
Backward Chaining Ontology Reasoning Systems with
Custom Rules

Hui Shi

College of Business
University of Southern Indiana

Evansville, IN 47712
(001) 812-4657120
hshi@usi.edu

Gongjun Yan

College of Business
University of Southern Indiana

Evansville, IN 47712
(001) 812-2285073
gyan@usi.edu

Kurt Maly

Department of Computer Science
Old Dominion University

Norfolk, VA 23529
(001) 757-6837722
Kmaly@odu.edu

Wu He

Department of Information Technology
Old Dominion University

Norfolk, VA 23529
(001) 757-6835008
whe@odu.edu

Dazhi Chong

Department of Information Technology
Old Dominion University

Norfolk, VA 23529
(001) 757-3181298

dchong@odu.edu

ABSTRACT
In the semantic web, content is tagged with “meaning” or
“semantics” to facilitate machine processing and web searching.
In general, question answering systems that are built on top of
reasoning and inference face a number of difficult issues. In this
paper, we analyze scalability issues faced by a question answering
system used by a knowledge base with science information that
has been harvested from the web. Using this system, we will be
able to answer questions that contain qualitative descriptors such
as “groundbreaking”, “top researcher”, and “tenurable at
university x”. This question answering system has been built
using ontologies, reasoning systems and custom based rules for
the reasoning system. Furthermore, we evaluated the performance
of our optimized backward chaining engine on supporting custom
rules and designed the experimental environment including
scalable datasets, rule sets, query sets and metrics and compared
the experimental results with other in-memory ontology reasoning
systems. The results show that our developed backward chaining
ontology reasoning system has better scalability than in-memory
reasoning systems.

Keywords
Semantic Web; Ontology; Benchmark; Ontology Reasoning
System; Backward Chaining Reasoner; Custom Rules

1. INTRODUCTION
There is a variety of structured and semi-structured information
increasingly available on the Internet, which can be mined,
organized, and queried in a collaborative environment. As a result,
there have been more and more research on the intersections of
Semantic Web, collaborative work and social media research [1-
4]. For example, IkeWiki, as a semantic wiki, is mainly developed

for collaborative knowledge engineering with support for different
formalization [2]. A second example is SIOC (Semantically-
Interlinked Online Communities), which interconnect present
online communities for data integration and cross-site structural
queries [1].

Despite the growing number of work in this area, there is not
much research related to semantic web systems that can provide
answers to qualitative queries submitted by users. In an effort to
contribute to this research area, we have recently developed a
semantic web system where the underlying knowledge base
covers linked data about scientific research. The objective of the
system is to provide answers to qualitative queries that represent
the evolving consensus of the community of researchers. The
system is expected to answer qualitative queries such as: “Who
are the groundbreaking researchers in data mining?” or “Is my
record tenurable at my university?”. As supporting a collaborative
environment where users are allowed to customize qualitative
queries requires a fast response from the reasoning system,
performance and scalability have become challenging tasks for an
ontology reasoning system that has to deal with custom rules
required for qualitative queries.

Many knowledge bases organize information using ontologies [5-
7]. An ontology is “a formal, explicit specification of a shared
conceptualization” [8]. Ontologies can be used together with a
reasoning engine to infer new relations. By ontology reasoning
[9], we can derive implicit facts that are in ontology or in
knowledge base given the explicit facts and OWL rules. By
reasoning with custom rules, we can derive implicit facts that are
in ontology or in knowledge base given explicitly stated facts and
custom rules (user-defined rules). In paper [10], we have
evaluated the performance of Jena [11], Pellet [12-13], KAON2
[14-15], Oracle 11g [16] and OWLIM [17] using representative
custom rules, including transitive and recursive rules, on top of
our ontology and LUBM (Leigh University Benchmark) [18]. In
this paper, we have introduced our optimized backward reasoning
reasoner [19] to support the science research domain where
knowledge frequent changes. In addition, in this paper, we
evaluate the performance of our optimized backward reasoning
reasoner on supporting custom rules. And our backward chaining

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to
the author's site if the Material is used in electronic media.
WWW 2016 Companion, April 11-15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.

http://dx.doi.org/10.1145/2872518.2890521

381

engine outperforms the other ontology reasoning systems in
scenarios where the knowledge base is subject to frequent change.

