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ABSTRACT 
In the semantic web, content is tagged with “meaning” or 
“semantics” to facilitate machine processing and web searching. 
In general, question answering systems that are built on top of 
reasoning and inference face a number of difficult issues. In this 
paper, we analyze scalability issues faced by a question answering 
system used by a knowledge base with science information that 
has been harvested from the web. Using this system, we will be 
able to answer questions that contain qualitative descriptors such 
as “groundbreaking”, “top researcher”, and “tenurable at 
university x”.  This question answering system has been built 
using ontologies, reasoning systems and custom based rules for 
the reasoning system. Furthermore, we evaluated the performance 
of our optimized backward chaining engine on supporting custom 
rules and designed the experimental environment including 
scalable datasets, rule sets, query sets and metrics and compared 
the experimental results with other in-memory ontology reasoning 
systems. The results show that our developed backward chaining 
ontology reasoning system has better scalability than in-memory 
reasoning systems. 
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1. INTRODUCTION 
There is a variety of structured and semi-structured information 
increasingly available on the Internet, which can be mined, 
organized, and queried in a collaborative environment. As a result, 
there have been more and more research on the intersections of 
Semantic Web, collaborative work and social media research [1-
4]. For example, IkeWiki, as a semantic wiki, is mainly developed 

for collaborative knowledge engineering with support for different 
formalization [2]. A second example is SIOC (Semantically-
Interlinked Online Communities), which interconnect present 
online communities for data integration and cross-site structural 
queries [1].  

Despite the growing number of work in this area, there is not 
much research related to semantic web systems that can provide 
answers to qualitative queries submitted by users. In an effort to 
contribute to this research area, we have recently developed a 
semantic web system where the underlying knowledge base 
covers linked data about scientific research. The objective of the 
system is to provide answers to qualitative queries that represent 
the evolving consensus of the community of researchers. The 
system is expected to answer qualitative queries such as: “Who 
are the groundbreaking researchers in data mining?” or “Is my 
record tenurable at my university?”. As supporting a collaborative 
environment where users are allowed to customize qualitative 
queries requires a fast response from the reasoning system, 
performance and scalability have become challenging tasks for an 
ontology reasoning system that has to deal with custom rules 
required for qualitative queries. 

Many knowledge bases organize information using ontologies [5- 
7]. An ontology is “a formal, explicit specification of a shared 
conceptualization” [8]. Ontologies can be used together with a 
reasoning engine to infer new relations. By ontology reasoning 
[9], we can derive implicit facts that are in ontology or in 
knowledge base given the explicit facts and OWL rules. By 
reasoning with custom rules, we can derive implicit facts that are 
in ontology or in knowledge base given explicitly stated facts and 
custom rules (user-defined rules). In paper [10], we have 
evaluated the performance of Jena [11], Pellet [12-13], KAON2 
[14-15], Oracle 11g [16] and OWLIM [17] using representative 
custom rules, including transitive and recursive rules, on top of 
our ontology and LUBM (Leigh University Benchmark) [18]. In 
this paper, we have introduced our optimized backward reasoning 
reasoner [19] to support the science research domain where 
knowledge frequent changes. In addition, in this paper, we 
evaluate the performance of our optimized backward reasoning 
reasoner on supporting custom rules. And our backward chaining 
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engine outperforms the other ontology reasoning systems in 
scenarios where the knowledge base is subject to frequent change. 

The remainder of this paper is organized as follows: In Section 2 
we discuss related work on backward chaining, existing 
benchmarks and give a general description of OWL reasoners. In 
Section3, we briefly discuss the optimizations of our backward 
chaining reasoner. In section 4, we discuss an experimental design 
to evaluate our optimized backward chaining reasoner on 
supporting the inference of custom rules. In Section 5, we present 
the results, and compare the experimental results. Conclusions are 
given In Section 6. 

2. RELATED WORK 
2.1 Backward Chaining 
Backward chaining is a form of goal-driven reasoning, which 
starts with goals from the consequents, matching the goals to the 
antecedents to find data satisfying the consequents. Backward-
chaining does not require expensive pre-computation, but 
increases the cost of reasoning when answering each query [20]. 

4store [21] applies the RDFS rules using backward-chaining 
technique. Virtuoso [22] implements a mixture of forward-
chaining and backward-chaining. Jena [11] supports three ways of 
inferencing: forward-chaining, limited backward-chaining and a 
hybrid of these two methods. 

