
Can One Tamper with the Sample API?

- Toward Neutralizing Bias from Spam and Bot Content

Fred Morstatter, Harsh Dani, Justin Sampson, and Huan Liu
Arizona State University, Tempe, AZ, USA

{fred.morstatter, harsh.dani, justin.sampson, huan.liu}@asu.edu

ABSTRACT
While social media mining continues to be an active area of
research, obtaining data for research is a perennial problem.
Even more, obtaining unbiased data is a challenge for re-
searchers who wish to study human behavior, and not tech-
nical artifacts induced by the sampling algorithm of a social
media site. In this work, we evaluate one social media data
outlet that gives data to its users in the form of a stream:
Twitter’s Sample API. We show that in its current form, this
API can be poisoned by bots or spammers who wish to pro-
mote their content, jeopardizing the credibility of the data
collected through this API. We design a proof-of-concept al-
gorithm that shows how malicious users could increase the
probability of their content appearing in the Sample API,
thus biasing the content towards spam and bot content and
harming the representativity of this data outlet.

Keywords
Data Mining; Data Sampling; Sample Bias

1. INTRODUCTION
Social media has become a very active research area in

recent years. One limiting factor for many researchers is
the amount of data they are able to collect. Many social
media sites strictly limit or outright forbid the collection of
data on their sites for research purposes. One major so-
cial media site, Twitter, stands out among these sites for
its willingness to share data with researchers. Twitter does
this mainly through its real-time feeds, called the “Stream-
ing” APIs. There are three main APIs that researchers can
access directly: 1) the “Filter API”, which gives the user a
directed sample based on the input of the user, 2) the “Sam-
ple API” which returns a random 1% sample of all public
tweets generated on Twitter, and 3) the “Firehose” which
yields 100% of all public tweets. While the Firehose seems
like the obvious choice for data collection, the monetary cost
of using this API as well as the server requirements for host-
ing the data prevent most researchers from being able to use

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2889372.

this option. The Filter API and the Sample API can be used
by researchers worldwide to download tweets in real-time,
collecting at most 1% of all of Twitter’s public statuses, or
“tweets” completely free of charge [4].

The Filter API and the Sample API are appealing to re-
searchers, and it is important that researchers understand
the underlying mechanisms of these APIs so that they can
have confidence in the data collected through them. Bi-
ases introduced in the data collection process can propagate
to the research results. For instance, bias has been found in
Twitter’s Filter API. By comparing the results of a Firehose
crawl with a Filter API crawl, the authors of one study [4]
discover that bias in the way tweets are sampled yields com-
pletely different statistics, e.g. the top hashtags in the data
and the topics in the text.

While evidence of bias has been found in the Filter API,
studies on the Sample API have been largely positive, with
indications that this data outlet is unbiased. By empirically
studying the data, one study [3] found that the results were
not statistically significantly different than the results of the
Firehose. Another study [2] discovered the underlying mech-
anisms behind how Twitter samples the data in the Sample
API. First, they show the different components that make
up the identification number (ID) for each and every indi-
vidual tweet. A portion of this ID contains the millisecond-
level timestamp when the ID was generated. The authors
find that the Sample API selects the tweets based on this
timestamp, with any tweet whose ID was generated in the
millisecond range of [657, 666] to be selected by the Sample
API. Twitter, assuming that the millisecond-level informa-
tion of the ID’s timestamp is random, chooses this mecha-
nism to distribute their tweets. This sampling mechanism
seems reasonable. Humans don’t have millisecond-level con-
trol over the tweet’s timestamp. The muscle movements
to click a mouse or tap a phone screen combined with the
network delay make the timestamp nearly impossible for a
human to predict at the millisecond-level granularity.

Unfortunately, many of the users of Twitter are not hu-
mans, but bots: accounts controlled by computers. Esti-
mates of the number of bots on Twitter range from 5-9% [1].
Many of these bots have malicious intent: using their ability
to generate massive amounts of noise to try to skew statis-
tics of the data (e.g. sentiment towards particular topics,
top keywords). Bots have the ability to control the exact
time their tweets are posted, allowing them to control (to a
certain extent) the time that Twitter receives their tweet. If
bots are able to control if their tweets appear in the Sample
API, it could affect the integrity of this stream: bots could

81

0 200 400 600 800 1000
Millisecond of Time Tweet Sent

0

200

400

600

800

1000
R

es
ul

tin
g

Tw
ee

tI
D

M
ill

is
ec

on
d

In
fo

rm
at

io
n

Time Sent VS Millisecond Information in Tweet

Figure 1: Millisecond of publish time from tweet
ID as a function of the millisecond when the tweet
was sent. The large error near the 850 mark is an
artifact of the modulus property of the reading.

modify the statistics of this data stream, affecting both re-
search and applications that depend on this stream.

