
A Work-Flow for Empirical Exploration of Security Events

Martin Pirker
Josef Ressel Center for Unified Threat

Intelligence on Targeted Attacks,
St.Pölten University

of Applied Sciences, Austria
martin.pirker@fhstp.ac.at

Andreas Nusser
Josef Ressel Center for Unified Threat

Intelligence on Targeted Attacks,
St.Pölten University

of Applied Sciences, Austria
andreas.nusser@fhstp.ac.at

ABSTRACT
As the internet continuously expands, information security
research is a never ending challenge. It is impossible to know
all internet participants, protocols and their applications.
Instead, security research focuses on empirically collected
real-world data; stores, processes, transforms and analy-
ses the data, in order to learn from it and its anomalies—
security issues—as they happen. This paper presents one
practical work-flow for collection and processing of security
related data. It present a hard- and software setup, experi-
ences made, and estimates future developments. This gives
others the opportunity to learn and identify areas for im-
provement, especially those in the early stages of setting up
a research project based on empirically gathered data.

Keywords
security data mining; big data; virtualisation containers;

1. INTRODUCTION
Computer technology advances continuously. The global

internet links all sorts of computing devices and produces
new scenarios and applications—and challenges, especially
in the domain of information security. While the basic build-
ing blocks of computers, operating systems and data ex-
change protocols are documented, nobody can know and
comprehend all of them. While clients, users and their be-
haviour in a local network are usually known and manage-
able, once a global audience and their devices connect with
global services and interact, locally learned knowledge is no
longer sufficient. Instead, one must learn from practical ex-
perience and data, and improve and change on-the-fly.

Consequently, this leads to novel and unexpected security
problems and scenarios. Due to the complexity of today’s
technologies and the many ways they may interact, it is
impossible to plan or predict for all possible future security
challenges. Security research is not solely imagining of devel-
opments and events ahead, but also demands a strong foun-
dation in and alignment with practical experiences. This

Copyright is held by the International World Wide Web Conference Com-
mittee )IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author(s site if the Material is used in electronic media.
WWW(16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2888607 .

demands an approach of empirical collection of security data
and the setup of a data storage and analysis work-flow for
researchers active in computer and internet security.

Contribution This paper presents the experience of set-
ting up a work-flow for processing of security events. The
specific security research work is not discussed in detail,
rather, the focus is on the data collection and processing
components in the work-flow. The presentation and docu-
mentation of this setup provides the opportunity for others
to learn and identify areas for improvement, or just as inspi-
ration on what is possible. This is especially interesting for
when one is in the early stages of setting up a new research
project in information security.

Outline Section 2 introduces a simple scenario and de-
rives a set of work-flow requirements from it. Section 3 then
presents the work-flow in detail. This comprises the hard-
ware and software components and how they interact with
each other. Finally, Section 4 reflects on the current state,
and possible future developments and challenges.

2. SCENARIO

2.1 A Search For The )Yet) Unknown
The domain of information security is too complex so

that all possibilities and interactions are always considered.
Rather, too many security incidents are explained retroac-
tively as “who would have though of that to be/turn into
a problem”. Concurrently, a whole branch of security re-
search accepts as base insight that the challenge is no longer
the development of more efficient detectors of known prob-
lems. Instead, novel, unknown attacks do and will happen,
and consequently the challenge is to detect whether “some-
thing” still works as expected. There is “normal behaviour”
and there are “anomalies”, which may be evidence of actual
security problems.

Several previous efforts considered this in the domain of
intrusion detection systems. For surveys and overviews of
previous approaches of anomaly detection in intrusion de-
tection see, e.g., [3, 5, 9, 16]. These works share the com-
mon insight that fixed/known patterns for detection of in-
trusions only go so-far, the global internet produces attacks
faster and faster. As an alternative, in order to detect intru-
sions, a selection of security related events are observed and
recorded. With a larger, collaborative scale, this produces
a grander view on the data, and consequently “anomalous”
intrusion security events may then be spotted in the data.

We follow the thinking in these works that it is impossible
to know what will happen, but when it happens the collected

477



data will be somehow different. Obviously, by definition,
when something different happens it must also produce some
difference in the collected data. Naturally, what to look for
in detail depends on the specific security research question.

What is clear from this simple scenario of searching for
the yet-unknown is, however, that security research requires
a proper setup for security data (or events) collection, pro-
cessing, and iterative refinement of the research question(s)
as insights from practically obtained data becomes available
and consequently further exploration.