2.2 Ontology Reasoning Systems Supporting 
Custom Rules 
Jena [11] supports custom rules in its proprietary format “Jena 
Rules”. Pellet [12-13] and KAON2 [14-15] both support SWRL 
[23]. Oracle 11g [16] provides native inference in the database for 
user-defined rules. OWLIM [17] could specify custom rule-sets 
(rules + axiomatic triples).A number of studies have been done on 
the performance of these OWL-based reasoning systems. These 
studies address the scalability of the aforementioned reasoning 
systems with regard to the complexity of the ontology and the 
number of triples in the ontology. In order to support custom 
rules, they do need to combine OWL inference and custom rule 
inference. These systems support custom rules in different formats 
and degrees. 

3. OPTIMIZATION DETAILS & 
DISCUSSION 
Four types of optimizations have been introduced in our algorithm 
for backward chaining [19]. These optimizations are:   

1) the implementation of the selection function, which selects 
another goal left after finishing proving one goal in a rule body. 
Our selection function selects next goal to be resolved depends on 
number of free variables; 

2) the upgraded substitute function, which implements the 
substitution of the free variables in the body clauses in one rule 
based on calculating a threshold that switches resolution methods; 

3) the application of OLDT [24], which applies OLDT in the 
backward chaining process, eliminating the issue of non-
termination; and 

4) solving of “owl:sameAs” problem, which is a novel adaptation 
of “owl:sameAs” optimization in forward chaining reasoning 
system. We also select a representative node to represent an 
equivalence class of owl:sameAs URIs to avoid in a 
multiplication of the number of instances of variables during 

backward-chaining. Of these, optimizations 3 and 4 have appeared 
in [25, 24] whereas techniques 1 and 2 are new.    

We believe that a combination of these optimization methods with 
our own optimizations are novel. We will describe the 
implementation details of ordered selection function as follows. 
You can find more implementation details in our previously 
published paper [19, 26] as well. 

The proving of a rule head requires the proving of the body of a 
rule. The body of a rule consists of a conjunction of multiple 
clauses (goals). The proving of a rule head requires the proving of 
all the clauses.  After finishing proving one goal, another goal left 
would be selected. This selecting process is called selection 
function [27]. Logically, any clause left could be selected, but, 
this selecting process affects the reasoning efficiency in terms of 
both time and scalability. Our selection function selects next goal 
to be resolved depends on number of free variables. 

Mostly, goals with fewer free variables cost less time to be 
resolved than goals with more free variables, since fewer free 
variables means more bindings and body clauses with fewer free 
variables will match fewer triples. 

We calculated the probability that a goal with two free variable 
cost more time to be resolved than a goal with one free variable.  
Recording the time spent on proving goals with different numbers 
of free variables during answering a query will help us to estimate 
the probability. We did not include goals with three free variables 
in the estimation because there are not any goals with three free 
variables during the reasoning process.  

Let cost1 denote the time spent on resolving a goal with one free 
variable. Let cost2 denote the time spent on resolving a goal with 
two free variables. 

Let n2 denote the number of goals with two free variables, n1 
denote the number of goals with one free variable. Let li denote 
the number of goals with one free variable cost more time than 
goal i with two free variables (n2>=i>=0). Following is the 
formula used for calculating the probability that a goal with two 
free variable cost more time to be resolved than a goal with one 
free variable.   

  P(cost2>cost1) = Sum(li/n1)*(1/n2) 

We recorded the time spent on proving goals with one free 
variable and two free variables during answering 14 queries from 
LUBM (100). Table 1 lists the probability that a goal with two 
free variable cost more time to be resolved than a goal with one 
free variable for 9 queries out of 14 queries, because there are not 
any goals with two free variables involved in answering those 5 
queries.  

Table 1. The probability that a goal with two free variable cost 
more time to be resolved than a goal with one free variable for 

9 queries out of 14 queries 

 P(cost2>cost1) 
Query2 0.119 
Query 4  0.079 
Query 6 0.088 
Query 7 0.076 
Query8 0.060 
Query9 0.092 
Query10 0.079 
Query11 0.012 
Query12 0.282 
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As shown in Table 1, the probability that a goal with two free 
variable cost more time to be resolved than a goal with one free 
variable for queries in LUBM(100) ranges from 0.012 to 0.282. In 
most queries, the probability is less than 0.100, verifying that 
goals with fewer free variables cost less time to be resolved than 
goals with more free variables in most cases. Therefore, the 
number of free variables 

4. EXPERIMENTAL DESIGN  
This study is concerned about scalability of the question 
answering system. Research questions include: how effective is 
our optimized backward chaining reasoner in answering queries 
when customized rules are added to native logic? Can these 
systems handle millions of triples in real time?  

