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ABSTRACT
In this paper, we present, discuss and summarize di�erent
research works we carried out toward the exploitation of
the Web of data for learning and training purpose (Web of
learning data). For several years now, we have conducted
e�orts to explore this main objective through two comple-
mentary directions. The �rst direction is the scalability
and particularly the need to develop methods able to pro-
vide learners with adequate learning path in the world of
big data. The second direction is related to the transition
from Web data to Web of learning data and particularly the
extraction of cognitive attributes from Web content. For
this purpose, we proposed di�erent text mining techniques
as well as the development of competency framework en-
gineering tools. Resulting evidence-based techniques allow
us to properly evaluate and improve the relationships be-
tween learning materials, performance records and student
competencies. Although some questions remain unanswered
and challenging technology improvements are still required,
promising results and developments are arising.

Keywords
Web learning data recommendation; Web data features ex-
traction; Learning skills engineering.

1. INTRODUCTION
According to Wiley [23], a learning object is \any digi-

tal resource that can be reused to support learning". As
such, a signi�cant number of Web pages match the de�ni-
tion of learning object and Wikipedia could be seen as the
prototypical provider of learning objects. The 37 million ar-
ticles contained in the online encyclopedia generate around
18 billion views a month. Therefore, Web learning, even
informal, is already happening on a large scale thanks to
a constantly increasing number of quality contents, better
connectivity and web literacy. In the meantime the tools
providing web users with learning material have not really
evolved since the beginning of the WWW. Wikipedia is still
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relatively 
at in term of content hierarchy, search engines
are more interested in tracking users’ habits for advertis-
ing purpose rather than learning needs and no tools o�er
learning services similar to what can be found on virtual
learning environments. A learning path recommender sys-
tem providing users guidance to select the right web material
to reach a targeted level of knowledge would bene�t users
looking to mine the web for learning purpose. The same
way some big internet names have been able to determine
user’s purchase interests, we should be able to detect user’s
abilities and knowledge and align their speci�cities to the
resources available to optimize learning. This vision does
not come without deep challenges that we discuss along the
di�erent propositions presented in this paper. Among the
challenges of transforming the WWW into a real web of
learning, is the scalability of the solutions. This is explored
in the context of our investigations regarding learning path
or curriculum recommendation (Section 2). Over the years,
educational data mining and recommendation technologies
have proposed signi�cant contributions to provide learners
with adequate learning material by recommending educa-
tional papers [20] or internet links [13], using collaborative
and/or content-based �ltering. Other approaches, especially
in the course generation research community, address the
need for recommending not only the learning objects them-
selves, but sequences of learning objects [22, 12]. However,
none have investigated learning path recommendation for
large repositories counting millions of learning objects like
the Web is potentially o�ering. We discuss and present de-
velopments regarding learning path in the following section
before focusing in section 3 on potential approaches to con-
vert the Web to a Web of learning data and discussing cur-
rent and further developments in the fourth section of the
paper.

2. BUILDING (WEB) LEARNING PATH

2.1 Dynamic Dependencies
To some extent, the Web can be seen as a graph in ex-

pansion, where edges are built according to the usage made.
For instance, it is usual to build edges according to the hy-
pertext links between pages but they can also be built for a
more speci�c learning perspective considering competencies
prerequisite and gains. For this last purpose, let G = (V;E)
be a directed graph representing the Web of learning data.
Each vertex or node in G corresponds to a learning object.
Two vertices are connected if there exists a dependency re-
lation, such that one vertex satis�es the prerequisites of the
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Figure 1: Illustration of the dynamic direct graph principle.
If A provides competency 1, B provides competency 2, and
D is accessible to a learner with competencies 1 and 2, a new
edge should be created to connect B and D.

other. So, an edge
−→
AB between two vertices A and B means

that the learning object A is accessible from B. Building
such dependencies is non-trivial especially if they are not
solely based on explicit HTTP links. We will talk more
about this problem later in Section 3. Dependencies aside,
the issue is now to build a learning path on a large graph,
starting from user’s initial competencies, and ending at the
target competencies.

If the Web was simply a big graph with static edges then,
depending on the learning strategy, recommending a learn-
ing path could be solved by a shortest path algorithm. How-
ever, the edges are not static, but rather dependent on the
learning objects consulted previously. For example, let’s
consider a learning object D that would be accessible to
a learner having reached mastery in competencies 1 and 2.
Assume that competency 1 is provided by learning objects
A and C and competency 2 is provided by learning objects
B and C. D is reachable if learning objects A and B are
completed or if learning object C is completed. If a learner
completes learning object A at time t and learning object
B at time t + 1, the learner will have the competencies re-
quired to reach D and a new edge between B and D should
be created (Figure 1).

