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ABSTRACT
Nowadays, human movement in urban spaces can be traced dig-
itally in many cases. It can be observed that movement patterns
are not constant, but vary across time and space. In this work,
we characterize such spatio-temporal patterns with an innovative
combination of two separate approaches that have been utilized for
studying human mobility in the past. First, by using non-negative
tensor factorization (NTF), we are able to cluster human behavior
based on spatio-temporal dimensions. Second, for characterizing
these clusters, we propose to use HypTrails, a Bayesian approach
for expressing and comparing hypotheses about human trails. To
formalize hypotheses, we utilize publicly available Web data (i.e.,
Foursquare and census data). By studying taxi data in Manhattan,
we can discover and characterize human mobility patterns that can-
not be identified in a collective analysis. As one example, we find
a group of taxi rides that end at locations with a high number of
party venues on weekend nights. Our findings argue for a more
fine-grained analysis of human mobility in order to make informed
decisions for e.g., enhancing urban structures, tailored traffic control
and location-based recommender systems.
Keywords: Human Mobility; Tensor Factorization; HypTrails

1. INTRODUCTION
Human mobility can be studied from several perspectives utiliz-

ing different kinds of data from the online (e.g., Twitter) and the
offline (e.g., taxi rides) world. A large body of work has focused
on identifying general mechanisms that guide and explain human
mobility behavior on an individual [9] or collective level [17]. For
example, previous research has shown that human mobility is highly
predictable [24] and shows temporal and spatial regularity [9]. At
the same time, it exhibits also spatio-temporal heterogeneity, see
for example [3, 15]. For instance, daily routines such as going from
home to work (space) in the morning (time) can be observed. This
argues for a more fine-grained analysis, that goes beyond the univer-
sal mobility patterns which tend to ignore several aspects of human

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890468 .

An extended version of this work is available on arXiv:
http://arxiv.org/abs/1601.05274.

mobility such as time, weather or race of people. Towards that end,
we propose to discover and characterize mobility patterns in human
behavior in urban space.

Material and approach. We expand existing research [3, 15] on
studying human mobility with a case study using taxi data of Man-
hattan. For identifying behavioral differences in terms of time and
space, previous research [20, 26] has suggested to utilize tensor
decomposition [4]. However, interpreting results from tensor de-
composition has mostly been based on personal intuitions. On the
other hand, recent research [1, 23] proposed methods that allow to
understand human sequences by comparing hypotheses about the
production of trails at interest. Yet, this approach is limited in the
sense that it can only explain global behavior without being able to
provide more detailed insights. To circumvent these limitations, we
propose a unique and original combination of tensor decomposition
and HypTrails to discover and characterize human behavior on a
spatio-temporal level. We first utilize non-negative tensor factor-
ization (NTF) [4] for automatically identifying clusters of mobility
behavior. Second, for characterizing these clusters, we utilize Hyp-
Trails [23]—a Bayesian approach for expressing and comparing
transitional hypotheses about human trails.

Findings and contributions. Our main contributions are three-fold:
First, we present an innovative combination of two methodologies,
i.e., NTF and HypTrails, in order to characterize heterogeneous
human mobility behavior. Second, we incorporate existing human
mobility patterns into a hypothesis-based schema built upon human
beliefs. Third, we demonstrate the benefits of online data for charac-
terizing human behavior on a spatio-temporal level. As one example,
we discover a group of taxi rides that have drop-off locations with
a high number of party venues on weekend nights. Results of this
study can improve e.g., planning of future events or reconstructions,
traffic control or location-based recommender systems.

