
PeARS: a Peer-to-peer Agent for Reciprocated Search

Aurélie Herbelot
University of Trento, Centre for Mind/Brain Sciences

Palazzo Fedrigotti, Corso Bettini 31
38068 Rovereto, Italy

aurelie.herbelot@cantab.net

ABSTRACT
This paper presents PeARS (Peer-to-peer Agent for Recipro-
cated Search), an algorithm for distributed Web search that
emulates the offline behaviour of a human with an informa-
tion need. Specifically, the algorithm models the process of
‘calling a friend’, i.e. directing one’s query to the knowledge
holder most likely to answer it. The system allows network
users to index and share part of their browsing history in
a way that makes them ‘experts’ on some topics. A layer
of distributional semantics agents then performs targeted
information retrieval in response to user queries, in a fully
automated fashion.

Keywords
Web search; distributional semantics; distributed systems

1. INTRODUCTION
The Web hosts billions of documents. Recording the con-

tent of those documents and providing the ability to search
them in response to a specific information need within a
mere couple of seconds is considered a challenging big data
problem. In this paper, we propose that searching the Web
does not necessarily require a large infrastructure. We re-
design the notion of search as a distributed process mirroring
the offline behaviour of a human agent with an information
need and access to a community of knowledge holders.

Our implementation deals with the size of the search space
in the way humans deal with the complexity of their environ-
ment: by focusing their attention on relevant sources of in-
formation. In our scenario, where representations of a large
number of Web documents are spread out across a network
of human users with specific browsing habits, queries are
matched with those user records that are most likely to hold
relevant information, thus considerably reducing the search
space. Every semantic element in the network, from words
to documents to user profiles, is modelled as a distributional
semantics (DS) vector in a shared space.

2. INTUITION
Let’s imagine a person with a particular information need,

for instance, getting sightseeing tips for a holiday destina-
tion. Let’s also imagine that this person does not have access

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2889369 .

to the Internet. How might she gain access to the informa-
tion she seeks? Typically, she will identify the actors that
may hold the answer to her query within her community:
she might call a friend who has done the trip before, or her
local travel agent. The relevance criterion used in this pro-
cess ensures that she does not waste time talking to actors
who are less likely to be able to help, such as the local baker
or a poorly-travelled uncle.

PeARS reproduces this process by creating a distributed
network layer over a community of real Internet users. Each
peer in the network corresponds to a user and models that
human’s online behaviour – in particular their primary in-
terests. A keen traveller is likely to know about the most in-
formative travelling sites while a dog trainer may repeatedly
visit the online shops which they consider reliable for buying
training equipment. PeARS creates artificial agents – one
per human user – which can query each other about the top-
ics they are ‘specialists’ for (see §6 for details on respecting
the user’s privacy). These agents make decisions using dis-
tributional semantics models of both documents and users.

3. DISTRIBUTIONAL SEMANTICS (DS)
DS [2] is an approach to computational semantics actively

researched within linguistics, cognitive science and neuro-
science. A DS system analyses large corpora to build word
meaning representations in the form of ‘distributions’. In
their most basic form, such distributions are vectors in a
so-called semantic space where each dimension represents a
term in the overall system vocabulary. The value of a vector
along a particular dimension expresses how characteristic
the dimension is for the word modelled by the vector (as
calculated using e.g. Pointwise Mutual Information). It will
be found, typically, that the vector cat has high weight along
the dimension meow but low weight along politics. Actual
implementations vary, from the basic setup described here
to multi-modal, dimensionality-reduced models. DS relates
to, but is distinct from, the use of vector spaces in classic
information retrieval – in particular in its focus on cognitive
plausibility.

One of the research areas in DS concerns compositional-
ity, i.e., how words combine together to form phrases and
sentences. It has repeatedly been found that simple addi-
tion of vectors performs well in modelling the meaning of
larger constituents (i.e., we express the meaning of black cat
by simply summing the vectors for black and cat). This
paper expands on this result by positing that the (rough)
meaning of a document is similarly the addition of all char-
acteristic words for that document. Further, we can sum

41



the distributions of the documents in a user’s search history
to get a single vector modelling that user. So in a single
semantic space, we may model that cat and dog are simi-
lar, that two documents on classic cars belong to the same
topic, and that two users who browse programming forums
may have relevant information for each other (even if they
do not necessarily browse the same sites).

4. SYSTEM ARCHITECTURE
A PeARS network consists of n peers {p1...pn}, corre-

sponding to n users {u1...un} connected in a distributed
typology (all peers are connected to all other peers). Each
peer pk has two components: a) an indexing component Ik;
b) a query component Qk. All peers also share a common se-
mantic space S which gives DS representations for words in
the system’s vocabulary. In our current implementation, S
is given by the CBOW semantic space of [1], a 400-dimension
vector space of 300,000 lexical items built using a state-of-
the-art neural network language model.