The remainder of this paper is organized as follows: In Section 2
we discuss related work on backward chaining, existing
benchmarks and give a general description of OWL reasoners. In
Section3, we briefly discuss the optimizations of our backward
chaining reasoner. In section 4, we discuss an experimental design
to evaluate our optimized backward chaining reasoner on
supporting the inference of custom rules. In Section 5, we present
the results, and compare the experimental results. Conclusions are
given In Section 6.

2. RELATED WORK
2.1 Backward Chaining
Backward chaining is a form of goal-driven reasoning, which
starts with goals from the consequents, matching the goals to the
antecedents to find data satisfying the consequents. Backward-
chaining does not require expensive pre-computation, but
increases the cost of reasoning when answering each query [20].

4store [21] applies the RDFS rules using backward-chaining
technique. Virtuoso [22] implements a mixture of forward-
chaining and backward-chaining. Jena [11] supports three ways of
inferencing: forward-chaining, limited backward-chaining and a
hybrid of these two methods.

2.2 Ontology Reasoning Systems Supporting
Custom Rules
Jena [11] supports custom rules in its proprietary format “Jena
Rules”. Pellet [12-13] and KAON2 [14-15] both support SWRL
[23]. Oracle 11g [16] provides native inference in the database for
user-defined rules. OWLIM [17] could specify custom rule-sets
(rules + axiomatic triples).A number of studies have been done on
the performance of these OWL-based reasoning systems. These
studies address the scalability of the aforementioned reasoning
systems with regard to the complexity of the ontology and the
number of triples in the ontology. In order to support custom
rules, they do need to combine OWL inference and custom rule
inference. These systems support custom rules in different formats
and degrees.

3. OPTIMIZATION DETAILS &
DISCUSSION
Four types of optimizations have been introduced in our algorithm
for backward chaining [19]. These optimizations are:

1) the implementation of the selection function, which selects
another goal left after finishing proving one goal in a rule body.
Our selection function selects next goal to be resolved depends on
number of free variables;

2) the upgraded substitute function, which implements the
substitution of the free variables in the body clauses in one rule
based on calculating a threshold that switches resolution methods;

3) the application of OLDT [24], which applies OLDT in the
backward chaining process, eliminating the issue of non-
termination; and

4) solving of “owl:sameAs” problem, which is a novel adaptation
of “owl:sameAs” optimization in forward chaining reasoning
system. We also select a representative node to represent an
equivalence class of owl:sameAs URIs to avoid in a
multiplication of the number of instances of variables during

backward-chaining. Of these, optimizations 3 and 4 have appeared
in [25, 24] whereas techniques 1 and 2 are new.

We believe that a combination of these optimization methods with
our own optimizations are novel. We will describe the
implementation details of ordered selection function as follows.
You can find more implementation details in our previously
published paper [19, 26] as well.

The proving of a rule head requires the proving of the body of a
rule. The body of a rule consists of a conjunction of multiple
clauses (goals). The proving of a rule head requires the proving of
all the clauses. After finishing proving one goal, another goal left
would be selected. This selecting process is called selection
function [27]. Logically, any clause left could be selected, but,
this selecting process affects the reasoning efficiency in terms of
both time and scalability. Our selection function selects next goal
to be resolved depends on number of free variables.

Mostly, goals with fewer free variables cost less time to be
resolved than goals with more free variables, since fewer free
variables means more bindings and body clauses with fewer free
variables will match fewer triples.

We calculated the probability that a goal with two free variable
cost more time to be resolved than a goal with one free variable.
Recording the time spent on proving goals with different numbers
of free variables during answering a query will help us to estimate
the probability. We did not include goals with three free variables
in the estimation because there are not any goals with three free
variables during the reasoning process.