2.2 Heuristic Approach and Graph theory
Finding a learning path, in our model, consists in looking

for the shortest path in a large dynamic graph. Due to
the complexity of searching such a graph, no deterministic
approach is suitable. Therefore we proposed a two-stage
algorithm that �rst reduces the problem state or graph size,
then solves the reduced graph.

The �rst stage can be seen as a loop generating subgraphs
or cliques1, until one such clique is generated whose prereq-
uisites are a subset of the learner’s competencies. Cliques
are generated in a top-down manner. We begin with the
target clique, which is composed of a single learning object
(we create a �ctitious learning object, �, whose prerequisite
competencies correspond to the list of the learner’s target
competencies). Cliques are then generated by �nding ev-
ery vertex where at least one output competency is found

1Complete subgraphs in which all the learning objects are
adjacent to each other.

in the prerequisite competencies of the clique (the union of
all prerequisite competencies of every learning object within
the clique) to which it is a prerequisite. As such, cliques
contain the largest possible subset of vertices which satis�es
the condition \if every learning object in the clique is com-
pleted, then every learning object in the following clique is
accessible"2 while preserving dynamicity constraints.

In the second stage, a greedy algorithm attempts to �nd
a path by considering each clique one after the other and
reducing it to a minimal subset of itself which still veri�es
the condition \if every learning object in the clique is com-
pleted, then every learning object in the following clique is
accessible". For each clique, the local optimum is obtained
when the minimum subset of vertices with a minimum \de-
gree", being the sum of the number of prerequisite compe-
tencies and output competencies of the vertex, are found. In
other words, the greedy algorithm selects in each clique a set
of learning objects minimizing the number of competencies
required and gained in order to locally limit the cognitive
load of the selected material. Note that the degree function
could be calculated to accommodate other learning policies
like maximizing learning gains to stimulate curiosity.

2.3 Further Developments
Overall, the clique-based approach is an e�cient way to

reduce the solution space and check the existence of a solu-
tion. However, a greedy search may not lead to the shortest
learning path. To solve this issue, we investigated binary
integer programming as an alternative [4]. Our implemen-
tation of the branch-and-bound (B&B) algorithm solved the
accuracy issue but the performance cost is questionable. Al-
ternatives as mentioned by Applegate et al. [1] like branch-
and-cut could prove to be faster but likely not as fast as the
greedy approach. Moreover, as mentioned in [11], the e�-
ciency of reducing the solution space with the clique mech-
anism is highly dependent on the dataset topology (average
number of gain and prerequisite competencies per learning
object) as highlighted by Figure 2. For instance, the calcula-
tion time increases di�erently depending on the variation of
the number of output or prerequisite competencies3. Mixing
algorithms in order to balance computational time and ac-
curacy based on the graph topology might bring interesting
developments.

3. WEB TO WEB OF LEARNING DATA

3.1 Competency Mining
Using the Web of learning data requires the algorithms to

be able to provide the adequate guidance to learner. The
graph model proposed in the previous section to recommend
learning paths requires competencies to be identi�ed for each
Web page in order to be processed and potentially recom-
mended. However, this information is usually not available
in web content. Moreover, editing each web page to man-
ually de�ne required metadata is not an option. Not only
because this would take a huge amount of time, but also be-
cause extracting competency information is complicated and

2This condition confers also the completeness property to
the subgraphs. By extension, if every learning object is ac-
cessible in the following clique then all of them are adjacent.
3A more detailed performance study of the greedy algorithm
is available in [11].
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Figure 2: Computational time of the Greedy version of the
two stage algorithm with di�erent graph topologies counting
105 learning objects and 104 competencies (Intel Core 2 Ex-
treme Q9300 CPU at 2.54GHz and 8GB RAM with Apache
Cassandra Database on the same machine).

prone to mistakes. Even for experts in cognitive sciences,
de�ning the right granularity as well as the distribution of
the competencies among the learning tests is a challenging
task [10].

Q =


Skillc1 Skillc2 Skillc3

ItemA 1 0 0
ItemB 0 1 0
ItemC 1 1 0
ItemD 0 0 1



Figure 3: Example of a Q-matrix illustrating the competen-
cies gained in the dynamic graph example of �gure 1.