2. DATASETS
In this work, we study taxi rides in Manhattan—one of the most

densely populated areas in the world. However, the presented
methodology can be also applied to other kinds of mobility data.
We represent human mobility as user trails representing single tran-
sitions between taxi pick-up and drop-off locations. To construct
a rich set of hypotheses for characterizing the movement of users,
we additionally retrieved information on local venues (such as parks
or churches) from Foursquare and public census data, i.e., data on
demographics and land-use.
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Taxi rides. We use publicly available data1 of about 173M NYC
Taxi rides in 2013. It consists of anonymized records registering
when and where a taxi ride started and ended and various features
such as the number of passengers. From all records, we removed
taxi rides outside the area of Manhattan and some inconsistencies
such as records with trip_distance ≤ 0, trip_time_in_secs ≤ 0 and
passenger_count ≤ 0; our final dataset consists of 143M rides. A
description of all attributes and datatypes can be found in the TLC
Taxi Data - API Documentation2.
Census data. Our methodology (see Section 3) operates on a dis-
crete tract state space. We extracted the specifications of all 288
tracts in Manhattan used in the 2010 census from the NYC Planning
portal3 and mapped the GPS coordinates of all taxi rides to their
respective tracts. We also queried the NYC OpenData4 and the
American FactFinder5 databases for accessing relevant data such
as census and land-use. Also, we calculated the spatial overlap
between land-use types such as residential and commercial zones
and each tract to obtain information on a tract level.
Foursquare venues. We gathered additional information about
physical places such as churches and parks situated in Manhattan
by querying the Foursquare Search API6 to extract places in each
tract for 10 different categories7 (e.g., Residence, Nightlife Spot).
Overall, we collected 153K unique places within Manhattan. Every
venue was mapped to its respective tract.
Centroids. Typically, popular places are most likely to be visited
at any time. For this reason, we considered three candidate places
as centroids to study whether people visit them or not: (a) City
center —approximated as the geographical center of Manhattan—
(40.79090, -73.96640, 018100), (b) Flatiron Building (40.74111,
-73.98972, 005600), and (c) Times Square (40.75773, -73.98570,
011900). Tuples represent (latitude, longitude, tract id).

3. METHODOLOGY
The goal of this work is to discover and characterize mobility

patterns in taxi data for better understanding people’s travel behavior
within Manhattan. To that end, we propose an innovative combina-
tion of two methodologies. First, we suggest to use non-negative
tensor factorization (NTF) [4] for automatically clustering human
mobility behavior. Research has shown that NTF can detect latent
features of human mobility in different dimensions such as space
and time, cf. [26]. Second, to characterize these clusters, we utilize
HypTrails [23]—a Bayesian approach for expressing and comparing
hypotheses about human trails. We outline in the following both
methodological components of this work, but refer to the original
publications for details.
Clustering mobility patterns. For clustering the data, we utilize
NTF which decomposes a given n-way tensor X into n components
(matrices) that approximate the original tensor when multiplied with
each other. Each matrix contains information on r factors (clusters).
In this paper, we define a three-way tensor of taxi rides whose
dimensions capture human transitions from one place to another at
a certain time: pick-up tract, drop-off tract and pickup time (hour
of week); thus, clustering in terms of both space and time. Each
element of every component determines the scale of mobility flow

1http://www.andresmh.com/nyctaxitrips/
2https://dev.socrata.com/foundry/data.cityofnewyork.us/gkne-dk5s
3http://www.nyc.gov/dcp
4https://nycopendata.socrata.com/
5http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
6https://developer.foursquare.com/docs/venues/search
7https://developer.foursquare.com/categorytree

(weight) with respect to the corresponding factor. In other words, the
higher the weight, the more dominant that instance is in that cluster.
Similar to other clustering methods, defining the number of clusters
is arbitrary. However, there exist some guidelines to determine a
good value of r, see e.g., [8]. In this work, we are not focused on
finding the most appropriate number of behavioral components, but
being able to characterize different behaviors, which will be detailed
in the following section.

Characterizing clustered mobility patterns. For characterizing
the clustered human mobility behavior, we utilize HypTrails [23], a
Bayesian approach for expressing and comparing hypotheses about
human trails. HypTrails models the data with first-order Markov
chains where the state space contains all 288 tracts of Manhattan.
Fundamentally, hypotheses are represented as matrices Q expressing
beliefs in Markov transitions; Section 4 describes the hypotheses
about human mobility used in this work. Elements qi, j indicate the
belief in the corresponding transition probability between states i
and j; higher values refer to higher belief. The main idea of Hyp-
Trails is to incorporate these hypotheses as Dirichlet priors into
the Bayesian inference process. HypTrails automatically elicits
these priors from expressed hypotheses; an additional parameter k
(weighting factor) reflects the overall strength of belief in a hypothe-
sis. For comparing the relative plausibility of hypotheses, HypTrails
utilizes the marginal likelihood (evidence) of the Bayesian frame-
work which describes the probability of the data given a hypothesis.
We can infer the partial ordering based on the plausibility of a given
set of hypotheses by ranking their evidences from the largest to the
smallest for a specific value of k.

