
Empirical Malware Research through Observation of
System Behaviour

Stefan Marschalek
Josef Ressel Center for

Unified Threat Intelligence on
Targeted Attacks,

St. Poelten UAS, Austria
smarschalek@fhstp.ac.at

Manfred Kaiser
Josef Ressel Center for

Unified Threat Intelligence on
Targeted Attacks,

St. Poelten UAS, Austria
manfred.kaiser@fhstp.ac.at

Robert Luh
Josef Ressel Center for

Unified Threat Intelligence on
Targeted Attacks,

St. Poelten UAS, Austria
& DMU, Leicester, UK

robert.luh@fhstp.ac.at

Sebastian Schrittwieser
Josef Ressel Center for

Unified Threat Intelligence on
Targeted Attacks,

St. Poelten UAS, Austria
lbschrittwieser@fhstp.ac.at

ABSTRACT
Behavioural analysis has become an important method of
today’s malware research. Malicious software is executed in-
side a controlled environment where its runtime behaviour
can be studied. Recently, we proposed the concept of not
only observing individual executables but a computer sys-
tem as a whole. The basic idea is to identify malware by
detecting anomalies in the way a system behaves. In this
paper we discuss our methodology for empirical malware re-
search and highlight its strengths and limitations. Further-
more, we explain the challenges we faced during our research
and describe our lessons learned.

Keywords
security, malware, system behaviour

1. INTRODUCTION
Today, personal computers as well as corporate networks

are threatened by a plethora of di�erent malware. Most
commonly, malware is seen o� through an anti-virus scan-
ner which uses prede�ned patterns (signatures) for match-
ing each �le on the system against known threats. Those
patterns are obtained by an army of malware analysts scat-
tered through antivirus companies all over the world. Apart
from scaling issues (recently, Kaspersky reported more than
300.000 new malware samples per day1), the main limitation

1http://usa.kaspersky.com/about-us/press-center/press-
releases/new-daily-malware-count-kaspersky-lab-decreases-
15000-2015 (last accessed: Jan. 15th 2016)

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2888609.

of signature-based malware detection approaches is that only
already known malware can be found. However, malware
used for targeted attacks is almost always priorly unknown
and thus invisible for signature-based malware detection.

To counter this major limitation of malware detection,
behaviour-based analysis of dynamically executed software
was proposed in the literature (e.g. [12, 2, 6]). A common
concept in this area is to run a suspicious executable inside a
controlled environment, for example a sandbox, in order to
extract its behavioural pro�le [5]. This pro�le is then com-
pared to previously collected malicious behavioural pro�les
in order to evaluate a program’s maliciousness [4].

In our previous work [8], we went one step further and
observed not only the behaviour of individual executables,
but an entire operating system with all its events. To this
end, we developed an acquisition service which runs on every
endpoint in a network and collects system events such as
process starts and terminations, �le access, registry writes
etc. and forwards them to a central analysis server. In
this work, we discuss the lessons learned from this empirical
malware research methodology, its strengths and limitations,
and give an outlook on future research.

The remainder of this paper is structured as follows: In
Section 2 we briey introduce the methodology of our data
acquisition service. Section 3 explains the evaluation of sys-
tem events on the analysis server. In Section 4 we discuss
lessons learned from this empirical research methodology.
Finally, Section 5 concludes the paper and describes future
work.

2. DATA ACQUISITION
Getting access to correct and realistic data is one of the

most challenging tasks in empirical malware research. Our
methodology of observing the e�ects a malicious program
on the entire system has made it necessary to perform the
research on real machines. Our research data was collected
from a company partner’s workstations which were used for
typical o�ce tasks during a data acquisition process span-
ning several days.

467



2.1 Collected Information
The collection of system information begins with the start-

up and ends with the shutdown of the system. It is impor-
tant that data acquisition begins as early as possible to keep
the loss of system information to a minimum. Our collector
acquires various system events such as process, network, and
registry events.

Most important for analyzing system behaviour is the col-
lection of process events. Each executable has its own char-
acteristic behaviour dictated by its core purpose and all exe-
cutables together de�ne the system behaviour. De�ning the
normal behaviour of a process is far from trivial. A browser,
for example, is designed to access web resources for which it
will open sockets but also access local �les. Other programs
{ such as word processors { are mainly used o�ine, but
can also access online help resources, thus require opening a
socket as well.

For collecting the system events required to generate a
characteristic process behaviour pro�le we developed a custom-
built kernel monitoring agent which is running on each pro-
tected host. The main advantage over existing tools such as
procmon2 is its much higher monitoring granularity and that
it directly writes the collected data to a central database.