One promising approach comes from the psychometric and
educational data mining (EDM) community where some re-
searchers are trying to automatically discover competencies
based on learners performances. They pursue the objective
of generating a matrix called Q-matrix that associates learn-
ing items and competencies (Figure 3). Desmarais and as-
sociates [7, 8] re�ned expert Q matrices using matrix factor-
ization, with impressive successes. However as non-negative
matrix factorization is sensitive to initialization and prone
to local minima, a fully automated generation might be out
of rich with this method. Sun et al. [19] generated binary
Q-matrices using an alternate recursive method that auto-
matically estimates the number of competencies, yielding
high matrix coverage rates. Others [18, 6] estimated the Q-
matrix under the setting of well-known psychometric models
that integrate guess and slip parameters to model the vari-
ation between ideal and observed response patterns. They
formulated Q-matrix extraction as a latent variable selection
problem solved by regularized maximum likelihood, but re-
quiring the number of competencies as input. Finally, Sparse

Factor Analysis [17] was recently introduced to address data
sparsity in a 
exible probabilistic model.

3.2 Competency Description
All of these approaches address competency frameworks

generation from slightly di�erent angles but none of these
techniques address the problem of providing a textual de-
scription of the discovered attributes. This makes them hard
to interpret and understand, and may limit their practical
usability. In the mean time, it is di�cult to extract a full text
description of a latent competency fully automatically. How-
ever, a lot of textual information is available in test items,
whether in the text of the questions, hints or responses. We
proposed a simple probabilistic model that extracts, from
this text, the keywords that are most relevant to each skill
[14]. The intuition is that relevant keywords are not always
high frequency word, which tend to be common or topical
words. Keywords relevant to a competency are words that
are relatively frequent in items testing that competency, and
relatively infrequent in items testing other competencies.

We tested this on a small dataset from the PSLC Datashop
[16] containing 823 test items, with competency frameworks
ranging from 44 to 108 competencies associated with at least
one item. Table 1 shows examples of keywords extracted for
5 competencies with known labels. In our experiments, the
labels were removed before the keyword extraction was ap-
plied to the associated test items. Note that in most cases,
we extracted words from the unseen label, as well as many
other related relevant words.

We quanti�ed this process using various metrics measur-
ing coverage and speci�city of keywords, on several com-
petency frameworks, and compared our simple probabilistic
extraction technique to the common alternative of using the
most common (most frequent) words. We found that with
our extraction, keywords are used to describe on average 1.2
to 1.4 competencies (maximum 9), whereas the highest fre-
quency keywords describe on average 3 competencies each
(maximum 87). In fact some words like \correct" or \incor-
rect" are highly frequent, but clearly not very informative
about competencies.

In our proposed method we only extracted key words from
the textual data. A straightforward improvement would be
to extract longer, more descriptive information such as mul-
tiword terms, short snippets from the data or more compli-
cated linguistic structure such as subject-verb-object triples
[2]. The data-generated descriptions can also be useful in
the generation or the re�nement of Q-Matrices. Naming
competencies can o�er signi�cant information on the con-
sistency of a Q-matrix. This can be used as an alternative
or a complement to existing re�nement methods based on
functional models optimization [8].

3.3 Competency Frameworks Evaluation
While competency generation seems to provide interest-

ing results toward the objective of automatically extracting
competencies from observed performance patterns, the qual-
ity of the extracted matrices is questionable. Unfortunately,
the predictive quality of such matrices is sometimes only as
good as chance in term of predictive accuracy. In order to
address this problem, we proposed a method that aims at
speci�cally evaluating the predictive quality of a Q-matrix.
For this purpose, we proposed an evaluation method using a
deterministic model using matrix factorization techniques.
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Competency label #items Top 10 extracted keywords
identify-sr 52 phishing email scam social learned indicate legitimate engineering anti-phishing
p2p 27 risks mitigate applications p2p protected law file-sharing copyright illegal
print quota03 12 quota printing andrew print semester consumed printouts longer unused cost
vpn 11 vpn connect restricted libraries circumstances accessing need using university
dmca 9 copyright dmca party notice student digital played regard brad policies
penalties dmca 2 penalties illegal possible file-sharing fines 80,000 $ imprisonment high years
penalties bandwidth 1 maximum limitations exceed times long bandwidth suspended network access

Table 1: Top 10 keywords extracted, for a sample of competencies, from the text of their test items. \# item" is the number
of items associated with the competency. Competency labels (left) are hidden from the extractor.

