
Babel: A Platform for Facilitating Research in Scholarly
Article Discovery

Ian Wesley-Smith
Information School

University of Washington
Seattle, WA, 98195-1800

iwsmith@uw.edu

Jevin D. West
Information School

University of Washington
Seattle, WA, 98195-1800

jevinw@uw.edu

ABSTRACT
The body of scientific literature is growing at an exponential
rate. This expansion of scientific knowledge has increased
the need for tools to help users find relevant articles. How-
ever, researchers developing new scholarly article recommen-
dation algorithms face two substantial hurdles: acquiring
high-quality, large-scale scholarly metadata and mechanisms
for evaluating their recommendation algorithms. To address
these problems we created Babel—an open-source web plat-
form uniting publisher, researchers, and users. Babel in-
cludes tens of millions of scholarly articles, several content-
based recommendation algorithms, and tools for integrating
recommendations into publisher websites and other schol-
arly platforms.

Keywords
Recommenders; Scholarly Article Recommendation; Exper-
imentation Platforms; Citation Networks; Information Re-
trieval

1. INTRODUCTION
Thousands of scholarly articles are published every day,

making it impossible for researchers to stay apprised of the
current literature. There is a strong need to develop algo-
rithms and platforms that help users find relevant papers.
Recent developments in the commercial and non-profit space
are producing improved academic search engines (e.g., Se-
mantic Scholar, Bioz, Meta, CiteseerX, Microsoft Academic
Search, Google Scholar, Web of Science, etc). Though these
are exciting improvements in search, not all researchers have
access to the data, computational resources, and usage data
from these different platforms. Additionally, there is a dif-
ference between finding a paper known to exist (search) and
discovering a paper not known to exist (recommendation).
We see a need in the Big Scholarly Data space for a plat-
form providing scholarly article metadata and usage data to
enable research in scholarly article recommendation. To fill

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890517 .

Publishers

ResearchersUsers

Babel

m
eta/u

sag
e 

d
ata

recommendations

ar
tic

le
 v

ie
w

s

Figure 1: Babel is a cooperative model between publishers,
researchers, and users where all gain from the venture. Pub-
lishers provide high-quality metadata and usage data to Ba-
bel. Babel then provides access to this data to researchers in
a manner that protects publishers’ intellectual property. Re-
searchers benefit from this high-quality data, allowing them
to create more effective recommenders. These recommenda-
tions are then delivered to users, helping them quickly find
the content they need.

that void we created Babel1, a web platform that facilitates
scholarly recommender research by removing the barriers to
acquiring large-scale scholarly metadata and improves access
to usage data for evaluating these novel methods.

Since much of scholarly literature lies behind publisher
paywalls, it is difficult to scale and test new recommenda-
tion algorithms beyond small samples or discipline-specific
corpora (e.g., DBLP). Few publishers make their articles
available for data mining, and those that are available are
legally encumbered, making it difficult to share results and
reproduce the work of others. Some have chosen to crawl
publishers to create their own datasets, but this risks legal
action over redistribution of copyrighted material, also lim-
iting reproducibility. A few of the more forward thinking
publishers have released open datasets to help spur interest
in this domain. PLoS, for example, has provided their data
for mining and research purposes. DBLP [6] and AMiner
[9] are good examples of test collections, but combined they
represent a small portion of the full literature, limiting the
generalizability of results obtained with them. Conversely,
Microsoft Academic Search has released a very large cita-
tion graph, but the data tends to be of lower quality since
it comes from a web crawler. This leaves researchers2 in a

1http://babel.eigenfactor.org
2In this paper, we define “researchers” as researchers doing
work specifically on scholarly recommender systems. We
refer to“users”as researchers/scholars reading the literature.

389



difficult situation: invest incredible effort in getting these
datasets from publishers with the knowledge that your ex-
periments can’t be replicated, crawl the datasets and risk
legal action, or use the small publicly available data sets
which are of limited practical use and may not be suitable
for recommendation algorithms that require the entire sci-
entific corpus [3, p. 260].