To be able to answer these questions, in this section we shall 
discuss the: 

 Data (ontology classes/relations and instance data) that will 
be involved in querying the ontology reasoning systems, 
such as ontology of LUBM and corresponding datasets 

 The custom rules that are going to be used. User are 
supposed to add the custom rules to get answers to their 
custom queries, such as queries to retrieve Co-authors. 

 Environment and metrics to evaluate a system, such as query 
process time 

 Evaluation procedure, such as the evaluation of our 
optimized backward chaining reasoner in answering queries 
when customized rules are added to native logic in terms of 
scalability and query process time. 

4.1 Ontology data for the experiments 
We used the LUBM [18] in our experiments. The LUBM is about 
concepts and relationships in a research community. For instance, 
concepts such as Faculty, Publication, and Organization are 
included in LUBM, as are properties such as advisor, 
publicationAuthor, and worksFor.  

The size range of the datasets in our experiments is listed in Table 
2.  We generate 11 datasets for LUBM, which ranges from 
thousand to millions for our experiment. 

                   Table 2 Size range of datasets (in triples) 

Dataset1  Dataset2  Dataset3  Dataset4 

8814  15438  34845  100838 

Dataset5  Dataset6  Dataset7  Dataset8 

624827  1272870  2522900  4109311 

Dataset9  Dataset10  Dataset11   

6890949  13880279  27643953   

 

4.2 Custom Rule Sets and Queries 
We now present the five rule sets and three corresponding query 
sets that we shall use in the experiments. Rule sets were defined to 
test basic reasoning to allow transitivity and recursion. Rule set 1 
is defined for the co-authorship relation; rule set two is defined for 
collaborator relation; rule set three is used in queries for the 
genealogy of PhD advisors (transitive) and rule set 4 is used to 
enable queries for “good” advisors. Rule set 5 is a combination of 
the first 4 sets. The five rule sets are expressed as follows in Table 
3. We have composed 3 query sets to use in these tests, expressed 
in SPARQL notation in Table 4.  
 

Table 3 Rule sets expressions 

Rule Set  Definition 
1: Co‐author  
 

authorOf(?x, ?p)authorOf(?y, ?p)
coAuthor(?x, ?y) 

2: 
Collaborator 

advisorOf(?x, ?y) collaboratorOf (?x, ?y)

3: Research 
ancestor 
(transitive) 

advisorOf(?x, ?y)	⟹ researchAncestor(?x, ?y) 
researchAncestor(?x, ?y)
researchAncestor(?y, ?z)	⟹ 
researchAncestor(?x, ?z) 

4: 
Distinguished 
advisor 
(recursive) 

advisorOf(?x,?y)advisorOf(?x,?z)
notEqual(?y,?z)worksFor(?x,?u) 	⟹ distinguishAdvisor(?x, ?u)   
advisorOf(?x,?y)distinguishAdvisor(?y,?u)
worksFor(?x,?d)   distinguishAdvisor(?x, 
?d) 

5: 
Combination 

A combination of above 4 rule sets. 

 
Table 4 Query sets expressed in SPARQL 

Query set  Query set  Expression
Query set1  Query 1: Co‐author 

 
PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni:coAuthor ?y.}; 

Query 2: Collaborator  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni:collaboratorOf?y. }; 

Query 3: Research ancestor 
 

PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni:researchAncestor ?y.}; 

Query 4: Distinguished advisor  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni:distinguishAdvisor ?y. };  

Query set2  Query 1: Co‐author  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni:coAuthor ?y. ?x uni:hasName \"FullProfessor0\" } 

Query 2: Collaborator  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni: collaboratorOf ?y. ?x uni:hasName \"FullProfessor0\" }; 

Query 3: Research ancestor  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni:researchAncestor ?y. ?x uni:hasName \"FullProfessor0\" }; 

Query 4: Distinguished advisor  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni:distinguishAdvisor ?y. ?y uni:hasTitle \"department0\" };  
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Query set3  Query 1: Co‐author  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {<http://www.d0.u0.edu/~FullProfessor0> uni:coAuthor ?y. } 

Query 2: Collaborator  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {<http://www.d0.u0.edu/~FullProfessor0>  uni: collaboratorOf ?y. }; 

Query 3: Research ancestor  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {<http://www.d0.u0.edu/~FullProfessor0>  uni:researchAncestor ?y. }; 

Query 4: Distinguished advisor  PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#> 
SELECT ?x  ?y WHERE {?x uni:distinguishAdvisor <http://www.d0.u0.edu>.};  