Let cost1 denote the time spent on resolving a goal with one free
variable. Let cost2 denote the time spent on resolving a goal with
two free variables.

Let n2 denote the number of goals with two free variables, n1
denote the number of goals with one free variable. Let li denote
the number of goals with one free variable cost more time than
goal i with two free variables (n2>=i>=0). Following is the
formula used for calculating the probability that a goal with two
free variable cost more time to be resolved than a goal with one
free variable.

 P(cost2>cost1) = Sum(li/n1)*(1/n2)

We recorded the time spent on proving goals with one free
variable and two free variables during answering 14 queries from
LUBM (100). Table 1 lists the probability that a goal with two
free variable cost more time to be resolved than a goal with one
free variable for 9 queries out of 14 queries, because there are not
any goals with two free variables involved in answering those 5
queries.

Table 1. The probability that a goal with two free variable cost
more time to be resolved than a goal with one free variable for

9 queries out of 14 queries

 P(cost2>cost1)
Query2 0.119
Query 4 0.079
Query 6 0.088
Query 7 0.076
Query8 0.060
Query9 0.092
Query10 0.079
Query11 0.012
Query12 0.282

382

As shown in Table 1, the probability that a goal with two free
variable cost more time to be resolved than a goal with one free
variable for queries in LUBM(100) ranges from 0.012 to 0.282. In
most queries, the probability is less than 0.100, verifying that
goals with fewer free variables cost less time to be resolved than
goals with more free variables in most cases. Therefore, the
number of free variables

4. EXPERIMENTAL DESIGN
This study is concerned about scalability of the question
answering system. Research questions include: how effective is
our optimized backward chaining reasoner in answering queries
when customized rules are added to native logic? Can these
systems handle millions of triples in real time?

To be able to answer these questions, in this section we shall
discuss the:

 Data (ontology classes/relations and instance data) that will
be involved in querying the ontology reasoning systems,
such as ontology of LUBM and corresponding datasets

 The custom rules that are going to be used. User are
supposed to add the custom rules to get answers to their
custom queries, such as queries to retrieve Co-authors.

 Environment and metrics to evaluate a system, such as query
process time

 Evaluation procedure, such as the evaluation of our
optimized backward chaining reasoner in answering queries
when customized rules are added to native logic in terms of
scalability and query process time.

4.1 Ontology data for the experiments
We used the LUBM [18] in our experiments. The LUBM is about
concepts and relationships in a research community. For instance,
concepts such as Faculty, Publication, and Organization are
included in LUBM, as are properties such as advisor,
publicationAuthor, and worksFor.

The size range of the datasets in our experiments is listed in Table
2. We generate 11 datasets for LUBM, which ranges from
thousand to millions for our experiment.

 Table 2 Size range of datasets (in triples)

Dataset1 Dataset2 Dataset3 Dataset4

8814 15438 34845 100838

Dataset5 Dataset6 Dataset7 Dataset8

624827 1272870 2522900 4109311

Dataset9 Dataset10 Dataset11

6890949 13880279 27643953

4.2 Custom Rule Sets and Queries
We now present the five rule sets and three corresponding query
sets that we shall use in the experiments. Rule sets were defined to
test basic reasoning to allow transitivity and recursion. Rule set 1
is defined for the co-authorship relation; rule set two is defined for
collaborator relation; rule set three is used in queries for the
genealogy of PhD advisors (transitive) and rule set 4 is used to
enable queries for “good” advisors. Rule set 5 is a combination of
the first 4 sets. The five rule sets are expressed as follows in Table
3. We have composed 3 query sets to use in these tests, expressed
in SPARQL notation in Table 4.