4. HYPOTHESES
In this section, we describe the hypotheses we used to characterize

the individual clusters with HypTrails. These are expressed as
hypothesis matrices Q, in which the elements qi, j capture a belief
in the likelihood of people transitioning from tract i to tract j (see
Section 3).

Our hypotheses are mostly based on existing theories. In this re-
gard, the most prevailing human mobility model is the gravitational
law [30] qi, j =

venues(i).venues( j)
dist(i, j) , which explains mobility by an at-

traction force between places i and j (e.g., number of venues) and the
inverted shortest distance between them. However, due to some lim-
itations found in this model [22], several alternatives have emerged
to circumvent these issues. In that direction, the rank model [17]
qi, j =

1
|{w:dist(i,w)<dist(i, j)}| indicates that the number of people trav-

eling to a given location is inversely proportional to the number of
places w surrounding the source location. Similarly, the so called in-
tervening opportunities model [25] qi, j =

|{w1:dist(i,w1)=dist(i, j)}|
|{w2:dist(i,w2)<dist(i, j)}|

additionally includes the number of opportunities (i.e. venues) at a
given distance. In order to express the assumption that people prefer
to visit places that are similar to the departure place (e.g., vectors
V containing the categorical distribution of places), also the Cosine
similarity qi, j =

Vi.Vj
||Vi||||Vj || can be employed.

These theories require additional data, e.g., to determine the
weight of places for the gravitational law. We categorize our hy-
potheses with respect to the utilized additional datasets into three
types: Distance-based, Foursquare and Census hypotheses, see Ta-
ble 1. Additionally, we use the uniform hypothesis as a baseline
to express the belief that all tracts are equally likely to be visited.
For all hypotheses, we set the diagonal of Q to 0 to avoid self-loop
transitions—accounting for only 1.5% of all taxi rides—which (in
this work) do not contribute on mobility.
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Table 1: Tract properties. These three categories contain all tract indicators, i.e., statistics about tracts, used in combination with
universal theories to construct hypotheses. For instance, the hypothesis church expresses that the probability of visiting a certain
location is proportional to its number of churches (using for example the density theory).

Category Properties per tract
Distance-based Fixed points of interest: Geographical Center, Flatiron Building, Times Square.

Foursquare
Number of venues: Arts & Entertainment, Education (i.e., colleges, universities, elementary schools and high schools),
Food, Nightlife Spot, Outdoors & Recreation, Work (i.e., auditoriums, buildings, convention centers, event space,
factories, government buildings, libraries, medical centers, military base, non-profit, office, post office, prison, radio
station, recruiting agency, TV station, and ware house), Residence, Shop & Service, Travel & Transport, and Church.

Census
Population size, and Tract area. Percentage of: White people, Black people, People in labor force, Unemployed people,
People below poverty level, People above poverty level. Number of places: Libraries, Art Galleries, Theaters, Museums,
WiFi Hotspots, and Places of Interest. Moreover, the occupied area of: Residential Zoning, Commercial Zoning,
Manufacturing Zoning, Park properties, Historic Districts and Empower zones.

Distance-based hypotheses. Based on the geographic distance [10]
(likewise its inverse: qi, j =

1
dist(i, j) ), we can construct very intu-

itive hypotheses: proximity and centroid. The proximity hypoth-
esis assumes that places near the current location are more likely
to be visited next, the centroid hypothesis suggests that locations
near to the city center (specified by a fixed geo-coordinate, see
Section 2) are more likely for the next stop. According to these
hypotheses, the location of the next visited place follows a two

dimensional Gaussian distribution qi, j =
1

σ
√

2π
e−

dist(i, j)2

2σ2 that is cen-
tered at the current location i (or a city center), see [1] for a more
detailed description. For the parametrization of the distribution,
we included 7 different values for the standard deviation σ , i.e.,
σ ∈ {0.01,0.5,1.0,2.0,3.0,4.0,5.0}km.

Foursquare hypotheses. We leverage Foursquare venues to mea-
sure the density qi, j = |(venues( j)| of a place, which consists of the
number of all venues in a given tract (e.g., destination). Similarly,
the cumulative check-ins in an area can be used to measure the
popularity qi, j = ∑V∈venues( j) checkins(V ) of a given tract. Accord-
ingly, these can be combined with the universal mobility theories
(i.e., gravitational, rank-distance and intervening opportunities).
Additionally, we group places according to their category (e.g., Res-
idence, Church). In other words, we use categories as filters. Thus,
every Foursquare category induces a subset of all venues per state.
Table 1 shows all 10 Foursquare categories included in this study.
To avoid an abundant amount of hypotheses, we only use the gravita-
tional theory in combination with these category-based hypotheses.
Furthermore, we construct a similarity-based hypothesis that sug-
gests that transitions are more likely between two states that have a
similar category distribution of venues based on Cosine similarity.