Indexing: Ik builds vector representations for each doc-
ument in uk’s browsing history. For instance, if uk visits
the Wikipedia page on Bangalore, the URL of that page
becomes associated with a 400-dimension vector produced
by summing the distributions of the 10 most characteristic
words for the document (these are identified by comparing
their document frequency to their entropy in a large cor-
pus). At regular interval, Ik also updates uk’s profile by
summing the vectors of all indexed documents, outputting
a 400-dimension vector ~uk which inhabits an area of the
semantic space related to their interests (i.e., the type of
information they have browsed).

As a result of the indexing process, two types of infor-
mation are made freely available across the network: the
user profile ~uk and the individual document vectors Dk =
{d1...dn} used to build ~uk (at a particular URI, or in the
form of a distributed hash table). Periodically, each peer
p1...pn scans the network to collect all profiles ~u1... ~un and
stores them locally.
Querying: Qk takes a query q and translates it into a

vector ~q by summing the words in the query. It then goes
through a 2-stage process: 1) find relevant peers amongst
p1...pn by calculating the distance between ~q and all users’
profiles ~u1... ~un (vector distance is operationalised as cosine
similarity); 2) on the m relevant peers, calculate the distance
between ~q and all documents indexed by the peer. Return
the URLs corresponding to the smallest distances, in sorted
order.

5. PERFORMANCE
Speed: Qk involves two stages: 1) the computation of

cosine similarities between a query (one vector with 400 di-
mensions) and all the peers on the network (a matrix with
dimensionality n × 400); 2) calculating cosine between the
query and the documents hosted by the most relevant peers,
as identified in the first stage. For the purpose of assessing
system speed, we generate random vectors and perform co-
sine over the generated set. Our current implementation,
running on a 4GB Ubuntu laptop under normal load, per-
forms the calculation over batches of n=100,000 peers at
stage 1. Each batch is computed in around 350ms. At stage
2, assuming an average of 10,000 documents per node, the
computation time is 45ms for each peer.

This preliminary investigation indicates that on a home
machine, the system covers up to 200,000 peers × 10,000
= 2 billion documents in around a second (we must sub-
tract potential redundancies between peers from this figure).
Note that in a ‘real-life’ system, we would need to include
additional time to retrieve the indices of the remote peers.
However, we can also increase efficiency by sorting the list
of known peers as a function of their similarity to the user’s
profile and caching the most similar nodes. The premise is
that a user will very often search for information related to
their interests and thus require access to peers that are like
their own profile.

Accuracy: Measuring the search accuracy of the system
is ongoing work. We are testing the system’s architecture on
real user queries from the search engine Bing, as available
– together with the Wikipedia page users found relevant for
the respective queries – from the WikiQA corpus [3]. Our
current simulation is a network of around 4000 peers cov-
ering 1M documents, modelled after the publicly available
profiles of Wikipedia contributors. Preliminary results in-
dicate that our system, when consulting the m = 5 most
promising peers for each query, outperforms a centralised
solution, as implemented by the Apache Lucene search en-
gine1 (Herbelot & QasemiZadeh, in prep.).

6. CONCLUSION
We have presented an architecture for a user-centric, dis-

tributed Web search algorithm that utilises the inherent
‘specialisms’ of individuals as they browse the Internet.

We should note that our system relies on the willingness
of its users to share some of their search history with oth-
ers. We alleviate the privacy concerns associated with this
requirement in three ways: a) the user can create a blacklist
of sites that will never be indexed by the system; b) before
making an index available, the agent clusters documents into
labelled topics and presents them to the user, who can de-
cide to exclude certain topics from the index; c) there is no
requirement for the shared index to be linked to a named
and known user.

PeARS is under active development and code is regularly
made available at https://github.com/PeARSearch.

7. ACKNOWLEDGMENTS
Grateful thanks to Hrishikesh K.B., Veesa Norman, Shobha

Tyagi, Nandaja Varma and Behrang QasemiZadeh for their
technical contributions to the project, and to the anonymous
reviewers for their helpful feedback. The author acknowl-
edges support from the ERC Grant 283554 (COMPOSES).

8. REFERENCES
[1] Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting
semantic vectors. In ACL2014, pages 238–247, 2014.

[2] Katrin Erk. Vector space models of word meaning and
phrase meaning: A survey. Language and Linguistics
Compass, 6(10):635–653, 2012.

[3] Yi Yang, Wen-tau Yih, and Christopher Meek.
WIKIQA: A Challenge Dataset for Open-Domain
Question Answering. In EMNLP2015, 2015.

1http://lucene.apache.org/

42


	Introduction
	Intuition
	Distributional semantics (DS)
	System architecture
	Performance
	Conclusion
	Acknowledgments
	References