Table 3 Rule sets expressions

Rule Set Definition
1: Co‐author

authorOf(?x, ?p)authorOf(?y, ?p)
coAuthor(?x, ?y)

2:
Collaborator

advisorOf(?x, ?y) collaboratorOf (?x, ?y)

3: Research
ancestor
(transitive)

advisorOf(?x, ?y)	⟹ researchAncestor(?x, ?y)
researchAncestor(?x, ?y)
researchAncestor(?y, ?z)	⟹
researchAncestor(?x, ?z)

4:
Distinguished
advisor
(recursive)

advisorOf(?x,?y)advisorOf(?x,?z)
notEqual(?y,?z)worksFor(?x,?u) 	⟹ distinguishAdvisor(?x, ?u)
advisorOf(?x,?y)distinguishAdvisor(?y,?u)
worksFor(?x,?d) distinguishAdvisor(?x,
?d)

5:
Combination

A combination of above 4 rule sets.

Table 4 Query sets expressed in SPARQL

Query set Query set Expression
Query set1 Query 1: Co‐author

PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni:coAuthor ?y.};

Query 2: Collaborator PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni:collaboratorOf?y. };

Query 3: Research ancestor

PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni:researchAncestor ?y.};

Query 4: Distinguished advisor PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni:distinguishAdvisor ?y. };

Query set2 Query 1: Co‐author PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni:coAuthor ?y. ?x uni:hasName \"FullProfessor0\" }

Query 2: Collaborator PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni: collaboratorOf ?y. ?x uni:hasName \"FullProfessor0\" };

Query 3: Research ancestor PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni:researchAncestor ?y. ?x uni:hasName \"FullProfessor0\" };

Query 4: Distinguished advisor PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni:distinguishAdvisor ?y. ?y uni:hasTitle \"department0\" };

383

Query set3 Query 1: Co‐author PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {<http://www.d0.u0.edu/~FullProfessor0> uni:coAuthor ?y. }

Query 2: Collaborator PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {<http://www.d0.u0.edu/~FullProfessor0> uni: collaboratorOf ?y. };

Query 3: Research ancestor PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {<http://www.d0.u0.edu/~FullProfessor0> uni:researchAncestor ?y. };

Query 4: Distinguished advisor PREFIX uni:<http://swat.cse.lehigh.edu/onto/univ‐bench.owl#>
SELECT ?x ?y WHERE {?x uni:distinguishAdvisor <http://www.d0.u0.edu>.};

There are minor differences among the above three query sets in
Table 4. Query set 1 is intended to retrieve all the pairs of
relationships, for example, all the co-authors in the
knowledgebase. Query set 2 is intended to retrieve partial pairs of
relationships, for example, all the co-authors of researchers whose
name is “FullProfessor0”. Query set 3 is intended to retrieve pairs
of relationships for a specific researcher/department, for example,
all the co-authors of researcher
<http://www.d0.u0.edu/~FullProfessor0>. Query set 2 is the query
form we used in paper (Motik and Studer, 2005). For query set 2,
our optimized backward chaining reasoner answers two separate
queries and then applies a join operation resulting in a cross
product. For query set 1 and 3, our optimized backward chaining
reasoner only need to answer one single query respectively.
Queries are used with the rules sets that define the properties
employed in the queries. Each rule set is tested with
corresponding queries in different query sets. Rule set 5 is tested
with all queries.

4.3 Experimental Environment and Metrics
We have chosen Jena TDB [28] as our external storage support
for our optimized backward chaining reasoner. The latest version
of the systems are: Jena (2.11.0, 2013-09-18 release), Jena
TDB(1.0.0, 2013-09-18 release).As backward chaining system
does not require expensive up front closure computation every
time the knowledge base changes, we have taken scalability and
query processing time from [10] as the main metrics.

 Query processing time: This stage starts with parsing
and executing the query and ends when all the results
have been saved in the result set. It includes the time of
traversing the result set sequentially.

All the experiments in this section were performed on a PC with a
2.80 GHz Intel Core i7 processor and 8 G memory, running
Windows 7 Enterprise. Sun Java 1.6.0 was used for Java-based
tools. The maximum heap size was set to 512M. We checked all
of our results to ensure that they were complete and sound. All the
timing results we present in this paper are CPU times as the
knowledge base is entirely in memory.