Census hypotheses. The Census hypotheses are based on tract-
level information on demographics or land-use, which replace the
density of a place used in the Foursquare hypotheses. Table 1 shows
all 20 indicators used to formulate this kind of hypotheses. Cosine
similarity measures were obtained under three different categories:
Race Group (i.e., white, black, american indian, asian, hawaiian
and other pacific islander, other race, two races), Poverty Level (i.e.,
below, above) and Employment status (i.e., employed, unemployed,
in labor force).

Overall we defined 70 hypotheses: (a) 1 uniform, (b) 29 distance-
based (i.e., the proximity and 3 centroid hypotheses with 7 σ settings
each and the inverse geographical distance), (c) 17 from Foursquare
(i.e., density, popularity, gravitational, rank-distance and intervening
opportunities for all venues only, gravitational for each Foursquare
category and 1 similarity), and (d) 23 from Census data (i.e., 20 from
the gravitational with each census indicator and 3 from similarities).

5. EXPERIMENTS
This section reports on experimental results obtained by applying

the presented methods to the Manhattan taxi data.

5.1 Configuration
As described in Section 3, we started by using NTF in order to

identify different clusters in the taxi data. We worked with a three-
way tensor whose dimensions represent the pickup hour of week,
pickup and drop-off tracts of the taxi ride. For the hour of week,
the first state corresponds to Monday from 12:00 a.m. to 12:59 a.m.
and the last state to Sunday from 11:00 p.m. to 11:59 p.m. We did
not include the time of the drop-off because most of the rides last
less than an hour. Therefore, the tensor has size 168×288×288.
After experimenting with different parameters, we set the number
of clusters to r = 7 to find seven different groups, as this number
subjectively captured all behavioral components best.

5.2 NTF: Mobility patterns
Since our data tensor has three dimensions, the decomposition

returned three different components which determine the scale of
mobility flow in each dimension for every cluster, i.e., time (hour of
week), departure track, and arrival tract. Thus, individual clusters
represent groups of taxi rides in different places at different periods
of time in a weekday-hour scale.

The time component is shown in Fig. 1a, whereas location com-
ponents are shown on the right-hand side of Fig. 1. Due to space
limitations we show spatial components only for the first three clus-
ters. From Fig. 1a, it can be observed that all clusters show strong
daily regularities, which can be assumed as daily routines in human
mobility. Clusters C1, C2, C4, C5 and C7 capture all behaviors
on workdays (almost all peaks are between Monday and Friday)
whereas cluster C3 is strongly dominated by weekend nights. Clus-
ter C6 on the other hand, shows a more periodical behavior across
the entire week, however its peaks are around 6pm from Monday to
Saturday and 2pm on Saturdays and Sundays.

The location components shown in figures (1b-1g), together with
their respective time periods, provide us initial context about when
and where people move within the city. For instance, cluster C1
represents taxi rides around 9am (see Fig. 1a) which go to the south-
east of Manhattan (see Fig. 1e). Cluster C2 concentrates its taxis
rides around 6pm near Central Park (see Fig. 1f). Finally, cluster C3
includes all taxi rides on Fridays and Saturdays around 1am in the
lower and middle part of Manhattan (see Fig. 1g).

The following section presents characterizations for such behav-
iors by comparing a list of 70 hypotheses using HypTrails.
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(a) Temporal distribution of clusters

(b) Departures C1 (c) Departures C2 (d) Departures C3

(e) Arrivals C1 (f) Arrivals C2 (g) Arrivals C3

Figure 1: Spatio-temporal patterns. This figure illustrates the results obtained when applying NTF on a three-way tensor. (a) Each
row represents a behavioral component (cluster) respect to pickup time (hour of week). Maps shown at the right of this figure
depicts representative tracts for three clusters at departure time (top) and arrival time (bottom); the darker, the more dominant.
(b,e) cluster C1 stands for taxis rides at 9am around the south-east of Manhattan; (c,f) cluster C2 contains all short taxi rides at 6pm
around Central Park; and (d,g) cluster C3 represents all weekend night taxi rides around the lower and middle part of Manhattan.

