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ABSTRACT 
Systematic evaluation is crucial to the management and 
development of smart urban transportation, as it allows 
transportation planners to better understand the impact of their 
decisions and design targeted interventions to improve efficiency. 
Implementation of smart and adaptable public transportation is an 
important challenge in developing cities and newly industrialized 
economies where growth characteristics contribute to and can be 
impacted by factors like overcrowding and travel delays. In this 
paper, we focus on bus transportation, and present the design and 
implementation of a 3-layer web-based system for performance 
evaluation and decision support. This is part of a “Smart Cities” 
initiative, which is an international collaboration between academia 
and government. The first layer estimates fundamental indicators 
such as bus travel time and passenger demands by integrating 
heterogeneous data sources. A novel bus-stop network is then 
designed in the second layer, which enables the derivation of 
passenger patterns in public transit using network analysis. The 
third layer provides decision support by analyzing causal 
relationships between indicators. The proposed web-based system 
called SMARTBUS is being developed and validated with the city 
of Fortaleza in Brazil.  We believe the use of generally available 
urban transportation data makes our methodology adaptable and 
customizable for other cities. 

CCS Concepts 
• Information systems➝ Information systems 
applications   • Applied computing ➝ Transportation.  

Keywords: Smart City; Web Application; Urban 
Transportation; Network Analysis 

1. INTRODUCTION 
With the rapid growth of population and urban expansion, many 
cities are suffering from a struggling transportation system that 
cannot keep up with the ever-increasing demand for urban mobility. 
Such problems are more severe in cities of developing and newly 
industrialized economies that are often characterized by high urban 

density and challenges in public transport in terms of travel times, 
traffic congestion and passenger overcrowding [5]. To improve 
public transportation, a comprehensive analysis and evaluation 
system is beneficial for planners to identify aspects that are 
successful, uncover areas needing improvement, and also 
investigate the reasons behind these. The system can also be used to 
provide information to riders and support public awareness. 

In addition to fundamental indicators such as passenger counts or 
travel speeds and times, an in-depth evaluation usually requires 
more sophisticated measurements. For example a common question 
regarding transportation efficiency could be whether or not the 
current transportation system meets the mobility needs of the city’s 
commuters. To answer this question, the evaluation system should 
have appropriate indicators to measure urban mobility demands. As 
previous studies have suggested, human mobility exhibits simple 
and reproducible patterns [4]. In the context of urban transportation, 
a pattern could be regular use of certain terminals or bus stops.    

Another important component of an evaluation system is providing 
planners with decision support. Urban transportation efficiency can 
be affected by a variety of factors such as passenger boarding / 
alighting volumes, time of day, service types, stop locations, 
weather conditions, road accidents and the interaction of these 
variables [7]. Measuring the extent to which each of these variables 
influences the outcome can help design targeted interventions for 
performance improvement. 

Our research objective is to develop analytical metrics and methods 
using Big Data to support the design of solutions for smart urban 
transportation. We propose a three-layer system called 
SMARTBUS for evaluating and managing urban bus transportation 
in developing countries where buses are the primary public 
transportation choice. In the first layer, we compute bus travel times 
and passenger boarding location by combining Global Positioning 
System (GPS) measurements, passenger card scans, and open 
geographic information system (GIS) data. In the second layer, we 
create a bus-stop network based on information from the first layer. 
Innovative network metrics are designed to measure fulfillment of 
the current transportation needs. In the last layer, we implement 
analytical and visualization modules to measure and display the 
impact of variables related to the bus system. We demonstrate the 
implementation of this system as a Web application and show how 
it can be used for developing economies because it is cost-effective 
and scalable. 
The remainder of this paper is organized as follows: Section 2 
reviews related work. Section 3 describes how we design and 
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implement the three-layer application. Section 4 presents the 
potential use of the system in the city of Fortaleza in Brazil. Finally, 
Section 5 provides conclusions and future directions. 

2. RELATED WORK 
Traditional research on public transportation mainly focuses on the 
planning, operation, and control of urban transport systems based on 
buses [7]. Typical input information sources include transit network 
topology and characteristics, fare structure, service standards and 
constraints. These studies address the efficiency issues by looking at 
the problem of Transit Network Design and Timetabling, Frequency 
Setting, Scheduling Problem and Real-time control strategies [7].  