4.4 Evaluation Procedure
Our goal is to evaluate the performance of our optimized
backward chaining reasoner in terms of reasoning and querying
time using custom rules. We are interested in two aspects of
performance. The first aspect is scalability, which means the size
of data and the complexity of reasoning. We are interested in the
performance of our system as the size of the knowledge base
changes from small toy size to realistic sizes of millions. The
second aspect is query processing time. We are interested in the
query processing time as the size of the knowledge base changes
from small toy size to realistic sizes of millions. Finally we are
interested in the performance of our system on a widely used
model (LUBM).

5. RESULTS AND DISCUSSION
5.1 Evaluation on top of LUBM
With rule sets and query sets described in section 4.2, we have
evaluated our backward chaining reasoner on 11 datasets
generated from LUBM. In this section, all the datasets are stored
in external storage using Jena TDB as our support. The evaluation
results of our backward chaining reasoner on top of LUBM is
shown in Table 5.

Table 5 Query processing time for query set1 and query set 2 on LUBM (Unit:ms)

 Query set1 Query set2 Query set1 Query set2 Query set1 Query set2 Query set1 Query set2

 Query1 Query2 Query3 Query4

Dataset1 171 249 124 171 109 156 156 249

Dataset2 234 265 159 187 140 187 249 327

Dataset3 421 468 171 249 171 265 374 452

Dataset4 733 889 265 452 421 452 592 764

Dataset5 1669 1778 811 951 858 1029 1591 1606

Dataset6 2823 2979 1232 1435 1388 1497 2293 2386

Dataset7 4570 4836 1934 2168 2308 2324 3447 3478

Dataset8 6115 6832 2808 2839 2917 3244 4602 4655

Dataset9 10233 11044 4258 4586 4664 5116 6848 6879

Dataset10 19012 19671 7534 7960 8938 9250 11793 12074

Dataset11 37034 37752 15241 16536 18064 18392 21902 22932

384

We focus on two aspects of evaluation on supporting reasoning of
customized rules. First is scalability. With support of external
storage, our optimized backward chaining reasoner can handle up
to about 30 million size dataset in our experimental environment.
Second is performance in terms of query processing time. As the
size of dataset increases, the query processing time scales from
less than 1 second to about half minute.

As shown in Table 5, for all the datasets, query processing time of
all queries from query set 1 are slightly better than query set 2
because of the minor difference that we have discussed in section
4.2. Our optimized backward chaining reasoner applies join
operation to answer queries from query set 2. We believe that the
other ontology reasoning systems may employ different methods
in query processing to answer multi-queries.

For all the datasets, query processing time of all queries from
query set 3 is less than 1 seconds. We do not present the
evaluation results of query set 3 in this paper. Compared with
results in paper [10] for query set 2, our optimized backward
chaining reasoning system has better scalability than in-memory
reasoning systems such as Kaon2 and Pellet.

5.2 Comparison between in-memory store
and external storage on LUBM
We employed Jena TDB for the support of external storage in
order to increase the scalability of our optimized backward
chaining reasoner. We anticipate that some applications might
want to balance performance and scalability. For example, for
some mobile applications, performance is more important than
scalability.

In this section, we compare the performance of our optimized
backward chaining reasoner with and without support of external
storage on all the queries from query set1 and query set2. The
evaluation results are presented in Table 6.

When our optimized backward chaining reasoner runs in memory
without any support of external storage, it can only handle up to 7
data sets from LUBM. Thus we only compared performance on 7
data sets. We are aware that working in memory has limitations
with respect to the size of the knowledge base and the retrieved
data. As Table 6 shows, our reasoner running with support of Jena
TDB has twice processing time as much as running entirely in
memory, that is, running entirely in memory performs better than
running with support of Jena TDB. For light applications like
mobile applications, in-memory version would be a better choice.