The second issue researchers face is determining the ef-
ficacy of their recommendation algorithms. Most meth-
ods are written, published and never implemented at scale.
Although techniques exist for offline evaluations of recom-
menders in domains with explicitly rated items (such as
movies or products), it is much more difficult to evaluate
recommendations of implicitly rated items, requiring either
usage data or expert judges [3, p. 273]. Furthermore, of-
fline evaluations of scholarly article recommenders have been
shown to be poor predictors of online performance [1]. This
has led to a proliferation of ad-hoc techniques and a lack of
rigor that has stifled progress in the field, with an inabil-
ity to determine which avenues of investigation are fruitful.
In a comprehensive survey of over 170 articles on research
paper recommenders Beel et al. concluded “. . . that it is
currently not possible to determine which recommendation
approaches for academic literature are the most promising.
However, there is little value in the existence of more than 80
approaches if the best performing approaches are unknown”
[2]. We want to help change this.

Our goal with Babel is to build an open-source platform
that overcomes the data and usage obstacles noted above.
Babel provides up-to-date bibliographic data for more than
37 million scholarly articles and more than 300 million cita-
tions from various disciplines (economics, biomedicine, physics,
computer science, etc). We want researchers focused on
developing new recommenders, not thinking about updat-
ing SQL databases, running servers, and establishing usage
agreements with publishers.

2. RELATED WORK
This idea of a platform to support scholarly literature ac-

tivities is not a new one. Two well known platforms are the
digital libraries, arXiv and CiteSeerX [7]. ArXiv primarily
concerns itself with persistent, open hosting of its submis-
sions. CiteSeerX, by contrast, does not serve as a primary
archive, but instead aggregates data from many different
sources. CiteSeerX also provides additional tooling on top
of its collection, including search, summaries and citation
statistics. Babel, though, is neither a digital library nor a
search engine; it is a service that implements and tests the
most current recommendation algorithms on a large-scale
data set, spanning many disciplines, and makes these rec-
ommendations freely available to the publishing community
and other platforms where users come to find articles. Babel
was designed to build on digital libraries and leverage their
existing collections, allowing these libraries to integrate with
Babel to provide recommendations to their users.

Babel is most closely related to theadvisor [5], a project
out of The Ohio State University. Theadvisor is a web ser-
vice providing recommendations for a set of scholarly ar-
ticles. Much like Babel, theadvisor provides REST access
to their recommendations. What makes Babel different is
that it generalizes this idea of scholarly article recommenda-
tion as a service, providing access to many different recom-
menders instead of just one. Babel is designed as a platform

for experimentation with scholarly article recommenders,
providing access to many different recommenders simulta-
neously, collecting usage data and measuring their relative
efficacy.

Our goals for Babel are relatively simple: allow for the
evaluation and comparison of recommender algorithms for
scholarly literature, decrease the difficulty of developing rec-
ommender algorithms for scholarly literature, increase the
quality of recommendations available for scholarly literature,
and finally to provide enterprise grade reliability and perfor-
mance on the platform so publishers feel comfortable using
it in production.

3. AUDIENCE
Babel is built for two groups: consumers of scholarly ar-

ticle recommendations (e.g. publishers and their users) and
producers of those recommendations (scholarly article rec-
ommender researchers). We anticipate that Babel will be of
special interest to smaller publishers who may not have the
time or budget to hire a data science team. These publish-
ers would only have to insert a JavaScript widget into their
site to gain access to the state-of-the-art in scholarly recom-
mendation, with methods being continually iterated upon
by a team of researchers. One such publisher that we are al-
ready working with is the Public Library of Science (PLoS).
We have integrated their article metadata into Babel and
are producing recommendations. PLoS will receive access
to these recommendations through our JavaScript widget
(available in 2016). We also recently collaborated with JS-
TOR, providing recommendations for their labs project on
sustainability3.

Although we anticipate most of our usage will come from
publishers, we are excited to see what other applications can
be developed leveraging this data. For example, services like
Authorea and Zotero may benefit from recommendations as
authors write their papers and organize content around a
particular topic. We have also developed web browser ex-
tensions for academic platforms with high usage. For exam-
ple, we have built browser plugins4 for Google Chrome and
Firefox that provide recommendations as you search Google
Scholar.

The second audience for Babel are researchers of recom-
mendation algorithms. Researchers are able to develop against
the open datasets in the Babel collection, all of which are
provided in a standardized format. Once researchers have
successfully integrated against the open datasets, they send
us their recommenders and we run them against the pub-
lisher datasets and begin providing the recommendations
to consumers. Shortly thereafter, we will compare the re-
searchers’ algorithm’s performance to other recommenders
using usage data provided by the publishers. This rapid eval-
uation will allow researchers to focus on improving the qual-
ity of their algorithms, not the details of acquiring datasets
and tracking user behavior.