5.3 HypTrails: Ranking of hypotheses
Since NTF does not explicitly partition the transition input, we

first need to identify all transitions for each cluster in order to run
HypTrails. Generally, interpreting clusters returned by NTF requires
to extract the top-N weights from each factor to determine the most
influential instances of every component [26]. In our setting, we
extracted the top-10 pickup weekday-hours and drop-off tracts, and
query all taxi rides fulfilling these conditions. Note that we did not
include the top pickup tracts, because we are interested on places
where people go to, rather than places where they come from. We
then applied HypTrails and computed the rankings for the weighting
factor k = 10—see Section 6 for a discussion.

Exemplary results of the characterization step for a hand selected
subset of hypotheses are displayed in Table 2. It shows for each hy-
pothesis (i.e., rows) the respective rank in the cluster (i.e., columns);
lower numbers imply a higher rank and therefore a better expla-
nation. Thus, for instance, the hypothesis Gravitational (% White
people) expresses a belief in people going to nearby tracts with a
high % of white people living there. The column Overall shows the
ranking of hypotheses evaluated over the whole dataset, to compare
with the results obtained for the individual clusters. The uniform
hypothesis is a baseline which allows us to verify whether a hypoth-
esis can be a good explanation of human mobility or not. Green
cells in the table indicate that a hypothesis performed better than the
uniform hypothesis in that cluster.

To characterize the different patterns in human mobility, we in-
spect the obtained rankings for each cluster. In particular, we are
interested in which hypotheses perform exceptionally well (i.e.,
have a top rank indicated by a small number) in the cluster and in
comparison to the overall dataset. For example, consider cluster
C3 that captures taxi rides at weekend nights. For this cluster, we
can observe very high ranks for the gravitational hypotheses Party,
Popularity and Food.

In summary, clusters C1,C2 and C3 (shown in Fig. 1) can be
characterized as follows. Cluster C1 predominantly represents taxi
rides around 9am on workdays. People in this cluster prefer to
go to nearby tracts containing popular places such as work places
and restaurants near Times Square in a radius of 0.5km. Cluster
C2 groups taxi rides on workdays around 6pm going to big tracts

containing art galleries, museums and parks. Transitions in this
group usually leave tracts with few venues around. Finally, cluster
C3 identifies all taxi rides on weekends around 1am. People in
this cluster usually go to nearby tracts containing very popular
places such as nightlife spots and restaurants. Below, we discuss the
characteristic properties of all clusters summarized by the types of
hypotheses.

Distance-based. As mentioned in Section 4, these hypotheses re-
quire the standard deviation (σ ) of a two dimensional Gaussian
distribution. In Table 2, we show the best result for parametrized
hypotheses and their respective σ in parenthesis. In the overall data
as well as clusters C2 and C3, taxi rides are more likely to visit
proximate places in a radius of 3km, 0.5km and 1km respectively.
Clusters C1, C4, C6 and C7 show preference on visiting the sur-
roundings of Times Square in a radius of 0.5km, 0.5km, 0.01Km
and 0.01km respectively. Finally, taxi rides in cluster C5 tend to
visit places near the Flatiron building in a radius of 0.5km.

Foursquare. Taxi rides in the overall dataset are more likely to visit
nearby dense areas containing work places, restaurants and discos.
Similarly, preferred targets in clusters C1 C4 and C5, which capture
morning rides around 7−9am, contain work places. Taxi rides in
cluster C6 go to tracts dominated by parks around 6pm. Cluster
C3, which features weekend night trips, can be best characterized
by the party hypothesis which means that taxi rides tend to visit
tracts containing nightlife spots. Likewise, in cluster C7 people
tend to visit tracts containing popular places such as restaurants
and nightlife spots. Note that all hypotheses in this group perform
better than the uniform hypothesis, demonstrating the overall high
explanatory power of such data sources with respect to human
mobility.

Census. From the overall data, we can infer that people tend to visit
nearby tracts with high % of white people living in them. We can
also observe that in general taxi rides are not going to residential
areas but to commercial zones, which is also the case of clusters
C1 C3 and C7, opposite to clusters C2 C4 and C5 where it is more
likely to visit tracts containing art galleries and museums. In cluster
C6 we can deduce that people tend to visit tracts containing parks
rather than residential zones.
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Table 2: Ranking of Hypotheses. This table shows the ranking of 21 out of 70 hypotheses evaluated with HypTrails over 3 different
groups. Overall represents all 143M taxi rides in Manhattan, clusters Ci are identified by NTF. Numeric cells represent the ranks of
the hypotheses in respective clusters. For the distance-based hypotheses, we only show results for the best parameter of the standard
deviation σ (parameter in parentheses). Green cells highlight all hypotheses that outperform the uniform hypothesis.