 
There are minor differences among the above three query sets in 
Table 4. Query set 1 is intended to retrieve all the pairs of 
relationships, for example, all the co-authors in the 
knowledgebase. Query set 2 is intended to retrieve partial pairs of 
relationships, for example, all the co-authors of researchers whose 
name is “FullProfessor0”. Query set 3 is intended to retrieve pairs 
of relationships for a specific researcher/department, for example, 
all the co-authors of researcher 
<http://www.d0.u0.edu/~FullProfessor0>. Query set 2 is the query 
form we used in paper (Motik and Studer, 2005). For query set 2, 
our optimized backward chaining reasoner answers two separate 
queries and then applies a join operation resulting in a cross 
product. For query set 1 and 3, our optimized backward chaining 
reasoner only need to answer one single query respectively.  
Queries are used with the rules sets that define the properties 
employed in the queries. Each rule set is tested with 
corresponding queries in different query sets. Rule set 5 is tested 
with all queries. 
 
4.3 Experimental Environment and Metrics 
We have chosen Jena TDB [28] as our external storage support 
for our optimized backward chaining reasoner. The latest version 
of the systems are: Jena (2.11.0, 2013-09-18 release), Jena 
TDB(1.0.0, 2013-09-18 release).As backward chaining system 
does not require expensive up front closure computation every 
time the knowledge base changes, we have taken scalability and 
query processing time from [10] as the main metrics. 

 Query processing time: This stage starts with parsing 
and executing the query and ends when all the results 
have been saved in the result set. It includes the time of 
traversing the result set sequentially. 

 
All the experiments in this section were performed on a PC with a 
2.80 GHz Intel Core i7 processor and 8 G memory, running 
Windows 7 Enterprise. Sun Java 1.6.0 was used for Java-based 
tools. The maximum heap size was set to 512M. We checked all 
of our results to ensure that they were complete and sound. All the 
timing results we present in this paper are CPU times as the 
knowledge base is entirely in memory. 

4.4 Evaluation Procedure 
Our goal is to evaluate the performance of our optimized 
backward chaining reasoner in terms of reasoning and querying 
time using custom rules. We are interested in two aspects of 
performance. The first aspect is scalability, which means the size 
of data and the complexity of reasoning. We are interested in the 
performance of our system as the size of the knowledge base 
changes from small toy size to realistic sizes of millions. The 
second aspect is query processing time. We are interested in the 
query processing time as the size of the knowledge base changes 
from small toy size to realistic sizes of millions. Finally we are 
interested in the performance of our system on a widely used 
model (LUBM).  

5. RESULTS AND DISCUSSION 
5.1 Evaluation on top of LUBM 
With rule sets and query sets described in section 4.2, we have 
evaluated our backward chaining reasoner on 11 datasets 
generated from LUBM. In this section, all the datasets are stored 
in external storage using Jena TDB as our support. The evaluation 
results of our backward chaining reasoner on top of LUBM is 
shown in Table 5. 

Table 5 Query processing time for query set1 and query set 2 on LUBM (Unit:ms) 
 

  Query set1  Query set2  Query set1 Query set2 Query set1 Query set2  Query set1 Query set2

  Query1  Query2 Query3 Query4

Dataset1  171  249  124  171 109 156 156  249

Dataset2  234  265  159  187 140 187 249  327

Dataset3  421  468  171  249 171 265 374  452

Dataset4  733  889  265  452 421 452 592  764

Dataset5  1669  1778  811  951 858 1029 1591  1606

Dataset6  2823  2979  1232  1435 1388 1497 2293  2386

Dataset7  4570  4836  1934  2168 2308 2324 3447  3478

Dataset8  6115  6832  2808  2839 2917 3244 4602  4655

Dataset9  10233  11044  4258  4586 4664 5116 6848  6879

Dataset10  19012  19671  7534  7960 8938 9250 11793  12074

Dataset11  37034  37752  15241  16536 18064 18392 21902  22932
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We focus on two aspects of evaluation on supporting reasoning of 
customized rules. First is scalability. With support of external 
storage, our optimized backward chaining reasoner can handle up 
to about 30 million size dataset in our experimental environment.  
Second is performance in terms of query processing time. As the 
size of dataset increases, the query processing time scales from 
less than 1 second to about half minute.  

As shown in Table 5, for all the datasets, query processing time of 
all queries from query set 1 are slightly better than query set 2 
because of the minor difference that we have discussed in section 
4.2.  Our optimized backward chaining reasoner applies join 
operation to answer queries from query set 2. We believe that the 
other ontology reasoning systems may employ different methods 
in query processing to answer multi-queries.  