With the development of technology for tracking such as, GPS 
signals, passenger card scans, AVL (Automatic Vehicle Location), 
APC (Automatic Passenger Counter), and traffic sensors, the 
amount and variety of available urban transportation data has 
greatly increased. This permits the use of data science techniques to 
analyze problems related to bus travel time. Previously proposed 
solutions for system management include investing in monitoring 
tools such as AVL and APC systems [3]. AVL-APC systems have 
been proposed to provide observations of indicators such as vehicle 
travel times, travel speeds and passenger boarding/alighting counts, 
as well as supporting studies on planning transport systems [6, 11], 
designing real-time control strategies [10] and predicting travel time 
[1, 12]. However, it is still a challenge to convert these research 
findings into real world solutions for developing cities where the 
access to expensive monitoring techniques on a system-wide scale 
is usually limited by resource constraints. When a comprehensive 
AVL-APC system is not available, it is necessary to estimate 
fundamental indicators from alternative data sources (e.g., fare 
collection records, bus GPS systems) that are commonly available 
and cost-effective. Besides on-board bus devices, smartphone 
applications installed on passenger mobile devices  make it possible 
to collect tracking data via crowd-sensing [2]. This approach 
requires users to download and use the app and may suffer from 
bias due to self-reporting. 

A related and important area that has not received sufficient 
attention in existing literature is the study of human mobility 
patterns. Prior research findings have revealed that human 
movement behaviors exhibit reproducible patterns [4]. For example, 
a recent study confirms spatiotemporal patterns through analyzing 
taxi-trace datasets [9]. We argue that transit patterns in bus systems 
are both observable and useful. Spatial (e.g., bus stop) and temporal 
(bus scheduling) information are likely to be more predictable for 
bus passengers (than taxi passengers). Therefore, in this study, we 
examine bus passenger patterns using both existing and new 
network analysis techniques to analyze boarding / alighting 
behavior. 

3. METHODOLOGY FOR SYSTEM 
DESIGN AND IMPLEMENTATION 
In this section, we first introduce the scope of this study followed by 
an overview of our proposed system called SMARTBUS and its 
architecture. Then we discuss the implementation details of each 
layer in SMARTBUS. The discussion emphasizes the mechanisms 
for processing input data and quantitative techniques to utilize the 
outcomes.  

3.1 System Overview 
The data used for this study were collected from the city of 
Fortaleza in Brazil during 2014-15. Fortaleza is the fifth largest city 
in Brazil with a population of about 3.6 million spread across about 
120 square miles. Its bus transportation system has over 300 routes, 

spanning nearly 5,000 bus stops.  Data from approximately 2,000 
buses were in used for our analysis. Most of these buses have GPS 
tracking devices which transmit bus locations every 15-30 seconds. 
Automatic fare collection (AFC) provided data about passenger 
trips (the system supports both cash and smart card usage). 
Citywide, passengers made 30 million trips per month on average. 
During the period of study, dedicated bus lanes were introduced on 
several routes to improve the travel experience.  

Table 1 summarizes the datasets and their attributes used in this 
study. Compared with an AVL-APC system which can cost 
between $10,000 and $20,000 per bus, combining GPS signals with 
fare collection records is  a more economical alternative for traffic 
monitoring, since the cost for a GPS tracking device per bus is 
normally within $200 per bus and AFC systems are widely 
available in many cities. However, using GPS and AFC systems 
requires additional computation for the derivation of bus travel 
times and passenger boarding / alighting counts. For example, a fare 
collection record indicates that passenger 𝑢𝑖  boarded a bus 𝑏𝑗  at 
time  𝑡𝑘  but does not indicate the bus stop where the passenger 
boarded the bus. In order to extract such “location” information, we 
need to combine this data with the GPS repository by matching 𝑏𝑗  
and 𝑡𝑘. This search process is non-trivial, given that a typical month 
of GPS data contains 200 million records. We also include open 
source GIS data12 to extract the route polyline between bus stops, 
and weather conditions (to improve the analysis accuracy). 

 Table 1. Types of Data Sources 
 

In SMARTBUS, we addressed this problem in the first layer where 
we implemented effective techniques for data integration and 
analyses. As illustrated in Figure 1, Layer-1 accepts input from GPS 
signals, fare collection records and bus stop locations to calculate 
fundamental performance indicators, e.g., bus travel time, bus 
segment speed and passengers’ boarding locations. The outcomes 
feed into Layer-2 and Layer-3 for further analysis. In Layer-2 we 
extract and construct a bus stop network based on passengers’ 
boarding locations. Metrics derived from a comparison between the 
bus stop network and transit network are then used to identify 
passenger needs that need to be fulfilled. 

