
Incorporating Side Information in Tensor Completion

Hemank Lamba*, Vaishnavh Nagarajan*, Kijung Shin*, Naji Shajarisales*
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh PA 15213, USA

{hlamba,vaishnavh,kijungs}@cs.cmu.edu, nshajari@andrew.cmu.edu ∗

ABSTRACT
Matrix and tensor completion techniques have proven use-
ful in many applications such as recommender systems, im-
age/video restoration, and web search. We explore the idea
of using external information in completing missing values in
tensors. In this work, we present a framework that employs
side information as kernel matrices for tensor factorization.
We apply our framework to problems of recommender sys-
tems and video restoration and show that our framework
effectively deals with the cold-start problem.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining
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1. INTRODUCTION AND RELATED WORK
Tensor Factorization (TF) has been widely used for com-

pleting missing entries in a tensor [1]. One problem of previ-
ous methods [2] is that they assume independence between
entities in the same mode. However, there can be meaningful
correlation between these entities, e.g., friends share com-
mon taste of movies and consecutive rows of pixels in an im-
age are generally similar. These similarities, obtained from
side information, can be exploited to improve the quality of
tensor completion. In this work, we propose a tensor factor-
ization method that incorporates these similarities through
kernel matrices. This extends previous work in kernelized
matrix factorizaton [3] for higher dimensions.

In this work, we apply our method to recommender sys-
tems where the entries of a tensor represent ratings and the
modes correspond to users, movies and context. The side
information used here is social networks among users and
similarities among movies. We also use our tensor comple-
tion method to restore video, represented as a 3-way ten-
sor. We show that our algorithm works better than baseline
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Table 1: Table of Symbols

Notation Definition

R N1 ×N2 × ...×NQ data tensor
ri1i2...iQ (i1, i2, ..., iQ)-th entry of R

Nq Length of q-th mode of R
D Dimension of the latent factors.

U(q) Nq ×D factor matrix for q-th mode of R

U
(q)
iq ,:

iq-th row of U(q)

U
(q)
:,d d-th column of U(q)

K(q) Nq ×Nq covariance matrix for q-th mode of R

S(q) Nq ×Nq inverse matrix of K(q)

methods when it has to make predictions for unseen entities.
This situation is referred to as the cold-start problem. One
example is the case of new users, who do not have any re-
viewing history. Similarly, for video restoration, we consider
the case where entire rows, columns, or frames are missing.

2. METHODOLOGY
In a previous model [2] for PARAFAC decomposition of

tensors with missing entries, each row of factor matrices is
generated independently from a given distribution. A seri-
ous problem of this model is that the rows of factor matrices
cannot be estimated when we are dealing with the cold-start
problem.

In our approach, we first generate factor matrices by sam-
pling each column of factor matrices from a Gaussian pro-
cess. The mean is zero and the correlation across entries
in the column is defined by a kernel matrix. Side informa-
tion is employed to design this kernel matrix. On generating
entries of a tensor, we consider the outer product of these
factor matrices. Each entry is sampled from a Gaussian dis-
tribution where mean is the corresponding entry of the outer
product and variance is given.

2.1 A Kernelized Probabilistic Model for TF
Under our modeling scheme, the prior distribution of each

column of factor matrices is a Gaussian process as follows:

1 ≤ ∀q ≤ Q, p(U(q)|K(q)) =

D∏
d=1

GP(U:,d|0,K(q)) (1)

Here K(q) is the kernel matrix for q-th mode (see Section 2.2
for details about this kernel matrices). Also we assume the
likelihood of R given the factor matrices to be normally dis-
tributed with a constant error parameter σ2 as follows:

p(R|U(1), ...,U(Q), σ2) =
∏
I∈I

[
N

(
RI |

D∑
d=1

Q∏
q=1

U
(q)
Iqd

, σ2

)]δI

.
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where I is the set of all indices for R, i.e.