The evaluation method considers a factorization model;
R = Q × S where R and S are, respectively, the \Results"
(item×student) and \Student" (competencies×student) ma-
trices. Assuming R observed andQ known, our method eval-
uates how well Q would predict unobserved results through
a classical 10-fold cross validation algorithm (injecting miss-
ing values in R). For each fold, an estimated student ma-

trix Ŝ is obtained by solving the system of linear equations
Q× x = R. In our experiments, we used the weighted least
squares method4, although we could also impose various
constraints on the s0tudent matrix using non-negative or
Boolean matrix factorization. Test observations are removed
from the results matrix R according to the cross-validation
framework, and predictions are made for these values using

the product of the Q-matrix and the estimated Ŝ. Prelimi-
nary results obtained with this method are conclusive [10].
To illustrate this method, let’s consider two Q-matrices pre-
sented in Figure 4 and estimate the predictive quality of
each Q-matrix. In this example, we consider a well known
dataset with its original Q-matrix and a Q-matrix variant
that was automatically improved.

(a) Tatsuoka (20x8) (b) Desmarais (20x8)

Figure 4: Graphical representation of the Q-matrices used
in our example. Black cells in the Q-matrix (ones) indicate
that one of the 20 items (rows) is associated with one of the
8 skills (columns).

Both Q-matrices are related to a dataset involving 2144
middle school students answering 20 items on fraction alge-
bra and requiring the use of the eight following skills [21]:

1. Convert a whole number to a fraction,

2. Separate a whole number from a fraction,

4http://en.wikipedia.org/wiki/Least squares#Weighted least
squares

3. Simplify before subtracting,

4. Find a common denominator,

5. Borrow from whole number part,

6. Column borrow to subtract the second numerator from
the �rst,

7. Subtract numerators,

8. Reduce answers to simplest form.

The Q-matrix (a) on the left side in Figure 4 was proposed
by Tatsuoka [21], while the one on the right (b) was re�ned
(automatically improved from the original (a)) by Desmarais
[9]. The re�ning process resulted in changing the mapping
between items and skills slightly: skill 3 (\Simplify before
subtracting") was added to item 8 and removed from items
19 and 20, and skill 8 (\Reduce answers to simplest form")
was removed for items 10 and 12. Table 2 shows Q-matrix
evaluation results calculated with our evaluation method.
The Root Mean Square Error (RMSE) as well as the Mean
Average Error (MAE) are smaller for Q-matrix (b), showing
that the re�ned matrix has better predictive ability than the
original one (lower reconstruction errors). Calculating the
RMSE for Q-matrix (a) with another cognitive model like
the Additive Factor Model (AFM) yields an error close to
.37. The values range obtained with our method tends to
corroborate that matrix factorization models lead to predic-
tion errors that are comparable to other cognitive diagnostic
models [3] while keeping interesting advantages.

As the weighted least squares algorithm handles miss-
ing values without imputing them, this makes the proposed
method usable in cases where the observed results are in-
complete, such as when learners do not perform the same
items, or progress at di�erent paces. Uncompleted items
should do not necessarily prevent the Q-matrix from being
tested and iteratively improved in parallel with the testing
activity. Using a cognitive model with very few parameters
is also an advantage to generate and evaluate Q-matrices.
In fact, adding parameters to a cognitive model make the
evaluation of the Q-matrix more di�cult since the expert
misconceptions can be more easily compensated by these
extra parameters.

3.4 Multi-Relational Competency Frameworks
The generation of competency frameworks is a challeng-

ing task. So far, our research e�ort has focused on relatively
simple competency frameworks modeled by Q-matrices. In
fact, Q-matrices do not consider di�erent types of associa-
tions between tests and competencies. Nonetheless, in the
graph model we proposed in Section 2 we considered two
types of competencies; the competencies that are required to
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Table 2: Results obtained by the Q-matrix evaluation
method on expert-made Q-matrices, in root means squared
(RMSE) and mean average (MAE) reconstruction errors.

Dataset (a) Tatsuoka (b) Desmarais

RMSE .4051 .3810
MAE .2531 .2353

understand the learning material and the competencies that
the learning material provides to the learner. Q-matrices as
competency frameworks are built around tests that require
some competencies to be passed but rarely provide learning
gains. As a result, the unidirectional learning competency
relationship investigated with Q-matrices is not su�cient to
build the graph we discussed in Section 2 to build envisioned
Web of learning data. Extracting both competencies gained
and required while research focusing on \simple" Q-matrix
models is still emerging, represents a very serious challenge.
For instance, the question of discriminating competencies
required to use a web page and the competencies provided
as bene�ts might not be simple to answer. Many web pages
may not explicitly contain any words, metadata or more
globally information related to required competencies. For
example, a web page presenting techniques of matrix decom-
position would require from the reader a good understanding
of matrix multiplication but no reference to matrix multi-
plication might be attached to the document. Even known,
the relation between competencies required and competen-
cies gained may not be straight forward to understand and
exploit. If a person consulting the page on matrix decompo-
sition does not understand matrix multiplication, the set of
competencies gain from reading the page may be limited. In-
ferring such limitation may require a deeper understanding
of competencies dependencies as well as learner knowledge
and cognitive capacities that is once again challenging to
obtain in such an informal learning environment.