For all the datasets, query processing time of all queries from 
query set 3 is less than 1 seconds. We do not present the 
evaluation results of query set 3 in this paper. Compared with 
results in paper [10] for query set 2, our optimized backward 
chaining reasoning system has better scalability than in-memory 
reasoning systems such as Kaon2 and Pellet.  

5.2 Comparison between in-memory store 
and external storage on LUBM 
We employed Jena TDB for the support of external storage in 
order to increase the scalability of our optimized backward 
chaining reasoner. We anticipate that some applications might 
want to balance performance and scalability. For example, for 
some mobile applications, performance is more important than 
scalability.  

In this section, we compare the performance of our optimized 
backward chaining reasoner with and without support of external 
storage on all the queries from query set1 and query set2. The 
evaluation results are presented in Table 6.  

When our optimized backward chaining reasoner runs in memory 
without any support of external storage, it can only handle up to 7 
data sets from LUBM. Thus we only compared performance on 7 
data sets. We are aware that working in memory has limitations 
with respect to the size of the knowledge base and the retrieved 
data. As Table 6 shows, our reasoner running with support of Jena 
TDB has twice processing time as much as running entirely in 
memory, that is, running entirely in memory performs better than 
running with support of Jena TDB. For light applications like 
mobile applications, in-memory version would be a better choice. 

Table 6. Comparison of query processing time between in-memory store and external storage on LUBM (Unit:ms) 

  TDB  In memory  TDB  In memory  TDB  In memory  TDB  In memory 

  Query set1  Query set2  Query set1  Query set2  Query set1  Query set2  Query set1  Query set2 

Dataset  Query1  Query2  Query3  Query4 

DS1  171  249  93  109  124  171  46  78  109  156  56  78  156  249  93  156 

DS2  234  265  109  140  159  187  46  93  140  187  62  109  249  327  140  202 

DS3  421  468  124  171  171  249  62  98  171  265  78  113  374  452  202  296 

DS4  733  889  358  363  265  452  93  140  421  452  124  171  592  764  327  343 

DS5  1669  1778  748  858  811  951  249  296  858  1029  296  358  1591  1606  1107  1154 

DS6  2823  2979  1107  1232  1232  1435  296  374  1388  1497  390  483  2293  2386  1263  1279 

DS7  4570  4836  2059  2199  1934  2168  421  530  2308  2324  639  733  3447  3478  1887  1905 

6. CONCLUSIONS 
One of the promises of the evolving Semantic Web is that it will 
enable systems that can handle qualitative queries such as “good 
PhD advisors in data mining” and “Who are the leading 
researchers in data visualization?” In this paper, we have explored 
the feasibility of developing a question answering system to 
address these queries. We have briefly introduced the 
optimizations of our optimized backward chaining reasoner. We 
have designed the experimental environment including ontologies 
and scalable datasets, rule sets, query sets and metrics. We have 
discussed the experimental results and compared the performance 
with other ontology reasoning systems. The evaluation results 
show that our optimized backward chaining reasoner has better 
scalability than in-memory reasoning systems such as Jena, 
Kaon2 and Pellet.  

Generally, there are three limitations in our study. 1) The 
optimized backward chaining reasoner was designed for 
answering customized queries facing large evolving knowledge 

base. Although we have optimized backward chaining in terms of 
scalability and efficiency, the largest knowledge base we can 
handle is about 30 million.  2) Secondly, all our experiments were 
only performed “in memory” or using Jena TDB as external 
storage. The employment of other external storage, such as 
Oracle, Jena SDB, may affect the scalability and performance of 
the reasoner. 3) Only one types of ontology data including 
datasets generated from LUBM was included in the experiments, 
which limited the study to academic knowledge bases with 
specific custom rules.  
We are planning to promote the optimized backward chaining 
reasoner by balancing the query processing time and scalability 
and introducing more optimization techniques. We are planning to 
employ other external storage (Oracle, Jena SDB, etc) and address 
the issues brought by the employment of other external storage. 
For example, the algorithm has to take now into account that it 
will take longer to access a triple (or a set of triples) due to having 
to perform I/O in a different storage. We are also planning to 
extend our study by using more knowledge bases from domains 
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other than academic during the evaluation. A wide range of 
knowledge bases would increase the range of custom rules and 
queries as well. The wide range of knowledge bases, custom rules 
and queries can be used in a more comprehensive evaluation, 
which will help improve the optimized backward chaining 
reasoning in terms of answering customized queries. 
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