                                                                 
1 OpenStreetMap: https://www.openstreetmap.org  
2 Google Maps: https://maps.google.com/ 

Type Name Attributes 

Major Datasets 

Bus GPS 
Signals 

<bus ID, latitude, longitude, 
timestamp> 

Fare 
Collection 
Records 

<bus ID, timestamp, user ID, 
payment type, bus direction, 

route ID> 

Complementary 
Datasets 

Bus Stop 
Locations 

<bus stop ID, latitude, 
longitude, rout ID> 

Dedicated 
Lanes 

<length, location, effective 
date> 

Bus 
Schedule 

<departure time, arrival time, 
trip interval> 

Open source 
Datasets 

Open GIS <predecessor bus stop,  
successor bus stop, polyline> 

Weather <date, weather condition, 
precipitation> 
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The indicators are used by analytic modules in Layer-3 to provide 
the users (city administrators and technicians) with insights into the 
current state of the system (both for infrastructural components 
performing normally and those that need additional understanding 
or intervention). In addition to the big data computations, each layer 
is connected to a web based visualization module which provides 
map-based interactive analysis to explore intermediate results from 
each step. For example, the dashboard can provide a transportation 
manager with metrics that point to the causes of bus delays (e.g., 
spikes in passenger demand which increased time spent at bus stops 
and, in turn, total trip time).  

3.2 Estimating Fundamental Indicators 
Travel time is one of the most important measures to evaluate the 
performance of an urban transportation system [8]. As mentioned in 
Section 2, one of the functions of Layer-1 is to extract bus travel 
time and passenger boarding location from GPS signals and fare 
collection records. By linking the GPS and AFC records, we are 
able to calculate start and end times for a bus on a route. We can 
also estimate the nearest bus stop (i.e., boarding location) for a 
passenger by comparing the time of a passenger card scan and the 
corresponding location from GPS records. One challenge here is to 
integrate and process very large volumes of data. We implement 

multiple techniques including data partitioning and Hadoop-based 
distributed processing to improve the running times. 

As illustrated in Figure 2, GPS signals are partitioned by a pair of 
bus ID and time <𝑩𝒙, 𝑻𝒚>. Bus stop locations are partitioned by 
route ID <𝑹𝒎 >. Card scans are segmented so that passengers 
boarding the same bus at same time are in the same group. Using 
this partition strategy, card scan segments are effectively linked 
with relative GPS signals and bus stop locations. Linked data are 
processed simultaneously in our Hadoop distributed computing 
system. 

3.3 Network Analysis of Urban Mobility  
Passenger boarding / alighting data is key to understanding urban 
mobility demands, as boarding/alighting pairs reveal passenger 
transit patterns. However, unlike boarding information which can be 
estimated from fare collection records, passenger alighting data is 
harder to estimate. Therefore we introduce a new network analysis 
approach to learn urban mobility patterns using only the passenger 
boarding information. 

3.3.1 Bus Stop Network Definition 
Our extraction of a bus stop network is motivated by the fact that 
over 75% of passengers have at least two boarding records in a day. 
Boarding at different locations can reflect a transit pattern, e.g., 
return trips or transfers. For example, a passenger may exit a bus 
close to where they board next. From a human mobility perspective, 
a pattern of passenger movement in urban transit can indicate an 
underlying background characteristic. For example, students might 
share a same first leg from their school to a terminal and from there 
they might take different buses to their own home. In this study, our 
assumption is that that the higher the number of times passengers 
board at a pair of bus stops, the more likely there is an urban transit 
need between the two areas. Based on this assumption, we created a 
bus stop network using the number of shared boarding passengers 
(SBP) among bus stop pairs. 