4. LICENSING
The source code for the platform, web extensions, JavaScript

widgets, and some recommendation algorithms are open source
and available on GitHub. Much of the scholarly metadata is

3http://labs.jstor.org/sustainability/
4https://github.com/kyleestlick/babel

390



A

B

C

D

E

Figure 2: Screenshot of the Babel demonstration website. (A) is a standard search box, which will query over all the
metadata Babel has, including titles, authors and labels. (B) allows users to select which datasets will be searched. (C) shows
a list of results, with each result including a link to get recommended papers, the dataset it was retrieved from, the title of
the paper, first author, publication year and a label for the cluster determined by the Eigenfactor Recommends algorithm [10,
11]. On clicking ”get related”, recommendations (E) are shown for the source paper (D).

also available for research (DBLP, MAS, arXiv, PLoS), but
some are restricted by license agreements.

Our goal is to allow other groups to easily setup their own
version of Babel, providing API compatibility while keeping
their algorithms or data in-house. Authors of recommender
algorithms maintain full IP rights to their recommenders,
though recommendations on the Babel platform hosted by
us will be distributed freely and unencumbered. Recom-
mender authors can, at any time, ask us to remove their
recommender and we will comply in a timely fashion.

5. EVALUATION CRITERIA
Babel was created to answer one simple question: how

can we evaluate the performance of scholarly article recom-
menders? Broadly there are two approaches to answering
this question: offline evaluation and online evaulation. Of-
fline approaches rely on pre-collected data of ratings or user
actions, making them much cheaper to use. However, these
approaches have limited predictive power and require that
these “ground truth” datasets exist; which, for scholarly ar-
ticle recommendation, they don’t.

Furthermore, research indicates that scholarly article rec-
ommenders are not amenable to offline evaluation. Beel et
al. [1] found that offline evaluation could not predict click
through rate, and that for citation based methods the pre-
dictive capability was especially poor. In fact, for citation
based methods the prediction was off by nearly and order of
magnitude: “the offline evaluation predicted a disappoint-
ing result of 0.96%. In practice, the citation-based approach
had a CTR [click-through rate] of 8.27%” [1].

Given this strong critique of offline evaluation it is surpris-
ing that a survey of scholarly recommenders [2] found only 5
of the 89 approaches were evaluated with online approaches.
The most likely reason for this is cost of performing online
evaluations: they require live users and are very expensive to
execute. These approaches do provide much stronger valida-
tion of recommendations—you are directly influencing user
behavior and recording the result. For these reasons Babel

uses online evaluation using long-term, observational field
studies focused on two outcomes: did a user view a paper’s
abstract and did a user download a paper? We chose these
metrics because they are user centric and they measure the
outcomes we are interested in: did a user find a recommen-
dation useful?

Answering these questions requires substantial article-level
data and usage data. This is why we are trying to build a
tool that is useful to both users and publishers. We define
the following metrics which Babel will generate on a per-
algorithm basis at regular intervals:

Click-through rate (CTR) clicks/impressions * 100%
Download rate (DR) downloads/impressions * 100%
Transition rate (TR) downloads/clicks * 100%

Impressions are defined as the number of times a recommen-
dation generated by a specific algorithm was shown.

It is important to note that all of these metrics are rela-
tive to other recommenders, they don’t provide an absolute
measure of performance. If a researcher wants to determine
the performance of their algorithm they will compare it to
benchmark algorithms we have implemented, or, as they it-
erate on their algorithm, its performance over time. We
believe that this can begin to provide a standardized mecha-
nism for online evaluation of scholarly article recommenders.

6. ARCHITECTURE
Babel’s architecture (figure 4) is designed to provide con-

tent based recommendations as a service via REST APIs.
Our design goals centered around providing low-latency rec-
ommendations suitable for client consumption from a web
browser, while scaling horizontally to support a large num-
ber of concurrent users. Note that the current version of
Babel does not support personalized recommendations. Al-
though these types of recommenders are very important, it
was technically infeasible to support them initially, though
if Babel is successful we would like to add support for per-
sonalized recommendations later.