4. DISCUSSION
Online learners are learning without being evaluated like

students would be by a teacher that is able to provide guid-
ance based on the normative and formative assessment per-
formed. Nonetheless, this might not necessarily mean that
cognitive diagnostic models cannot bene�t the Web of learn-
ing data research. Even so the cognitive diagnostic models
used in competency frameworks generation require the use
of test results and that typical Web pages do not measure
success or failure, similar metrics could be built. One of the
most widely used technologies online is collaborative �lter-
ing, using either explicit ratings �lled by users or implicit
ratings based on di�erent observed behaviors (or both). Us-
ing feature extraction and navigational patterns, it should
be possible to build metrics that could be used to build web
learning predictive models.

However, considering only the informal nature of web learn-
ing might narrow the scope of the possible applications. The
Web of learning data is composed of an increasing number
of shared educational contents. Some of them are shared for
indexing purpose and are formatted with rich metadata in-
formation through standards like the Learning Object Meta-
data. While the explicit de�nitions of competency gained

and competency required are not designed in metadata for-
mat, related information like learning objectives, or depen-
dencies can be exploited to de�ne competency gains. Com-
petency required can be induced when a hierarchical com-
petency framework is de�ned, or using the learning object
dependencies whenever it is correctly �lled in the metadata
format. This information, when available, can provide useful
initialization values for competency referential re�nement.

Scalability is a requirement for learning path recommen-
dation but also for competency frameworks extraction, re-
�nement and evaluation. So far, competency frameworks
engineering has been conducted on relatively small datasets
compared to the amount of information that might be treated
for a Web of learning data. Hubwieser and M�uhling [15]
clearly embraced this issue by proposing a method to mine
competencies in large data sets (tens of thousands of par-
ticipants, after preprocessing). Their method is particularly
interesting since it looks �rst at the set of items using latent
traits analysis to �nd a set of questions that would evalu-
ate a common competency (joint psychometric construct).
Their comparison to several psychometric models (Item Re-
sponse Theory, IRT) con�rms the validity of the competency
mapping. So far, the type of competency framework built
is very simple and equivalent to a Q-matrix with one com-
petency shared by n items but the authors mention that
a multidimensional IRT can potentially be used. Alterna-
tively, our Q-matrix evaluation algorithm could technically
be implemented in this method to build and validate Q-
matrices with several competencies per item. However, the
main limitation of this method may come from scaling the
latent trait analysis, which requires a very unbalanced ratio
between items and performance observations. As a result,
the method is particularly well adapted to situations when a
lot of participant and results are available on a small number
of items.

Considering the high number of documents and the lim-
ited performance information of web learning, promising
work may come from the information retrieval community
with methods based, for example, on Latent Dirichlet Al-
location (LDA) [5]. Like topics in textual data analysis,
competencies can be modeled as latent variables that are in-
ferred rather than directly observed. Once topics and their
associated distributions have been estimated from a corpus
of documents, LDA allows the assignment of new documents
to these topics. Similarly, new test items could be associated
with estimated latent competencies. Note that in LDA like
in the related Matrix Factorization methods, the number of
latent topics/competencies must be pre-speci�ed.

5. CONCLUSION
In this paper we discussed ongoing e�orts towards a Web

of learning data that would use the constantly growing re-
sources available online to bene�t web learners needs. A
prominent challenge that was initially discussed is to pro-
vide learners with customized tailored learning path allow-
ing them to reach target or key competencies. However, it
is necessary to recognize that learning requires needs going
beyond the navigational constraints the WWW was built
upon. Considering the scale of the Web and the dynamic
nature of learning we proposed some new sets of algorithms
using heuristics in our e�ort to support web learners more
adequately than traditional search engines. We also realized
that the information required to discriminate web content
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for learning purpose goes beyond hyper-links and traditional
metadata keywords. Consequently, we proposed an infor-
mation model in which contents are quali�ed regarding the
competencies they require and the competencies they pro-
vide. As latent factors, competencies are di�cult to recog-
nize even by knowledge domain experts. For this purpose we
presented our results on automated competency extraction
providing methods to name them and evaluate competency
frameworks predictive quality. Among future developments,
we envision the extension of our work on competency frame-
works to multi-relational structures including the two types
of competencies de�ned in our information model (compe-
tencies gain and required) while taking care as discussed in
Section 4, of the scalability of proposed methods.
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