the temporal dimension into op-
erations, including language primitives and aggregate func-
tions, both built-in and user-defined. Specifically, Temporal
SQL does not support period aggregates, so expressions like
TGroup by 2 years would require new user-defined functions
on periods. Additionally, Portal aggregation functions are
inherently time-centric on the level of individual vertex and
edge attributes, which allows for such aggregates as first,
last, and trend. Another important difference between Tem-
poral SQL and Portal is that Portal is graph-centric. Our
language natively supports snapshot analytics, which oper-
ate on vertex and edge relations in their entirety. Portal
users can register their own snapshot analytics through the
User-Defined Analytics API.

Data representation. The basic building block in Por-
tal is a snapshot, which naturally limits the resolution at

847

which changes can be retrieved. This deliberate choice is in
contrast with delta-based approaches [11, 12, 17].
Khurana and Deshpande [11] investigate efficient physical

representations using deltas to support snapshot retrieval.
Their in-memory GraphPool maintains a single representa-
tion of all snapshots, and is thus similar to our OneGraph.
Ren et al. [19] develop an in-memory representation of

evolving graphs based on representative graphs for sets of
snapshots. Our OneGraph can be thought of as a repre-
sentative graph for the whole selected time period, while
HybridGraph is a sequence of representative graphs.
Semertzidis et al. [21] develop a version graph, where each

node and edge are annotated with the set of time intervals
in which they exist. This is similar to our OneGraph, but
we also store non-topological attributes.
Boldi et al. [4] present a space-efficient non-delta approach

for storing a large evolving Web graph that they harvested.
Their work represents purely topological information and
does not address vertex and edge attributes.

Distributed frameworks. We build upon GraphX [9],
which provides an API for working with graphs (snapshots)
in Apache Spark, but without the time dimension. To im-
prove performance, we modified the GraphX graph loading
code, enabling concurrent distributed multi-file loading with
a tuned number of partitions. Lin et al. [16] proposed War-
cbase, an infrastructure for exploration and discovery of Web
archives built on HBase. Their work shares motivation with
ours, but the technical choices are fairly different from ours.
Most importantly, we work with Apache Spark, a higher-
level abstraction over MapReduce, and define a declarative
query language on top of Apache Spark.

7. CONCLUSIONS AND FUTURE WORK
In this paper we gave an overview of Portal, a declara-

tive query language for evolving graphs. We described an
implementation of Portal in scope of Apache Spark, a dis-
tributed open-source processing framework. Our main fo-
cus here was on presenting several physical representations
of evolving graphs, and on experimentally evaluating their
their relative performance for several interesting analytics.
Our experiments demonstrate interesting trade-offs be-

tween spatial and temporal locality. This work opens many
avenues for future work. It is in our immediate plans to
start work on a query optimizer for Portal. We will also
implement and evaluate additional TGraph representations
that explore the trade-off between density and compactness,
and between temporal and structural locality. Finally, we
are working on extending the class of trend analytics, and
on optimizing their performance.

8. REFERENCES
[1] C. C. Aggarwal and K. Subbian. Evolutionary network

analysis. ACM Comput. Surv., 47(1):10:1–10:36, 2014.
[2] S. Asur, S. Parthasarathy, and D. Ucar. An

event-based framework for characterizing the
evolutionary behavior of interaction graphs. TKDD,
3(4), 2009.

[3] A. Beyer, P. Thomason, X. Li, J. Scott, and J. Fisher.
Mechanistic insights into metabolic disturbance
during type-2 diabetes and obesity using qualitative
networks. T. Comp. Sys. Biology, 12:146–162, 2010.

[4] P. Boldi, M. Santini, and S. Vigna. A Large
Time-Aware Web Graph. ACM SIGIR Forum,
42(2):33–38, 2008.

[5] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW, 2004.

[6] J. Chan, J. Bailey, and C. Leckie. Discovering
correlated spatio-temporal changes in evolving graphs.
Knowl. Inf.Syst., 16(1):53–96, 2008.

[7] J. Chan, J. Bailey, and C. Leckie. Discovering
correlated spatio-temporal changes in evolving graphs.
Knowl. Inf. Syst., 16(1):53–96, 2008.

[8] M. Goetz, J. Leskovec, M. McGlohon, and
C. Faloutsos. Modeling blog dynamics. In ICWSM,
2009.

[9] J. E. Gonzalez et al. GraphX: Graph processing in a
distributed dataflow framework. In OSDI, 2014.

[10] A. Kan, J. Chan, J. Bailey, and C. Leckie. A Query
Based Approach for Mining Evolving Graphs. In
AusDM, 2009.

[11] U. Khurana and A. Deshpande. Efficient Snapshot
Retrieval over Historical Graph Data. In ICDE, pages
997 – 1008, Brisbane, QLD, 2013.

[12] G. Koloniari. On Graph Deltas for Historical Queries.
Istanbul, Turkey, 2012.

[13] K. G. Kulkarni and J. Michels. Temporal features in
SQL: 2011. SIGMOD Record, 41(3):34–43, 2012.

[14] J. Leskovec, L. A. Adamic, and B. A. Huberman. The
dynamics of viral marketing. TWEB, 1(1), 2007.

[15] J. Leskovec, L. Backstrom, R. Kumar, and
A. Tomkins. Microscopic evolution of social networks.
In ACM SIGKDD, pages 462–470, 2008.

[16] J. Lin, M. Gholami, and J. Rao. Infrastructure for
supporting exploration and discovery in web archives.
In WWW, 2014.

[17] Y. Miao et al. ImmortalGraph: A system for storage
and analysis of temporal graphs. TOS, 11(3):14, 2015.

[18] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina.
Web graph similarity for anomaly detection. J.
Internet Services and Applications, 1(1):19–30, 2010.

[19] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On
Querying Historical Evolving Graph Sequences.
PVLDB, 4(11):726–737, 2011.

[20] P. Sarkar, D. Chakrabarti, and M. I. Jordan.
Nonparametric link prediction in dynamic networks.
In ICML, 2012.

[21] K. Semertzidis, K. Lillis, and E. Pitoura. TimeReach:
Historical Reachability Queries on Evolving Graphs.
In EDBT, 2015.

[22] J. M. Stuart, E. Segal, D. Koller, and S. K. Kim. A
gene-coexpression network for global discovery of
conserved genetic modules. Science,
5643(302):249––255, 2003.

[23] R. S. Xin, J. E. Gonzalez, M. J. Franklin, I. Stoica,
and U. C. Berkeley. GraphX : A Resilient Distributed
Graph System on Spark. In GRADES, New York,
New York, USA, 2013.

[24] V. Zaychik Moffitt and J. Stoyanovich. Portal: A
Query Language for Evolving Graphs. ArXiv e-prints,
Feb. 2016. arXiv:1602.00773.

848