Table 6. Comparison of query processing time between in-memory store and external storage on LUBM (Unit:ms)

 TDB In memory TDB In memory TDB In memory TDB In memory

 Query set1 Query set2 Query set1 Query set2 Query set1 Query set2 Query set1 Query set2

Dataset Query1 Query2 Query3 Query4

DS1 171 249 93 109 124 171 46 78 109 156 56 78 156 249 93 156

DS2 234 265 109 140 159 187 46 93 140 187 62 109 249 327 140 202

DS3 421 468 124 171 171 249 62 98 171 265 78 113 374 452 202 296

DS4 733 889 358 363 265 452 93 140 421 452 124 171 592 764 327 343

DS5 1669 1778 748 858 811 951 249 296 858 1029 296 358 1591 1606 1107 1154

DS6 2823 2979 1107 1232 1232 1435 296 374 1388 1497 390 483 2293 2386 1263 1279

DS7 4570 4836 2059 2199 1934 2168 421 530 2308 2324 639 733 3447 3478 1887 1905

6. CONCLUSIONS
One of the promises of the evolving Semantic Web is that it will
enable systems that can handle qualitative queries such as “good
PhD advisors in data mining” and “Who are the leading
researchers in data visualization?” In this paper, we have explored
the feasibility of developing a question answering system to
address these queries. We have briefly introduced the
optimizations of our optimized backward chaining reasoner. We
have designed the experimental environment including ontologies
and scalable datasets, rule sets, query sets and metrics. We have
discussed the experimental results and compared the performance
with other ontology reasoning systems. The evaluation results
show that our optimized backward chaining reasoner has better
scalability than in-memory reasoning systems such as Jena,
Kaon2 and Pellet.

Generally, there are three limitations in our study. 1) The
optimized backward chaining reasoner was designed for
answering customized queries facing large evolving knowledge

base. Although we have optimized backward chaining in terms of
scalability and efficiency, the largest knowledge base we can
handle is about 30 million. 2) Secondly, all our experiments were
only performed “in memory” or using Jena TDB as external
storage. The employment of other external storage, such as
Oracle, Jena SDB, may affect the scalability and performance of
the reasoner. 3) Only one types of ontology data including
datasets generated from LUBM was included in the experiments,
which limited the study to academic knowledge bases with
specific custom rules.
We are planning to promote the optimized backward chaining
reasoner by balancing the query processing time and scalability
and introducing more optimization techniques. We are planning to
employ other external storage (Oracle, Jena SDB, etc) and address
the issues brought by the employment of other external storage.
For example, the algorithm has to take now into account that it
will take longer to access a triple (or a set of triples) due to having
to perform I/O in a different storage. We are also planning to
extend our study by using more knowledge bases from domains

385

other than academic during the evaluation. A wide range of
knowledge bases would increase the range of custom rules and
queries as well. The wide range of knowledge bases, custom rules
and queries can be used in a more comprehensive evaluation,
which will help improve the optimized backward chaining
reasoning in terms of answering customized queries.

7. REFERENCES
[1] Breslin, J.G., Harth, A., Bojars, U. and Decker, S. (2005).

Towards semantically-interlinked online communities. The
Semantic Web: Research and Applications. Springer. pp.
500-514.

[2] Schaffert, S. (2006). IkeWiki: A semantic wiki for
collaborative knowledge management. Enabling
Technologies: Infrastructure for Collaborative Enterprises,
(2006). WETICE'06. 15th IEEE International Workshops on,
IEEE.

[3] Sure, Y. et al. (2002). OntoEdit: Collaborative ontology
development for the semantic web: Springer.

[4] Wennerberg, P.O. (2005). Ontology based knowledge
discovery in Social Networks. Final Report, JRC Joint
Research Center 1-34.

[5] Bizer, C. et al. (2009). DBpedia-A crystallization point for
the Web of Data. Web Semantics: Science, Services and
Agents on the World Wide Web 7(3) 154-165.

[6] Doms, A. and Schroeder, M. (2005). GoPubMed: exploring
PubMed with the gene ontology. Nucleic acids research
33(suppl 2) W783-W786.

[7] Mars, N.J. (1995). Towards Very Large Knowledge Bases:
Knowledge Building & Knowledge Sharing 1995: Ios Press.

