Veracity and Velocity of Social Media Content during
Breaking News: Analysis of November 2015 Paris

Shootings
14 $% &
Q) *H -
01 23 4 5 6
ABSTRACT . 3 )
" 4
4 +
8&9
! " " " *
" $%&" ( " o . /
&
)
+ !
1 = |
(ll
) 1o
Keywords ) .
’ - ’ - - = - # /
( . . o - 1 . -
# ? 8%9
1. INTRODUCTION e )
" 2
3 1.4 ?
" !
)
5 | # $0&" (
* | + *
+ < $
" 6
7 "
T " - CR
I <B4 <. $ .o "
B o A
WWW 2016 Companion ? 88 &" $%& O C D C - U
2. O EFG & >"%< >8>> G6& 6%>
ST M6 ) 68% &&>"6SGFS$" &G SCEUNE " 466

751



! ! (
H o3 "
<612

2. RELATED WORK
¢ -

"o
8
3
" "o+ 2 7/ $%&%
?
> " %%%

$%&$ "

+ 5 ?
R T | $
" J
" ) -
N v m
. H
" > )
. g w2
.o g f
? " 889 ")

)
3. METHOD

? )
4

g

3 E%% 4

752

Web

Crawler

Tokenization

- Twitter search API
- YouTube search API
- Instagram search API

Trust model

- GraphDB triple store

- OWL Knowledge Model
+ TrustedSource (prior knowledge )
+ Contentltem
+ TrustedContent (inference )

A

- Parts of Speech (POS) tagging
- Language Filter (English, French)

/

Named Entity Extraction

Y

Relational Extraction
- Author Entities
- Attributed Entities

\ 4
Temporal Segmentation i K
- Statistical Metrics - Aggregation and Indexing
- Breaking Content URIs - PostgresQl database
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Figure 1. Analytics Technical Workflow
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4. EXPERIMENT

4.1 Experiment setup
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4.2 Experiment method
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Table 1. Statistical information about the target images (each
originally embedded in a tweet), their authors and whether it
was crawled as part of our dataset or just mentioned by other

Target Image ID

author is a journalist
I news org

number of followers
of author

content likes
content retweets
originally crawled

total # of tweets
in 60 minute window

total # of unique
mentioned URLs in
60 minute window

content.
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4.3 Experiment results
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Figure 2. Number of tweets mentioning the URLSs of image P1
in the first hour after publication, attributed to unknown and
(un)trusted sources and the total mentions of URLs
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Figure 3. Number of tweets mentioning the URLs of image P2
in the first hour after publication, attributed to unknown and 500
(un)trusted sources and the total mentions of URLSs I
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Figure 6. Number of tweets mentioning the URLs of image D1
in the first hour after publication, attributed to unknown and
200 (un)trusted sources and the total mentions of URLs
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Figure 4. Number of tweets mentioning the URLSs of image P3 . )
in the first hour after publication, attributed to unknown and time [min]

(un)trusted sources and the total mentions of URLSs
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Figure 7. Number of tweets mentioning the URLs of image P1
in the first hour after publication, attributed to unknown and
(un)trusted sources and the total mentions of URLs
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