Since urban mobility might exhibit seasonal patterns, we generate 
these networks on a monthly basis. Let 𝐵 be the set of bus stops, the 
network of month 𝑝 is denoted as 𝑁𝑝(𝑉𝑝, 𝐸𝑝) where 𝑉𝑝 ⊆ 𝐵 is a 
subset of bus stops and 𝐸𝑝is a set of undirected edges that connect 
bus stops. For bus stops 𝑏𝑖 , 𝑏𝑗  ∈ 𝐵, if more than  𝜏 people board at 
both  𝑏𝑖 and 𝑏𝑗  in a day (in month 𝑝), we add nodes  𝑏𝑖 , 𝑏𝑗  to 𝑉𝑝 
and 𝑒𝑖𝑗 to 𝐸𝑝. In our current implementation, we empirically set 𝜏 
as 20. After connecting all bus stops that meet the minimum SBP, 
we normalize edge weights to measure the strength of connections. 
In the example in Figure 3, the number attached to each node 
indicates the number of  passengers boarding at that stop. SBP 
between bust stop  𝑏1 and  𝑏2 is 20 and SBP between bus stop  𝑏1 
and  𝑏3 is 50. A global maximum normalization will result in the 
weight of  𝑒12 = 0.4  and  𝑒13 = 1.0 . However,  𝑏3  has a larger 
passenger base than  𝑏2. On the other hand, 50% of the passengers 
who boarded at  𝑏2 also boarded at  𝑏1. Therefore, the normalization 
should take into consideration passenger counts at each stop so that 
connection 𝑒12 has a larger weight than  𝑒13. To do so, we applied 
the normalization method used in [13] which adds a neutralizing 
step before the global maximum normalization.  In particular SBP 
value between two bus stops will be divided by a product of the 
number of passengers boarded in each bus stop. Using this method, 
weight of 𝑒12 = 1.0 and 𝑒13 = 0.2.  

Figure 2. Data partitioning strategy and parallel computing 

 

 
Figure 1. System architecture of SMARTBUS. 
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3.3.2 Urban Mobility Patterns from Network 
Measurements 
In this section, we discuss how the extracted bus stop networks can 
help understand urban mobility patterns. These measurements are 
further categorized by the different aspects they capture. 

The first category of measurements is based on community 
detection results. A community is partitioned so that the intra-
community-connection is maximized while inter-community-
connection is minimized. If we interpret the community detection 
results in the context of urban mobility, a community defines a 
living area for a group of people. Hence, we can use the following 
methods to characterize patterns. 

1) Examine connections ranked higher in terms of their weight. 
2) Measure maximum and average distance between connected 

bus stops within the community to infer living area diversity. 
3) Add neighborhood information such as schools, shopping 

malls or residential blocks to label the regions in a community 
to further explain factors that characterize the community. 

The second group of metrics reflects temporal dynamics of the 
network by measuring node and edge persistence rates across time. 
A high overlap of nodes and edges indicates a stable demand for 
urban mobility. In contrast, low rates of persistence of node or 
edges may be due to a changing population of bus passengers.  

Many interesting indicators can be measured by combining our bus 
stop network with the transit network. Traditionally, transit network 
efficiency can be measured by the shortest path between stops. 
Let 𝑁𝑝(𝑉𝑝, 𝐸𝑝) be the bus stop network for month 𝑝,  𝑑𝑖𝑗  be the 
distance of shortest path between bus stops  𝑏𝑖 and  𝑏𝑗 in the transit 
network, 𝑤𝑖𝑗  be the weight of  𝑏𝑖  and  𝑏𝑗  in  𝑁𝑝; then a weighted 
efficiency is measured as: 

1

|𝐸𝑝| 
∑

 𝑤𝑖𝑗

 𝑑𝑖𝑗
 𝑓𝑜𝑟  𝑒𝑖𝑗  ∈ 𝐸𝑝  

The motivation is that distance of shortest path affects the overall 
efficiency more on pairs of bus stops that have higher weights in the 
bus stop network. This value can be used to measure the overall 
efficiency of the bus transit system.  
Similarly, we can examine a pair of bus stops that has a larger 
weight with the combination of its transit network attributes, such 
as: 
1) Polyline distance (distance the bus needs to travel). If the 
polyline distance is too long, a city planner may consider designing 
a shorter route to reduce travel time and improve passenger 
experience. 
2) Number of bus routes. For high-demand transportation needs, if 
passengers have more alternatives, it is less likely that overcrowding 
will occur. 

3.4 Analysis of Bus Delays  
A key requirement for Layer-3 is to analyze how different factors 
affect the health of the bus network. For example, an important 
measure is trip delay (i.e., difference between the estimated travel 
time and the scheduled time). 

The interactions between factors and their impacts on bus delay 
time may change under different circumstances (e.g., different 
routes). At the city level, some interventions were carried out in 
Fortaleza to reduce travel time, e.g., introducing dedicated bus lanes 
on some parts of routes. Therefore, performing route-level 
regression analysis can help planners understand the impact of their 
decisions and better identify the reasons that caused delays. 

