A Machine learning Filter for Relation Extraction

Kevin Lange Di Cesare,
Michel Gagnon
Polytechnique Montréal
Montreal, Canada
{kevin.lange-di-cesare,
michel.gagnon}@polymtl.ca

ABSTRACT

The TAC KBP English slot filling track is an evaluation
campaign that targets the extraction of 41 pre-identified re-
lations related to specific named entities. In this work, we
present a machine learning filter whose aim is to enhance the
precision of relation extractors while minimizing the impact
on recall. Our approach aims at filtering relation extractors’
output using a binary classifier based on a wide array of fea-
tures including syntactic, lexical and statistical features. We
experimented the classifier on 14 of the 18 participating sys-
tems in the TAC KBP English slot filling track 2013. The
results show that our filter is able to improve the precision
of the best 2013 system by nearly 20% and improve the F1-
score for 17 relations out of 33 considered.

Keywords

Information Extraction; Relation Extraction; Slot Filling

1. INTRODUCTION

In this paper, we focus on the TAC KBP English slot fill-
ing (ESF) track, an evaluation campaign that targets the
extraction of 41 pre-identified Wikipedia info-box relations
(title, spouse, etc.) related to specific named entities (per-
sons and organizations) [6]. A named entity (the query en-
tity) and a relation (the slot) are submitted to the system,
which must find every other entity (the filler) that is linked
to this entity with this particular relation, and must return
a textual segment that justifies this result’ [6]. In 2013, the
top performing system, Relation Factory, achieved a recall of
33.2%, precision of 42.5% and F1 of 37.3% [5]. We propose
to complement the output of a relation extraction system
with a filtering step. Our aim is to tackle the following re-
search questions:

(1) Which features can be used for filtering the output of re-
lation extractors?

! Examples of filtered responses, the list of relations and
further results are available at:
http://westlab.herokuapp.com/extractionfilter /appendix

Copyright is held by the author/owner(s).

WWW’16 Companion, April 11-15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2889397 .

Amal Zouaq
University of Ottawa
Ottawa, Canada
azouag@uottawa.ca

Ludovic Jean-Louis
Netmail Inc.
Montreal, Canada
ludovicj@netmail.com

(2) Can we increase the precision of slot filling systems with-
out impacting their F1-score?

2. METHODOLOGY

Our approach consists in using a machine learning filter
trained on the output of the ESF participating systems. For
each relation, a binary classifier is appended to the end of a
relation extractor’s pipeline. It eliminates responses which
it classifies as wrong with the goal to improve its precision.
The filter cannot increase recall scores as it does not gen-
erate additional responses. Reponses from the relation ex-
tractors are passed to the part-of-speech (POS) tagger and
syntactic analysis parser which return the POS tags and the
syntactic dependency tree [2]. Our approach is based on a
wide selection of generic features which are listed in Table 1
ranging from statistical, lexical to syntactic features. As we
are using syntactic-based features, we only focus on intra-
sentence relations. To enhance our classifier, we captured
the context between the query entity and the filler at the
lexical, the morpho-syntactic and the syntactic levels. The
contexts are extracted from the raw justification and from
the POS/syntactic analysis output. To limit the number of
contexts, we retained the most frequent subsets of part-of-
speech tags between the query entity and the filler for each
class (correct/wrong) by using the Apriori algorithm after
separating wrong instances from correct ones, for each rela-
tion [1]. The Apriori algorithm allows us to retain the de-
sired subsets with reduced computational resources, by first
identifying individual items, in this case a single POS tag,
for which the support is greater than the minimum support
and second, by extending them to larger item sets by re-
taining only the subsets which have a support greater than
a minimum support, 15% in this case. Similarly, we used
the Apriori algorithm to retain the most frequent subsets of
words within the sentence (excluding stop-words & named
entities) as well as syntactic dependencies and {POS tag,
syntactic dependency & relation} tuples within the syntac-
tic dependency tree. Each retained subset is translated into
a boolean feature indicating the presence of the subset. For
each relation, we experimented various classifiers and kept
the one with the highest F1 score on the correct class. Mod-
els are selected from one of the following base classifiers:
RandomForest, SMO, NBTree, DecisionTable, J48 and K*
[3]. The evaluation is done on the training set using a 10
fold cross-validation. To avoid over-fitting, we do not fil-
ter relations for which the number of training instances is
inferior to 15 for either class (correct/wrong). To prevent fa-
voring the wrong class, for each relation where the number