[8] Gruber, T.R. (1993). A translation approach to portable
ontology specifications. Knowledge acquisition 5(2) 199-
220.

[9] Horrocks, I. and Sattler, U. (2001). Ontology reasoning in the
SHOQ (D) description logic. IJCAI.

[10] Shi, H., Maly, K., Zeil, S. and Zubair, M. (2011).
Comparison of Ontology Reasoning Systems Using Custom
Rules. International Conference on Web Intelligence, Mining
and Semantics. Sogndal, Norway.

[11] The Apache Software Foundation. (2014)a. Apache Jena
[online]. Available at: http://jena.apache.org/ [Accessed
February,16 2016].

[12] Clark & Parsia. (2010). Pellet:The Open Source OWL2
Reasoner [online]. Available at: http://clarkparsia.com/pellet/
[Accessed October,13 2010].

[13] Sirin, E. et al. (2007). Pellet: A practical owl-dl reasoner.
Web Semantics: Science, Services and Agents on the World
Wide Web 5(2) 51-53.

[14] Information Process Engineering (IPE), Institute of Applied
Informatics and Formal Description Methods (AIFB) and
(IMG), I.M.G. (2014). KAON2-Ontology Management for
the Semantic Web [online]. Available at:
http://kaon2.semanticweb.org/ [Accessed February 16 2016].

[15] Motik, B. and Studer, R. (2005). KAON2–A Scalable
Reasoning Tool for the Semantic Web. Proc. 2nd ESWC.
Heraklion, Greece.

[16] Xavier Lopez and Das, S. (2010). Semantic Technologies in
Oracle Database 11g Release 2: Capabilities, Interfaces,
Performance.

[17] Kiryakov, A., Ognyanov, D. and Manov, D. (2005).
OWLIM–a pragmatic semantic repository for OWL. Web
Information Systems Engineering 3807/2005 182-192.

[18] Guo, Y., Pan, Z. and Heflin, J. (2005). LUBM: A benchmark
for OWL knowledge base systems. Web Semantics: Science,
Services and Agents on the World Wide Web 3(2-3) 158-
182.

[19] Shi, H., Maly, K., & Zeil, S. (2014). A scalable backward
chaining-based reasoner for a semantic web. International
Journal on Advances in Intelligent Systems, 7(1-2), 23-38.

[20] Urbani, J., Piro, R., van Harmelen, F. and Bal, H. (2013).
Hybrid reasoning on OWL RL. Semantic Web.

[21] Harris, S., Lamb, N. and Shadbolt, N. (2009). 4store: The
Design and Implementation of a Clustered RDF store.
Proceedings of the 5th International Workshop on Scalable
Semantic Web Knowledge Base Systems. 81-96.

[22] Erling, O. and Mikhailov, I. (2009). RDF Support in the
Virtuoso DBMS. Networked Knowledge-Networked Media
7-24.

[23] Horrocks, I. et al. (2004). SWRL: A semantic web rule
language combining OWL and RuleML. W3C Member
submission 21.

[24] Tamaki, H. and Sato, T. (1986). OLD resolution with
tabulation. Third international conference on logic
programming. Springer. 84-98.

[25] Ontotext. (2013). owl-sameAs-optimization [online].
Available at:
http://graphdb.ontotext.com/documentation/standard/sameas-
optimisation.html [Accessed February 16 2016].

[26] Shi, H., Maly, K., & Zeil, S. (2014, June). Optimized
backward chaining reasoning system for a semantic web. In
Proceedings of the 4th International Conference on Web
Intelligence, Mining and Semantics (WIMS14) (p. 34).
ACM.

[27] Kowalski, R. and Kuehner, D. (1972). Linear resolution with
selection function. Artificial Intelligence 2(3) 227-260.

[28] The Apache Software Foundation. (2014)b. Apache Jena-
TDB [online]. Available at:
http://jena.apache.org/documentation/tdb/.[Accessed
February 16 2016].

386