Overall C1 C2 C3 C4 C5 C6 C7
HYPOTHESES 2013 Workdays

9am
Workdays

6pm
Weekends

1am
Workdays

7am
Workdays
9am, 6pm

Mo-Sa 6pm
Sa-Su 2pm

Workdays
6pm

Baseline
Uniform 42 56 56 56 56 55 62 59

Distance-based (σ )
Proximity 14 (3.0) 7 (1.0) 2 (0.5) 14 (1.0) 10 (1.0) 19 (1.0) 10 (0.01) 13 (1.0)
Centroid (Geographical Center) 38 (5.0) 50 (5.0) 25 (1.0) 58 (5.0) 52 (5.0) 58 (5.0) 51 (3.0) 51 (5.0)
Centroid (Flatiron Building) 29 (5.0) 32 (2.0) 51 (5.0) 17 (1.0) 2 (0.01) 4 (0.5) 44 (3.0) 20 (0.5)
Centroid (Times Square) 22 (3.0) 1 (0.5) 43 (3.0) 46 (3.0) 1 (0.5) 43 (2.0) 2 (0.01) 1 (0.01)

Foursquare
Gravitational (All venues) 1 12 14 10 14 10 14 9
Gravitational (Check-ins) 9 3 30 2 11 5 4 3
Gravitational (Work) 2 5 12 24 8 6 13 11
Gravitational (Food) 5 4 31 4 12 15 11 4
Gravitational (Party) 7 17 37 1 19 9 20 5
Gravitational (Recreation) 15 21 10 9 17 13 7 33
Venue Similarity 39 53 53 53 53 52 58 53

Census
Gravitational (Population) 21 61 28 20 59 46 42 25
Gravitational (Tract Area) 23 34 8 26 24 20 24 38
Gravitational (%White people) 6 24 13 28 28 27 35 27
Gravitational (Residential zoning) 50 65 19 35 65 61 67 49
Gravitational (Commercial zoning) 13 8 32 22 9 24 19 15
Gravitational (Art Galleries) 46 23 1 38 5 2 52 54
Gravitational (Museums) 54 13 3 40 6 7 26 58
Gravitational (Parks) 63 62 4 44 63 59 6 64
Race Similarity 32 48 50 52 50 50 59 50

6. DISCUSSION
We have shown that spatio-temporal patterns in human behavior

can be characterized by considering parts of data separately. We
identified clusters of taxi rides and utilized openly available Web
data to characterize them. However, there are some aspects that
need to be taken into account for the current approach.

Concentration parameter k. HypTrails requires a parameter k to
elicit Dirichlet priors from hypotheses [23]. Higher values of k
express stronger beliefs in respective hypotheses. Technically, larger
values of k imply higher values of the hyperparameters (pseudo
counts) of the Dirichlet distributions. In our experiments, we tried
several values of k from 0 to 100; overall very similar results. The
reported results in this paper use an intermediate value of k = 10.

Correlations in characterizations. Using HypTrails to character-
ize clusters cannot identify causes of movement patterns, but only
correlations. As an example, for cluster C2 the Art Galleries hy-
pothesis performs best. This does not mean that taxi rides in that
cluster prominently have art galleries as destinations, but that people
go to nearby places containing art galleries. Thus, we also intend to
integrate correlations between the used hypotheses in future work.

Clustering method. In this paper, we used HypTrails to character-
ize clusters obtained by NTF. While NTF is a reliable and established
method in this line of research, the clustering approach is exchange-
able and could be replaced by any other clustering technique.

State space. As our approach requires a discrete state space, we
aggregate pick-up and drop-off locations of taxi rides in an area. The
choice of aggregated units (i.e., states) can potentially influence the
results which is known as the Modifiable areal unit problem [19]. In
this paper, we chose tracts for the level of our analysis as it allowed
for the direct integration of information from census data.