In this work we evaluate two questions: 1)“can the millisecond-
level information of the timestamps associated with tweet
IDs be anticipated?”, and 2) “can we leverage this to build
software which generates tweets that have a greater chance
of being included in Twitter’s Sample API?”.

2. ANTICIPATING THE SAMPLE API
Here we investigate whether the tweet ID’s millisecond-

level timestamp information can be predicted. In this first
experiment we see how the millisecond-level information of
the tweet ID corresponds to the millisecond at which the
tweet was sent. To do this, we send tweets at each whole
millisecond in the range [0, 990] in intervals of 10. For each
tweet we send, we observe the millisecond-level information
of the tweet’s ID. We extract this using the process outlined
in Kergl et. al [2], which identifies specific bits in the binary
representation of the ID that contain this info. We repeat
this experiment 6 times, and plot the results in Figure 1.
We observe a strong linear relationship between the time
the tweet is sent and the millisecond ID of the tweet ID.
Furthermore, we find that the millisecond delta is consistent
with an average delta of 171ms. Using this information we
devise an approach that can generate tweets with a greater
probability of landing in the Sample API in the next section.

3. MANIPULATING THE SAMPLE API
In the previous section we showed empirically that the

millisecond-level timestamp information of a tweet ID is a
function of the time the tweet is posted. Using this insight,
we design an algorithm that adaptively adjusts the millisec-
ond lag in order to maximize the amount of tweets that ap-
pear in the Sample API. The pseudocode for this algorithm
is shown in Algorithm 1. The essence of this algorithm is
that it adaptively measures the network lag between when
the tweet is sent and when the tweet is received by Twitter,
measured by the ID of the tweet. We use a moving average
of the last w tweets to estimate the lag. Details on how to
extract i from the tweet ID can be found in Kergl et. al [2].

To measure the effectiveness of our algorithm, and by ex-
tension the possibility to bias the Sample API, we conduct

5 trial runs. In each experiment we produce 100 tweets. We
use w = 3 in our experiments. We set m = 661 as it is
the midpoint of [657, 666] and should give us the greatest
chance of hitting the window where the Sample API selects
its tweets. Also, we set δ̂init = 491 as it is the expected
delta from 661 as we discovered in the previous section. We
achieve 82± 9% coverage, contrasted with 1± 0% coverage
when tweets are produced under normal conditions.

Data: w: window size; m: target millisecond; δ̂init:
initial delta

h← empty list;

target← m− δ̂init;
while true do

wait until the target-th millisecond of the next
second;

post a tweet, t;
c← current time in milliseconds;
i← time in milliseconds from tweet t’s ID;
append i− c to the end of h;

δ̂ ← 1
w

∑|h|
k=|h|−w h[k] mod 1000;

target← 1000 · 1(m− δ̂ < 0) +m− δ̂
end

Algorithm 1: Maximize the probability of a post being
selected by the Sample API. 1 is the indicator function.

4. DISCUSSION & CONCLUSION
Twitter’s Sample API is a popular tool among researchers

in the area of social media mining. The results of this paper
show that by timing the creation time of tweets, bots and
spammers can have a large impact on the information that is
provided through the Sample API, effectively injecting bias
into this data outlet. This is a major problem for users who
wish to ensure that their data is a representative sample
of the real activity on Twitter. The approach presented in
this paper is intended to give researchers an understanding
that despite recent findings that say that the Sample API is
unbiased, results should be taken with care when this data
outlet is used in analysis. Furthermore, social media sites
can use these results to improve the design of their APIs.
API designers can surpass this issue by adding random bits
to the timestamp portion of the ID, or by pre-generating
IDs before distributing them.

Acknowledgements
This work is sponsored, in part, by Office of Naval Re-
search (ONR) grant N000141410095 and by the Department
of Defense under the MINERVA initiative through the ONR
N00014131083.

5. REFERENCES
[1] J. Elder. Inside a Twitter Robot Factory. The Wall

Street Journal, 11 2013. http://on.wsj.com/1Qo215n.

[2] D. Kergl, R. Roedler, and S. Seeber. On the
Endogenesis of Twitter’s Spritzer and Gardenhose
Sample Streams. In Advances in Social Networks
Analysis and Mining, pages 357–364. IEEE, 2014.

[3] F. Morstatter, J. Pfeffer, and H. Liu. When is it
Biased? Assessing the Representativeness of Twitter’s
Streaming API. In WWW, pages 555–556, 2014.

[4] F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley. Is
the Sample Good Enough? Comparing Data from
Twitter’s Streaming API with Twitter’s Firehose. In
ICWSM, pages 400–408, 2013.

82