Modern operating systems are able to execute more than
one process at the same time and a process can have more
than one thread. Each process has its own process id (PID)
and knows the PID of its parent process. Besides the PIDs
there are many more attributes available for collection. These
are the image name, the user context (username, group,
owner) and the time of process start. If a process creates
a new thread, accesses the registry or opens a new network
socket, those events are also stored in the central database.

All events are then used to build a comprehensive tree of
running processes which categorizes activities and helps to
identify malicious behaviour. We experienced that building
a process tree and linking the events to the appropriate pro-
cess is not as straightforward as it looks at �rst. Using the
process ID as key is not possible because those IDs are reas-
signed to new processes after the termination of the former
owner [7].

For the actual process tree building described in the fol-
lowing section we used an approach that considers this per-
sistence issue.

2.2 Building process trees for classification
A process tree is a tree-like structure in which all process

events and subprocesses are depicted as nodes. In theory the
process tree of a system consists of a single root node, but in
reality it is not possible to gather all processes immediately
after the beginning of the system boot sequence. This re-
sults in tree fragmentation (i.e. several independent process
trees). We experienced that on a typical o�ce workstation
there are about �ve subtrees. On special purpose systems
such as database servers or web servers the subtree count
can exceed this number signi�cantly. In Figure 1 a sample
process tree is shown. Node A represents the SYSTEM pro-
cess of the operating system. This process is intended to
launch all other processes (e.g. the explorer.exe shell of the
Windows operating systems) which are required to interact
with the system. The data acquisition tool itself is a normal

2https://technet.microsoft.com/en-
us/sysinternals/processmonitor.aspx (last accessed: Jan.
5th 2016)

Figure 1: Partial process tree no longer linked
through additional attributes

process like all other processes and is started at the earliest
possible time during system boot.

Because of the problem that process IDs are reused by
the system [10] we had to develop an algorithm for �nding
correct parents by checking the process creation time.

Furthermore, building the process tree at runtime can re-
sult in an incomplete tree. This can happen when process
A starts process B1 which starts process C1. If process B1
was terminated before the tree was built, it is not possible
to �nd a link between process C1 and process A. The reason
is that process C1 knows the process ID of the terminated
process B1. However, due to the fact that process B1 was
terminated, the parent information is no longer available.

Our methodology can be used to analyze an entire system,
beginning with the time the tool was started, or to analyze
a single process and all of its children process trees. In cases
where only one speci�c process is relevant for the analysis,
it is not important that the system session is fully recorded.
Observing a single process also reduces the amount of data
and can still be used for e.g. state comparison.

The building of subtrees is done directly from the database
by using Transact SQL and is visualized with dndTree [3,
13, 11].

3. CHOOSING THE RIGHT ALGORITHM
Behavioural pro�les can be extracted from sub-process

trees using machine learning techniques. At �rst we selected
meaningful features from the trees and cut everything else
away. Then we converted the remaining trees into lists in
order to atten the tree-like structure for further use. Since
the output of this conversion are lists in the string format
we needed an algorithm that can learn from those lists and
compare them to each other. We considered a Na��ve Bayes
and n-grams approach as both are well-suited for the kind
of string-based learning required to analyse our monitoring
data. We ultimately decided to use n-grams to retain the
chronology of events. An n-gram is a window with the size
n, slid over a list with a step size of 1 [1].

3.1 Learning
For comparison of the process lists we chose the Malheur

algorithm [9] which is based on n-grams. Malheur is perfor-

468



mant, can handle large string type reports as well as large
amounts of reports and supports incremental analysis. Out
of the output of the n-gram algorithm a behavioural pro�le
is generated for each tree.

During data collection on non-infected systems a baseline
of behaviour can be generated. A deviation from this base-
line indicates unknown and possibly malicious behaviour.

Throughout our tests we monitored a baseline for a time
period of about four and a half days and then tested this
baseline against the trees of three distinct malicious traces.
Those traces were deemed malicious by the algorithm along-
side a total hit ratio of about 99.07 percent for all 7623
trees. That implies a low false positive rate of 0.93 percent
or 71 falsely classi�ed trees that slightly exceeded the dis-
tance threshold. Those rates are comparable to dynamic
analysis that has been done before [2].

4. LESSONS LEARNED
In our earlier research [8] we were able to demonstrate that

observing an entire system’s behaviour is a promising ap-
proach for empirical malware research. The lessons learned
from our research should help other researchers with imple-
menting similar concepts.

