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ABSTRACT
Explanations have been shown to increase the user’s trust
in recommendations in addition to providing other bene�ts
such as scrutability, which is the ability to verify the va-
lidity of recommendations. Most explanation methods are
designed for classical neighborhood-based Collaborative Fil-
tering (CF) or rule-based methods. For the state of the art
Matrix Factorization (MF) recommender systems, recent ex-
planation methods, require an additional data source, such
as item content data, in addition to rating data. In this
paper, we address the case where no such additional data
is available and propose a new Explainable Matrix Factor-
ization (EMF) technique that computes an accurate top-
n recommendation list of items that are explainable. We
also introduce new explanation quality metrics, that we call
Mean Explainability Precision (MEP) and Mean Explain-
ability Recall (MER).
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1. INTRODUCTION
MF is a family of latent factor models that have been

used with success in CF recommender systems [4]. They
approximate the rating, rij given by user i on item j using
a factorization of the ratings: rij ' piqj . To do this, MF
learns pi ∈ Rf and qj ∈ Rf , which are the lower-rank rep-
resentations of user i and item j in a joint latent space of
dimensionality, f , that is much lower than the typically large
number of users or items. To solve for pi and qj , di�erent
approaches such as stochastic gradient descent can be used
to minimize the error between rij and piqj [4]. One way to
communicate user-based neighborhood style explanations in
MF-based models is to show to the active user, the prefer-
ences of the users who are most similar to her (in terms of
their previous ratings) and who have also highly rated or
liked the recommended item [1]. Similarity between users
can be computed based on their latent factor space repre-
sentation. The drawback of this method is that the way the
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Figure 1: (a) Typical explanation system, (b) pro-
posed explainable recommendation system.

neighborhood style explanation is generated may not convey
the reasoning behind the recommendation. Therefore, there
could be cases where the explanation cannot be generated.
Recall that the MF optimization problem is non-convex [4]
and does not guarantee that the most similar users to an
active user are necessarily those neighbors in latent space,
who have liked a recommended item.

2. EXPLAINABLE-MF (EMF)
Figure 1(a) shows the typical ow of most recommender

systems that provide explanations [5], while Figure 1(b)
shows the ow of the proposed integrated explanation and
recommendation approach. In this approach, we learn a
recommendation model that tries to optimize the items’ ex-
plainability at the same time as the accuracy of the recom-
mendations. In order to to do this, we �rst need to quantify
explainability.

One way to formulate explainability is based on the rating
distribution within the active user’s neighborhood. If many
neighbors have rated the recommended item, then this can
provide a basis upon which to explain the recommendations,
using neighborhood style explanation mechanisms. We thus
propose a novel MF-based CF that leverages an explainabil-
ity bipartite graph with arcs from the set of users onto the
set of items. The graph adjacency is captured in an edge
weight matrix, W , between user-item pairs, de�ned as fol-
lows:

Wij =

{
jN

′
(i)j

jNk(i)j if jN
′
(i)j

jNk(i)j > θ

0 otherwise
(1)

where Nk(i) is the set of k nearest neighbors of user i, N
′
(i)

is the set of user i’s neighbors who have rated item j, and θ
denotes an optional threshold above which we accept item j
to be explainable for user i. Neighbors are calculated using
the cosine similarity. The idea here is that if item j is ex-
plainable for user i, then their representations in the latent
space, qj and pi, should be close to each other. With this
rationale, the new objective function, to be minimized over
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the set of known ratings, can be formulated as:

J =
∑
i,j2R

(rij − piqTj )2 +
β

2
(||pi||2 + ||qj ||2) +

λ

2
(pi− qj)2Wij

(2)
R is the set of user-item pairs for which the ratings are
available, 1

2
(||pi||2+||qj ||2) is an L2 regularization term weighted

by the coe�cient β, and λ is an explainability regularization
coe�cient that controls the smoothness of the new represen-
tation and tradeo� between explainability and accuracy. To
minimize the objective function, we use stochastic gradient
descent and derive the following updates for pi and qj :

pi ← pi + α(2(rij − piqTj )qj − βpi − λ(pi − qj)Wij)
qj ← qj + α(2(rij − piqTj )pi − βqj + λ(pi − qj)Wij)

(3)

3. EXPERIMENTAL RESULTS
We tested our approach on the MovieLens benchmark

data1 which has 100,000 ratings from 943 users on 1682
items, on a scale of 1 to 5. 10% of the ratings are selected
randomly for the test set. Without loss of generality, we
chose θ = 0, which means that if at least one of the neigh-
bors of user i have rated item j, then Wij > 0.

We compare our results with �ve baseline methods: Non-
Negative Matrix Factorization (NMF), Probabilistic Matrix
Factorization (PMF), classical user-based and item-based
top-n techniques, and non-personalized top-n most popu-
lar items. To assess the accuracy of EMF in terms of rating
prediction, we used the Root Mean Squared Error (RMSE)
and Normalized Discounted Cumulative Gain (nDCG@10)
[3] metrics. Note that RMSE can be obtained for methods
that predict ratings but not for top-n algorithms. Each ex-
periment is run 30 times and the average results with vary-
ing number of latent factors, f , when k = 10, α = 0.001,
β = 0.01, and λ = 0.1 are reported in Figure 2, top row.

We measure explainability using the MEP and MER met-
rics. Explainability Precision (EP) is de�ned as the ratio of
number of explainable recommended items to the number of
recommended items for each user; Mean EP (MEP) is the
average value of explainability precision over all users. Sim-
ilarly, Explainability Recall (ER) is the ratio of number of
explainable recommended items to the number of explain-
able items for each user; Mean ER (MER) is the mean ex-
plainability recall calculated over all users. Figure 2 shows
MEP and MER results, for varying number of neighbors,
k, when f = 30, α = 0.001, β = 0.01, and λ = 0.1. The
results in Figure 2, bottom row, indicate that EMF results
in signi�cantly better MEP and MER metrics compared to
other baselines.

To study the e�ect of the explainability regularization co-
e�cient, we varied λ, while �xing all the other parameters
(α = 0.001, β = 0.01, k = 10, and f = 30). Table 1 shows all
metrics based on 5-fold cross validation. Increased regular-
ization improves the explainability metrics (MER and MEP)
while RMSE and nDCG@10 remain almost unchanged.

4. CONCLUSIONS
Our scope, in this work, was limited to CF recommenda-

tions where no additional source of data is used in recom-
mendations or in explanations, and where explanations for
recommended items can be generated from the ratings given
to these items, by the active user’s neighbors only. Thus ex-
plainability can be directly formulated based on the rating
distribution within the active user’s neighborhood.

1http://www.grouplens.org/node/12

Figure 2: Top-left RMSE & top-right nDCG@10 vs.
f . Bottom-left MEP & bottom-right MER vs. k.

Table 1: Performance of EMF vs. λ.
λ

Metrics
RMSE nDCG@10 MER MEP

0 1.3772 0.3578 0.0525 0.9932
0.01 1.3231 0.3608 0.0091 0.9939
0.05 1.3283 0.3652 0.0102 0.9964
0.1 1.3484 0.3503 0.0105 1
0.5 1.3256 0.3601 0.0128 1
1 1.3992 0.3741 0.0133 1

Avg. 1.3421 0.3587 0.0158 0.9956

We focused our research on CF methods which have been
shown to have better serendipity than, and to outperform,
Content Based (CB) methods [2]. We have incorporated
user-based neighbor style explanations based only on the
rating data and without using any additional external data.
This is one main distinction of our approach compared to
existing explanation approaches in the literature, which are,
for this reason, not comparable on a fair basis.
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