391



A

Figure 3: Screenshot of our browser plugin (Chrome or Firefox), which provides recommendations directly on the Google
Scholar site. The plugin scrapes the titles of a search result and looks them up in Babel. If Babel has recommendations for
this title a small brain icon (A) is inserted next to the result. Clicking this icon takes you to the Babel demonstration website
(Figure 2), where recommended papers are displayed.

6.1 Frontend
The frontend (figure 4.A) is what consumers will interact

with. It exposes a REST API, which, given a paper identi-
fier and a publisher, will generate a list of recommendations
with a random recommendation algorithm and return them
in JSON format. The frontend retrieves recommendations
for the recommendation cache, and emits analytic events to
allow for evaluation of various recommenders performance.
The frontend also provides APIs to allow for querying of the
metadata database to find relevant papers, though this is
not the primary use-case for Babel. Detailed documenta-
tion of the current API exposed by the endpoint is available
at http://babel.eigenfactor.org/api.html

6.2 Backend
The backend (figure 4.B) is responsible for data ingestion,

normalization, and recommendation generation. Whenever
a publisher uploads a new dataset to Babel, metadata is ex-
tracted, normalized, and stored in the metadata database.
Simultaneously the publisher’s raw data is archived and then
transformed into a normalized format suitable for ingestion
by recommender algorithms. Once normalization has oc-
curred all available recommenders are run in parallel. This
batch processing step allows for expensive content-based rec-
ommenders to be run on a regular basis, caching their re-
sults. Their output is then pushed to the recommendation
cache, which is currently implemented in DynamoDB. At
this point queries against the frontend will return new rec-
ommendations.

6.3 Logging and Analysis
Given that evaluation of recommenders is one of the pri-

mary goals of this platform we need to have a mechanism
to submit feedback about recommendations. The frontend
provides an API for submitting feedback, allowing recom-
mendation consumers (e.g. publishers) to signal what action
was taken by a user.

First, anytime a recommendation is requested a trans-

action_id is generated. This value is unique to this rec-
ommendation, and it, along with the paper_id and pub-

lisher are logged. Next, if a user acts on a recommen-

dation, the consumer will make a feedback call, including
the transaction_id, selected paper_id and action that oc-
curred. There are two possible actions: click, which denotes
a user clicking on a recommendation and being directed to
page with more information about the article, and download,
which denotes a user actually downloading an article. The
API also, optionally, allows for inclusion of a client_id—
an id uniquely identifying each consumer (e.g. PLoS, Babel
demonstration site, Google Scholar plugins). As new re-
quirements are added we will expand the capabilities of the
analytics system to record data. Figure 4.C shows where
feedback is aggregated and analysis is performed. Currently
this is done by a third-party vendor, but once there is enough
usage data this will likely be moved in-house.

Dataset Papers Citations Recommendations
AMiner 2,092,356 8,024,869 22,112,496
JSTOR† 1,787,351 8,227,537 14,813,224
PLoS 1,599,712 3,232,766 8,647,037
PubMed 5,538,322 16,004,596 34,026,854
arXiv 626,441 781,108 5,624,262
DBLP 781,108 4,191,677 2,163,313
MAS 27,352,532 262,554,975 245,796,494
Total 37,894,701 303,017,528 333,183,680

Table 1: Datasets currently available on Babel. The
total paper count is not a measure of unique papers
in the corpus; a single paper may appear in several
different datasets. † denotes a closed dataset.

7. FUTURE WORK
Currently, Babel’s frontend is fully operational, allowing

for recommendations to be delivered and feedback on user
actions to be submitted and recorded. The publisher widget
is still in early stages, but is one of our highest priorities.

Babel currently delivers two types of recommendations:
EigenFactor Recommends (Expert and Classic) [11], a citation-
based algorithm that relates papers based on their location
in citation space. We plan on adding additional algorithms

392



Recommenders

EigenFactor Recommends

Co-Citation

Bibliographic Coupling

Metadata Database

update.eigenfactor.org

Object Store

Archive

Metadata Extraction

Recommender 
Frontend

Publisher

Demo
Website

Browser 
Plugin Analytics

Normalization

Researcher

Recommendation 
Cache

Desktop
App

A B

C

Figure 4: Babel’s Architecture. The orange area (A) is the frontend that most clients interact with. This is a traditional
web service exposing a REST API that provides scholarly article recommendations freely, to anyone in the world. The green
area (B) is the backend, where recommendation generation and dataset ingestion and normalization occurs. The yellow area
(C) is where logging and analysis occurs. Each recommendation, along with any action taken, is logged and aggregated,
allowing researchers to compare relative algorithm performance.

in the near future, including bibliographic coupling [4] and
co-citation [8].