Table 1: Full set of generic features used for filtering

Name Description

Statistical features
Sentence length
Query/filler length

Entity order

#tokens left /between /right
Confidence score

Number of tokens in the sentence

Number of tokens within the query and filler (strings in the justification)
Order of appearance of query and filler

Number of tokens left/right or between the query and the filler in the sentence
Score given by the relation extractor [6]

Lexical/POS features
POS fractions

POS subsets

Word subsets

Proportion of nouns, verbs, adjectives and others (left /between/right /sentence) [4]
Most frequent subsets of POS tags between the query and the filler
Most frequent subsets of words in the sentence (excluding stop-words and named entities)

Syntactic features

Distance between entities
Entity level difference

Entities are ancestors
Syntactic dependencies subsets
Multilevel subsets

Distance between the query and the filler in the syntactic dependency tree

Level difference in the syntactic dependency tree between the query and the filler

The query and the filler are ancestors in the syntactic dependency tree

Syntactic dependencies in the syntactic dependency tree between the query and the filler
{POS tag, syntactic dependency & relation} tuples in the syntactic dependency tree

of wrong instances is more than double the number of correct
instances, we down-sample the subset of wrong instances to
five subsets randomly selected. Each subset contains the
same number of instances as the correct class subset. For
relations which have been rebalanced, we train six classi-
fiers for the five subsets of the majority class and retain the
classifier /subset pair which has the greatest F1 score on the
correct class.

3. EXPERIMENTS & EVALUATION

We excluded 4 systems out of 18 as the offsets they pro-
vided did not allow us to extract the justifications correctly.
Our training data is obtained by merging all systems out-
puts. The experiment was executed for each of the 14 sys-
tems by holding out its own output from the training data.
Our filter increases the precision score for every tested re-
lation extractor compared with their original performance.
The filter results in an average increase in precision of 8.8%
for the 14 systems'. We tested different combinations of
features. Table 2 reports our results. We used as baseline
Relation Factory’s highest F1 run, on which we applied our
filter for all the feature sets. We also consider its highest
precision run for comparison. The combination of statisti-
cal, lexical/POS and syntactic features render the greatest
performance: precision increases from 42.5% to 61.6% for a
19.1% increase. The F1 is increased from 37.2% to 37.7%.
The precision achieved is also 10.7% higher than Relation
Factory’s highest precision run. From the 33 filtered rela-
tions, the precision was increased for 26 relations and F1
was increased for 17 relations. Following the filtering, F1
and precision were decreased for only four relations. Perfor-
mances could not be measured for three relations due to a
lack of test data.!

4. CONCLUSION

We present a generic method to increase the precision of
relation extractors by appending a machine-learning-based
filter to the relation extractor’s pipeline. The filter utilizes a
wide scope of features, including statistical, lexical/POS and
syntactic features. The features used to train the classifiers
are generic and could be used for classifying any pre-defined

70

Table 2: Results obtained by Relation Factory after
filtering when using different feature sets

Feature Set R P F1
Relation Factory (best F1) 33.2 425 373
Relation Factory (best precision) 259 509 34.3
Statistical 25.6 57.4 35.4
Statistical + Lexical/POS 26.6 61.4 37.1
Statistical + Syntactic 25.3 58.2 35.2
Statistical 4+ Lexical/POS +4 Syntac- | 27.1 61.6 37.7
tic

relation. Our filter has allowed an increase in precision of
nearly 20% for the best performing system in the 2013 slot
filling track. We believe that the performance of the filter
can be improved by exploiting more training samples of bet-
ter quality. We are working on improving the features using
various feature selection approaches.

5. ACKNOWLEDGMENTS

This research was partially funded by the Industrial Inno-
vation Scholarships Program.

6. REFERENCES

[1] R. Agrawal, R. Srikant, et al. Fast Algorithms for
Mining Association Rules. In 20th VLDB, 1994.

M.-C. De Marneffe, B. MacCartney, C. D. Manning,
et al. Generating Typed Dependency Parses from
Phrase Structure Parses. In LREC, 2006.

M. Hall, E. Frank, G. Holmes, and al. The Weka Data
Mining Software: An Update. ACM SIGKDD, 2009.
M. Mintz, S. Bills, and al. Distant Supervision for
Relation Extraction without Labeled Data. ACL, 2009.
B. Roth, T. Barth, M. Wiegand, M. Singh, and

D. Klakow. Effective Slot Filling Based on Shallow
Distant Supervision Methods. CoRR, 2014.

M. Surdeanu. Overview of the TAC 2013 Knowledge
Base Population Evaluation: English Slot Filling and
Temporal Slot Filling. In TAC 2013, 2013.