2.2 Requirements
We identified the following requirements to be accom-

plished by our processing work-flow:
A Large Dataset: In order to spot changes in data over

time a sufficiently large collection of data is the basis to work
with. Unfortunately, depending on the research question it
may be difficult to impossible to guess the data size before-
hand. However, it is clear that when the research method
is to spot features in data, the data to examine will exceed
the storage capacity of a standard desktop or laptop.

Consequently, a work-flow includes a remote server with
a huge storage capacity. As security research sometimes
handles confidential data provided by companies only via
non-disclosure agreement (NDA), the use of additional com-
puting resources from cloud providers is not an option.

Flexibility in Processing and Modification: Com-
mon databases store and process data. Today’s SQL-based
databases provide a rich set of operations to operate on data.
However, each SQL database vendor implements a different
set of operations in their SQL dialect. A mapping of all
data processing to a specific SQL dialect binds one to one
specific database vendor and further, individual researchers
have to learn the intricacies of database administration. A
survey of SQL knowledge in the research team motivated
the need that a researcher can implement ideas and experi-
ments solely with a general purpose language, and the SQL
knowledge required is kept minimal.

Replication and Portability: A data processing work-
flow should be run-able by anyone, easily. Consequently,
this motivates the use of primarily open-source software, as
a base operating system as well as for the individual data
processing stages. Open-source enables the inspection, cus-
tomisation and replication of the work-flow by anyone.

Further, instead of installation and customisation of soft-
ware packages directly on a researcher’s host operating sys-
tem, a more flexible way is to aim for a virtualisation-based
solution. With virtualisation everyone on the team can use
the identical base components with the centrally stored data.

Visualisation And Interaction: The capacity of a hu-
man’s mind is limited, one can only hold so many abstracted
pieces of information at the same time in our mind. Conse-
quently, vast amounts of data demand a reduction of infor-
mation. Fortunately, our human visual system is very good,
as the common saying “A picture says more than thousand
words” reminds us.

The work-flow is thus not complete without a webbrowser-
based interface, as webbrowsers are a widely deployed so-
lution to display pictures and provide interaction with the
user. This naturally enables an “everywhere, anytime” ca-
pability, once a specific data mangling function is web inter-
action enabled.

Figure 1: Components and their relations in the
work-flow. External event collectors stream their
security events to a central server. The server hosts
multiple Docker-based containers. From the outside
researchers connect via an IPython-based interface
running in a standard webbrowser to interact with
the data on the server.

3. WORK-FLOW
Building on the scenario reflections in Section 2.1 and the

requirements drafted in Section 2.2, we now present an ex-
emplary implementation of our security data collection, stor-
age, processing and interaction work-flow. Figure 1 provides
a high-level overview of the major components.

3.1 Hardware
Remote Server: A standard off-the-shelf brand-name

server plays the role of the central data processor. It has
more (server-class) CPU cores, more gigabytes of main mem-
ory, and many terabytes more storage than a standard PC.

Local Workstations: Every researcher has a normal
laptop or desktop PC on his desk. Nowadays even stan-
dard PCs have quad-core CPUs, gigabytes of memory and
fast storage via solid-state drives (SSDs). Consequently, to-
day’s PCs often have sufficient computing power to locally
develop and test algorithms on a limited data set, before a
deployment of them on the full data at the remote server.

3.2 Software
Base/OS Layer: Our server runs with vSphere Hypervi-

sor [17]. It provides the low-level virtualisation layer so the
server’s resources can be partitioned for individual research
problems (or subgroups) as needed.

As base OS running in one virtualisation we chose Ubuntu
LTS [2]. The long-term stability (LTS) edition provides ease
of administration as the software packages are security main-
tained and regular updates usually apply without problems.

Ubuntu LTS also comes with support for Docker [4] con-
tainers by default. Docker containers provide a separation
of resources for different applications. However, all contain-
ers run on the same Linux host kernel and are more efficient

478



than traditional virtualisations that require a full operating
system copy. Inside containers it is possible to run a different
Linux distribution than the one of the host.

The Ubuntu base remains a bare installation. Instead,
several Docker containers host different stages in the data
processing. For example, the whole database runs in one
container and only exports one network port as interface.
The database network port connects to another Docker con-
tainer that hosts the next data processing layer.

Another container hosts the custom collection of data pro-
cessing packages (see next sections). This container runs a
custom build of Gentoo Linux [6]. The choice of Gentoo is
motivated by a) Gentoo is by design easy to customise from
scratch and b) the need to be very selective in the installa-
tion and combination of software packages (versions).