The �rst important �nding in our research was the enor-
mous importance of working with real endpoint data. Get-
ting access to event data from real workstations is certainly
challenging, but essential for research building on that data.
In this point our methodology stands in stark contrast to
previous dynamic malware analysis approaches which re-
quire realistic client activity in a much smaller degree. Col-
lecting this real data was more challenging than initially
expected, because of technical limitations such as the impos-
sibility of starting the data collection at an early stage dur-
ing system boot. As a consequence, it is necessary to cope
with a known incompleteness of the data set by observing
distinctive subtrees instead of a single system process tree.
This approach helps to maintain data integrity and keeps
information loss to a minimum. Not all missing data can
be reconstructed. Actions performed prior to the start-up
of the monitoring tool cannot be accurately recovered and
might lead to orphan process trees.

We discovered that only a very small subset of features
from the data set is actually required for evaluating the ma-
liciousness of activities while other features can be removed
entirely from the set. This fact not only improves com-
pleteness of data but also reduces storage requirements. In
our experimental setup, we were able to reduce to the total
amount of collected endpoint activity data to well below 100
megabytes per day per workstation with an average system
load.

5. CONCLUSIONS
The described methodology for empirical malware research

works well as a proof of concept and encourages further re-
search. It also shows that the idea of learning benign be-
haviour rather than malicious behaviour is not only possible
but may as well become an important part of malware anal-
ysis in the future.

Based on the lessons learned from our earlier research we
plan to improve the methodology in the future. Key research
questions are the evaluation of automatic feature selection
methods, incremental clustering of event data and the adap-

tion of other classi�cation approaches such as Na��ve Bayes
or graph matching algorithms.

Acknowledgments
The �nancial support by the Austrian Federal Ministry of
Science, Research and Economy and the National Founda-
tion for Research, Technology and Development is gratefully
acknowledged.

Our gratitude extends to IKARUS Security Software for
their invaluable support.

6. REFERENCES
[1] T. Abou-Assaleh, N. Cercone, V. Keselj, and

R. Sweidan. Detection of New Malicious Code Using
N-grams Signatures. In PST, pages 193{196, 2004.

[2] U. Bayer, E. Kirda, and C. Kruegel. Improving the
e�ciency of dynamic malware analysis. In Proceedings
of the 2010 ACM Symposium on Applied Computing,
pages 1871{1878. ACM, 2010.

[3] R. S. Coutinho. D3.js drag and drop tree.
https://github.com/RodrigoSC/dndTree.

[4] J. De Vries, H. Hoogstraaten, J. van den Berg, and
S. Daskapan. Systems for Detecting Advanced
Persistent Threats: A Development Roadmap Using
Intelligent Data Analysis. In Cyber Security, 2012 Intl.
Conference on, pages 54{61. IEEE, 2012.

[5] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A
survey on automated dynamic malware-analysis
techniques and tools. ACM Computing Surveys,
44(2):6, 2012.

[6] A. R. Gr�egio, D. S. Fernandes Filho, V. M. Afonso,
R. D. Santos, M. Jino, and P. L. de Geus. Behavioral
analysis of malicious code through network tra�c and
system call monitoring. In SPIE Defense, Security,
and Sensing, pages 80590O{80590O. Intl. Society for
Optics and Photonics, 2011.

[7] K. Jensen and L. M. Kristensen. Coloured petri nets:
modelling and validation of concurrent systems.
Springer, Dordrecht ; New York, 2009.

[8] S. Marschalek, R. Luh, M. Kaiser, and
S. Schrittwieser. Classifying malicious system behavior
using event propagation trees. ACM, iiwas2015
conference, 2015.

[9] K. Rieck, P. Trinius, C. Willems, and T. Holz.
Automatic analysis of malware behavior using machine
learning. Journal of Computer Security, 2011.

[10] A. S. Tanenbaum and H. Bos. Modern operating
systems. Prentice Hall Press, 2014.

[11] M. Wagner, F. Fischer, R. Luh, A. Haberson, A. Rind,
D. Keim, W. Aigner, R. Borgo, F. Ganovelli, and
I. Viola. A Survey of Visualization Systems for
Malware Analysis. In Eurographics Conference on
Visualization (EuroVis) State of The Art Reports,
pages 105{125. EuroGraphics.

[12] C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
cwsandbox. IEEE Security & Privacy, (2):32{39, 2007.

[13] T. W�uchner, A. Pretschner, and M. Ochoa. DAVAST:
data-centric system level activity visualization. pages
25{32. ACM Press, 2014.

469