I = {I = (I1, I2, ..., IQ)|1 ≤ ∀Iq ≤ NQ, 1 ≤ ∀j ≤ k},
and δI is the indicator function which attains 1 if RI is
observed and 0 otherwise. This gives rise to the following
log posterior:

log p(U(1), ...,U(Q)|R, σ2,K(1), ...,K(Q)) =

− 1

2σ2

∑
I∈I

δI

(
RI −

D∑
d=1

Q∏
q=1

U
(q)
Iqd

)2

−A log σ2

− 1

2

Q∑
q=1

D∑
d=1

(
U

(q)
:,d

)T

S(q)U
(q)
:,d − D

2
(

Q∑
q=1

log |K(q)|) + C

where A is the total number of non-missing entries in R,
|K(q)| is the determinant of K(q), and C is a constant. For
our purposes, we infer the parameters of this model based on
maximum aposteriori estimation. We use stochastic gradi-
ent descent to compute the MAP estimate where the partial
derivative is as follows:

∂ log p

∂U
(r)
ir,d

= − 2

σ2

(
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d=1
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where S(r) is the inverse of K(r) and M̃
(r)
ir

is the number of
observed entries in the ir-th fiber of the rth mode of R.

2.2 Deriving Kernels
In this section, we design kernel matrices (i.e., K(q) in (1))

for different modes of tensors using side information.
Kernel for Users: Given a social network among users,

the similarity between two users is defined as the commute
time (i.e., the expected number of steps of a random walker
on the network to commute between two users). The kernel
matrix is L† where L is the Laplacian matrix and † repre-
sents the MoorePenrose pseudoinverse.

Kernel for Movies: We first build a graph among movies
where each movie is adjacent to the 20 most similar movies
in terms of the cosine similarity between the 200 most fre-
quent words in their plots. As in users, similarity between
two movies is defined as the commute time on this graph.

Kernel for Time: To encode smooth change across time.
we use RBF kernel for similarity between two time points.

Kernel for Video: We first build a graph among pixels
where each pixel is adjacent to krow closest pixels in the
same column and frame, kcol closest pixels in the same row
and frame, and kframe closest pixels in the same row and
column. Then, we compute commute time on this graph.

3. EXPERIMENTS
We apply our methods to two different domains (recom-

mender systems and video restoration) and show that our
method effectively deals with the cold-start problem.

We model ratings in the Flixster dataset1 as a 3-way
tensor where modes correspond to users, movies, and time
(year-months). In terms of accuracy over the entire test set,

1http://www.cs.ubc.ca/~jamalim/datasets/
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Figure 1: Accuracy of our method (with kernels) and its
competitor [2] (without kernel) in Flixster Dataset in the
case of the cold-start problem. Our method successfully
learned the preference in new contexts (1(a)), while the com-
petitor could not. Our method even learned the preference
of a new user about a new movie in a new context (1(b)).
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Figure 2: Accuracy of our method (with kernels) and its
competitor [2] (without kernel) in video restoration. Our
methods successfully restored the video, while the competi-
tor could not due to the cold start problem.

our proposed method was comparable with a state-of-the-
art method [2]. However, only our method could deal with
the cold-start problem and learned the preference in new
context, while the competitor could not, as seen in Figure 1.

For the video restoration task, we model xylophone.mp4,
provided by MATLAB, as a 4-way tensor where modes cor-
respond to rows, columns, frames, and RGB. After removing
20% of rows, columns, and frames to model the cold start
problem, we restored these missing pixels using tensor fac-
torization methods. As seen in Figure 2, only our method
successfully dealt with the cold-start problem.

4. CONCLUSIONS
In this work, we propose a framework that employs side

information as kernel matrices for tensor factorization. This
extends a previous work on kernelized matrix factorization
[3] for high dimensional data. We apply our method to
recommendation and video restoration with our designed
kernels and show that our method successfully deals with
the cold-start problem. Future work includes applying our
method to other tensor decomposition methods, such as
Tucker decomposition, and new domains, such as web search.
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