Multiple dimensions. In this paper, we clustered taxi rides with
respect to time and space. However, our approach allows to extend
these by additional information, e.g., # of passengers. In this case, a
higher-way tensor would be used by NTF, but the resulting clusters
could also be characterized with HypTrails. The scale of these di-
mensions can also suggest more fine-grained patterns. For instance,
in this work we defined the time dimension as all 168 hours of a
week in order to distinguish patterns on workdays and weekends.

7. RELATED WORK
Human mobility research. Human mobility is a phenomenon that
has attracted the attention of governments and researchers from
different fields. Studying the movement of people from a social
science perspective has helped us to understand who, where and
why people move [2, 16, 25, 28] as well as what consequences such
movement carries, by means of e.g., demographic, socio-economic
and land-use factors. In literature, they are also referred to as activity-
based analysis. Natural sciences, on the other hand, have shown us
that universal patterns exist and are modelled by movement-based
techniques which can predict human dynamics [17, 22].

Ubiquitous data. Due to the lack of open and updated informa-
tion at global scale (e.g., surveys or census data), and thanks to the
rise of ubiquitous technologies such as mobile phone data and GPS,
researchers can get access to human trails facilitating the study of hu-
man mobility. Several studies have revealed spatio-temporal patterns
in different cities based on mobile phone call detail records [12, 27],
taxi trips [3, 5, 15] and bike rides [14, 21]. The rapid emerge of so-
cial networks has also benefited the study of human mobility based
on geo-tagged data. For instance, the work by Jurdak et al. [13]
studies Twitter as a proxy of human movement by using universal
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indicators such as displacement distribution and gyration radius
distribution measuring how far individuals typically move based
on geo-located tweets. Similarly, the authors in [18] proposed a
network of places built upon Foursquare’s venues and model human
mobility by considering temporal and network dynamics inferred
from user’s check-ins. Gabrielli et al. [6] proposed a technique
to analyze human trajectories of residents and tourists by semanti-
cally labeling source and destination spots. Based on time-evolving
networks, the work in [7] identifies and ranks collective features
for epidemic spread, by tracking human movements with wearable
sensors.
Activity-based human behavior. Some previous works have iden-
tified and explained periodical movement-based patterns by activity-
based human behavior. In [29], the authors proposed a model rep-
resenting transition probabilities of travel demands during a time
interval and suggested that travel demands can be associated with
fixed locations under some circumstances. Jiang et al. [11] explained
when, where and how individuals interact with places in metropoli-
tan areas based on activity survey data in Chicago. The work shows
daily patterns as eigenvectors and employs K-means clustering to
identify groups of individuals based on their daily activities on week-
days and weekends. From taxi trips in Shanghai, the work in [20]
shows how to detect basis patterns for collective traffic flow and
correlates them with trip categories and temporal activities such
as commuting to/from work in the mornings and evenings. Linear
combinations are used to describe macro patterns and non-negative
matrix factorization for detecting how many different patterns exist
in a day.
Differentiation of our work. The novelty of our approach relies on:
(1) a multidimensional pattern recognition process using NTF [4] to
identify different mobility behaviors in taxi data, (2) the expansion
of activity-based human mobility behavior into a hypothesis-based
schema built upon human beliefs and (3) quantifying the plausibility
of beliefs for mobility behavior using HypTrails [23].

8. CONCLUSIONS
In this paper, we have presented an innovative approach for dis-

covering and characterizing patterns in human mobility behavior.
It (i) clusters transition data using non-negative tensor factoriza-
tion (NTF) and (ii) characterizes these clusters using the Bayesian
HypTrails method. Our experiments on taxi data from Manhattan
identified several patterns of human mobility and characterized them
using Foursquare and census data. As one example, we discovered a
group of taxi rides that end at locations with a high density of party
venues on weekend nights. The strength of this approach relies on
the fact that the interpretation of the clustering results can be easily
characterized with high level hypotheses using HypTrails.

Our work extends recent research concerned with a better under-
standing of human mobility. We have demonstrated that human
mobility is not one-dimensional but rather contains different facets
including (but not limited to) time and space. Future research can
benefit from our methodological and experimental concepts pre-
sented in this work. A more fine-grained view on human mobility
can also facilitate e.g., city planners, traffic control and location-
based recommender systems. In the future, we aim to generalize
our findings by studying similar data (e.g., bike trips or geo-tagged
tweets) available for New York and other cities. In doing so, we
could not only unveil novel general patterns of mobility, but also
discover similarities and differences between cities.
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