Table 1 shows a breakdown of the over 300 million rec-
ommendations Babel provides, consisting of seven different
datasets and over 39 million papers. Our current goal is to
on-board several new publishers of various sizes to validate
our endpoint design, specifically around latency, scalability
and analytics. Once we have done this we will begin so-
liciting regular updates from publishers to validate the rec-
ommendation generation phase. Finally, we will open the
system to researchers who wish to implement new recom-
mendation algorithms. We provide API documentation and
aa FAQ at http://babel.eigenfactor.org.

Babel is currently a research project, but it will eventu-
ally need to find a home. There are several examples of non-
profit membership fee based entities, such as CrossRef, OR-
CID and DOI that provide examples of how “common good”
projects like Babel can exist. Since the platform code is
open-source, in the worst case scenario another group could
fork the code base and start running an improved platform
with improved data and tools. The need for finding relevant
articles is growing and hopefully additional tools for meeting
this need will emerge.

8. ACKNOWLEDGMENTS
This work was supported by the Metaknowledge Network

funded by the John Templeton Foundation. We would like
to thank Kyle Estlick for his development of the Google
Chrome and Firefox browser plugins, and Nick Thorpe for
feedback on early drafts of this paper.

9. REFERENCES
[1] J. Beel, M. Genzmehr, S. Langer, A. Nürnberger, and

B. Gipp. A comparative analysis of offline and online
evaluations and discussion of research paper
recommender system evaluation. In Proceedings of the
International Workshop on Reproducibility and
Replication in Recommender Systems Evaluation,
RepSys ’13, pages 7–14, New York, NY, USA, 2013.
ACM.

[2] J. Beel, S. Langer, M. Genzmehr, B. Gipp,
C. Breitinger, and A. Nürnberger. Research paper

recommender system evaluation: A quantitative
literature survey. In Proceedings of the International
Workshop on Reproducibility and Replication in
Recommender Systems Evaluation, RepSys ’13, pages
15–22, New York, NY, USA, 2013. ACM.

[3] P. B. Kantor, F. Ricci, L. Rokach, and B. Shapira.
Recommender Systems Handbook. Springer, Dordrecht,
2011.

[4] M. M. Kessler. Bibliographic Coupling Between
Scientific Papers. American Documentation
(pre-1986), 14(1):10, 1963.

[5] O. Küçüktunç, E. Saule, K. Kaya, and Ü. V.
Çatalyürek. Recommendation on Academic Networks
using Direction Aware Citation Analysis. ArXiv
e-prints, May 2012.

[6] M. Ley. The dblp computer science bibliography:
Evolution, research issues, perspectives. In A. Laender
and A. Oliveira, editors, String Processing and
Information Retrieval, volume 2476 of Lecture Notes
in Computer Science, pages 1–10. Springer Berlin
Heidelberg, 2002.

[7] H. Li, I. Councill, W.-C. Lee, and C. L. Giles.
Citeseerx: An architecture and web service design for
an academic document search engine. In Proceedings
of the 15th International Conference on World Wide
Web, WWW ’06, pages 883–884, New York, NY, USA,
2006. ACM.

[8] H. Small. Co-Citation in Scientific Literature: A new
measure of the relationship between two documents.
Journal of the American Society for Information
Science, 24(4):265–269, 1973.

[9] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: Extraction and mining of academic social
networks. In KDD’08, pages 990–998, 2008.

[10] J. West, M. Rosvall, D. Vilhena, and C. Bergstrom.
Ranking and mapping article-level citation networks.
In Prep., 2016.

[11] J. West, I. Wesley-Smith, and C. Bergstrom. A
recommendation system based on hierarchical
clustering of an article-level citation network. In
Prep., 2016.

393


	Introduction
	Related Work
	Audience
	Licensing
	Evaluation Criteria
	Architecture
	Frontend
	Backend
	Logging and Analysis

	Future Work
	Acknowledgments
	References