Docker also enables an easy transfer of containers. A con-
tainer image may migrate to a desktop PC, or to a laptop for
work while travelling. A container image may also be pub-
lished so that other researcher can recreate the same setup.
Naturally, another benefit is that everyone on the team uses
the same image, it is just one docker load command away.

Data Collection: The data collectors are deployed on
different machines and stream their security events via a
simple network TCP connection to our server. In this paper
the focus is on the data work-flow, the nature of the data
collected and the actual research questions are out of scope
for this paper. We leave this discussion to another paper.

Storage / Database: The database container receives
data via a network connection. The stream of data packets
is stored in an SQL database.

Initially, this task was implemented with MySQL [11].
However, we encountered a) data corruption issues and b)
performance in some cases depended heavily on the order
in which SQL join queries were issued to the database (and
obviously not smartly optimised by the database).

Consequently, we abandoned MySQL and instead deployed
PostgreSQL [13]. We are unable to report any issues, so far.

Data Mangling: For a general purpose programming
language we chose Python [14]. Python provides a very
rich environment of ready-to-use libraries. Of special note,
Python hosts the “SciPy” ecosystem of open-source software
for mathematics, science, and engineering problems. Also,
the “PyData” conference series provides this community a
forum and several commercial companies push the state of
the art of Python for big-data processing.

One unfortunate feature of Python is the split between
the end-of-development Python 2.x and the current Python
3.x series. We chose to base our work on Python 3.x right
from the start and consider ourselves lucky that all Python
packages we use already provide mature Python 3.x support.

For data retrieval we rely on SQLAlchemy [15], it is a full
database toolkit to interact with the major SQL databases.

Data processing in pure Python would be too slow. How-
ever, the Numpy [18] and Pandas [10] packages provide C-
backed acceleration for the processing of large data sets.

The NetworkX [7] package performs in-memory modelling
of data relationship graphs. It also provides a set of common
graph manipulation functions. Figure 2 depicts an example
graph of process call relationships.

Visualisation: For data visualisation Matplotlib [8] is
the established Python plotting library and commonly used
by scientists. Several packages take advantage of Matplotlib’s
basic primitives to build more sophisticated (or prettier) vi-

Figure 2: A NetworkX graph with process relation-
ships. Different node colours depict the security sta-
tus of the process and connecting edges show who
called who how many times.

Figure 3: From an IPython notebook dialog a re-
mote call to a Python routine on the server triggers
the drawing of a graph with Bokeh. The icons on
the left provide interactive zoom, resize and other
interactions with the graph in the webbrowser. Ob-
viously, between 17:00 and 18:00 a notable amount
of file accesses happened.

sualisations of data (e.g., Seaborn [19]). Matplotlib comes
from a time of static graphs (and now also provides interac-
tive ones), however, for large datasets and web-based inter-
action a new generation of library is needed.

Bokeh [1] provides the visualisation for large datasets, an
example is shown in Figure 3. While Bokeh is a rather young
package and in active development—which unfortunately
sometimes requires code changes from releases to release—
its explicit development goal is “high-performance interac-
tivity over a large or streaming dataset”. So while this young
library is still a bit unstable, in the future it will improve
and fit well with growing datasets (and requirements).

User Interface and Interactive Exploration: The
early stages of data import are mundane work. There is no
perfect data stream and some corrections and transforma-
tions have to be made, e.g., data timestamp synchronisa-
tion errors due to intermediate network errors. This kind

479



of code is written once and then performs its task in the
data processing pipeline, it does not need any further user
interaction.

Testing a new idea with the pool of data is, however, an
interactive process. A piece of code runs on the data, pro-
duces a result, the result leads to a tweaking of parameters
and the test runs again. Consequently, this method of data
exploration requires an efficient “implement, run, tweak, run
again” feedback loop.

IPython [12] provides an interactive interface: an IPython
notebook runs in the webbrowser on a local PC. It keeps an
open network connection to the remote server where the
IPython kernel runs in a Docker container. Code is devel-
oped in the web browser, which is then transferred to the
server, executed, and the result reported in the webbrowser
again. Immediately the code can be edited and re-executed.
A result may also be an interactive graph, where the re-
searcher uses the mouse to zoom and scroll in the data.

4. CONCLUSION AND OUTLOOK
The work-flow presented in this short paper serves us well,

so far. We are happy that it turned out this way as the
overall knowledge of the individual pieces was sparse ini-
tially. All team members contributed their knowledge of
individual pieces of the puzzle and subsequent assembly of
our setup lead to the work-flow as presented. Naturally, it is
impossible to plan the complete setup and then implement
it. Rather, as more data became available certain parts had
to be tweaked for, e.g., a better throughput performance.

With this work-flow, we are able to manipulate data in
standard Python 3.4 scripts sufficiently fast, up to approxi-
mately 80000 events/s with simple manipulations, and still
several thousands event/s with complex analyses. If perfor-
mance becomes an issue, there are several efforts and pack-
ages in the SciPy community that provide alternative, faster
algorithm implementations.

We are dependant on the development path of certain li-
braries, however, we are optimistic that they will continue
to work fine. In the worst case our choice of an open-source
basis allows to implement changes all by ourselves. Further,
we can freely share our setup for reuse and replication of
our work. The public availability of datasets depends on
how we obtained them; datasets provided by companies un-
der non-disclosure agreement cannot be reexamined by other
researchers, obviously.

As our understanding of the recorded security events im-
proves, the strategies for analysis will also adapt. This ap-
proach of empirical mining in datasets was enabled by suf-
ficient advances and availability of cheap computing power
and storage. We hope novel data analyses with the support
of recent software packages also lead to new insights with
real-world gathered security event(s) data.

Acknowledgements
The financial support by the Austrian Federal Ministry of
Science, Research and Economy and the National Founda-
tion for Research, Technology and Development is gratefully
acknowledged.

The work presented in this paper was done at the Josef
Ressel Center for Unified Threat Intelligence on Targeted
Attacks (TARGET). TARGET is operated by the St. Pölten
University of Applied Sciences.

5. REFERENCES
[1] Bokeh Development Team. Bokeh: Python library for

interactive visualization.
http://www.bokeh.pydata.org, 2016.

[2] Canonical Ltd. Ubuntu: The leading OS for pc, tablet,
phone and cloud. http://www.ubuntu.com/.

[3] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Comput. Surv.,
41(3):15:1–15:58, July 2009.

[4] Docker, Inc. Docker: Build, ship, and run any app,
anywhere. https://www.docker.com/.

[5] P. Garćıa-Teodoro, J. Dı́az-Verdejo,
G. Maciá-Fernández, and E. Vázquez. Anomaly-based
network intrusion detection: Techniques, systems and
challenges. Comput. Secur., 28(1-2):18–28, Feb. 2009.

[6] Gentoo Foundation, Inc. Welcome – Gentoo Linux.
https://www.gentoo.org/.

[7] A. A. Hagberg, D. A. Schult, and P. J. Swart.
Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in
Science Conference (SciPy2008), pages 11–15,
Pasadena, CA USA, Aug. 2008.

[8] J. D. Hunter. Matplotlib: A 2d graphics environment.
Computing In Science & Engineering, 9(3):90–95,
2007.

[9] V. Jyothsna and V. V. R. Prasad. Article: A review of
anomaly based intrusion detection systems.
International Journal of Computer Applications,
28(7):26–35, August 2011.

[10] W. McKinney. Data structures for statistical
computing in Python. In S. van der Walt and
J. Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 – 56, 2010.

[11] Oracle Corporation. MySQL: The world’s most
popular open source database.
https://www.mysql.com/, 2016.

[12] F. Pérez and B. E. Granger. IPython: a system for
interactive scientific computing. Computing in Science
and Engineering, 9(3):21–29, May 2007.

[13] PostgreSQL Global Development Group. PostgreSQL.
http://www.postgresql.org/, 2016.

[14] Python Software Foundation. Welcome to Python.
https://www.python.org/.

[15] SQLAlchemy authors and contributors. SQLAlchemy:
The data toolkit for python.
http://www.sqlalchemy.org/, 2016.

[16] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser,
and M. Fischer. Taxonomy and survey of collaborative
intrusion detection. ACM Comput. Surv.,
47(4):55:1–55:33, May 2015.

[17] VMware, Inc. vSphere Hypervisor.
https://www.vmware.com/, 2016.

[18] S. v. d. Walt, S. C. Colbert, and G. Varoquaux. The
numpy array: A structure for efficient numerical
computation. Computing in Science and Engg.,
13(2):22–30, Mar 2011.

[19] M. Waskom. Seaborn: statistical data visualization
using matplotlib. https:
//stanford.edu/~mwaskom/software/seaborn/.

480


	Introduction
	Scenario
	A Search For The (Yet) Unknown
	Requirements

	Work-Flow
	Hardware
	Software

	Conclusion and Outlook
	References