To implement Layer-3, the system requires comprehensive and 
accurate input measures. . For example, the following input factors 
are useful in determining bus network health. 

1) Number of boarding /alighting passengers  
2) Road conditions (e.g., route length, proportion of dedicated lanes 
and number of traffic lanes) 
3) Environment variables (weather conditions, date & time) 

 

 

 

 
Figure 4. User interface for dedicated bus lane evaluation 

 
. 

 
 

 
Figure 3. Example of bus stop network normalization 

 
. 
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4) Fleet operator characteristics (company, number of fleets) 
5) Road accidents 

The data comes from multiple sources including the city 
government, fleet operators, weather sensors, etc. This in turn leads 
to challenges in data integration. 

4. USING SMARTBUS FOR DECISION 
MAKING 
In this section we describe several cases where SMARTBUS is 
useful for evaluating an urban transportation system and supporting 
its redesign. Each layer in the system is connected to a web-based 
visualization module which provides interactive tools for transport 
planners and managers to explore the results. 

4.1 Visual Analysis of Indicators 
In Layer-1, we estimate bus travel time and the number of boarding 
passengers. Visualizing these fundamental indicators on the map 
can reveal information on when and where severe bus delays and 
overcrowding happen. For this purpose, we used open source map 
data to extract polylines between bus stops. Using the polylines, we 
calculated the travel distance between bus stops and then converted 
travel time into average travel speed, which is a generalizable 
indicator when distances between bus stops vary. 
As illustrated in Figure 4, the visualization tool allows users to 
select bus routes, time periods and other conditions to examine the 
state of the system using fundamental indictors such as bus travel 
time, travel speed and passenger boarding volume. Bus routes are 
color coded on the map to help explore spatial patterns of the 
metrics that are being examined. One example of Layer-1 
visualizations is to examine the effectiveness of dedicated bus lanes 
by comparing bus speeds before and after the dedicated lane is 
introduced. Besides a speed comparison, the system also provides a 
comparison of scheduled bus trips and passenger volume. This is 
useful to understand the cases where a dedicated lane does not result 
in a significant speed boost, perhaps due to increased number of 
passengers in the corresponding bus route. 

4.2 Route Segment Analysis 
The bus stop network we developed in section 3.3 provides new 
ways to analyze existing bus routes. Given a bus speed map, a 
transit planner can first identify problematic bus route segments 
based on its bus stop network weight, and then explore the potential 
reasons leading to congestion. For example, in Figure 5, we see two 

bus segments (in red) where the bus speed is slow. Both of them 
have normalized weights close to 1.0, which indicates a strong 
transit pattern between the two ends of the segments. Segment A 
has 12 bus stops that are used by different routes. We can adjust one 
of the routes so that it connects the two ends of segment A in a more 
direct way to reduce the length of shortest path. Segment B is 
another problematic route segment where only one bus route 
connects the two ends of the segment. Therefore, planners can 
adjust other routes to serve this segment or increase the fleet size or 
schedule frequency for this route.  

4.3 Factors causing Bus Delays  
In the previous sections, we examined the performance of separate 
bus segments. In this section, we analyze bus delays at the route 
level. We compare the actual time that a bus took to finish a trip 
(from origin to the destination) with the scheduled time. Computed 
bus delays can be used in two ways: 1) a visualization tool for 
exploring relationship between bus delays and selected dependent 
variables; 2) a regression model to quantitatively measure factors 
contributing to bus delays. 

4.3.1 Bubble Chart for Bus Delay Analysis 
In the visualization tool, we implemented a dynamic bubble chart in 
which routes are represented as bubbles in different colors. Bubble 
size and X-axis position can be used to represent dependent 
variables. Figure 6 visualizes the number of passengers boarding 
each hour on the X-axis, while number of buses on the route is 
indicated by the size of the bubble. Every frame in the animation 
demonstrates a relationship between bus delays, the number of 
buses, and the number of boarding passengers. Figure 6 indicates 
that bus delays are strongly related to the number of boarding 

 
Figure 6. Dynamic bubble chart for bus delay analysis 

 

 
Figure 5. Use bus stop network metrics to identify problematic route segments 
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passengers. For routes that have high demands, longer delays and 
fewer buses (shown as small bubble size), increasing the fleet on the 
route might reduce the delay. 

4.3.2 A Regression Analysis of Bus Delay 
To better understand how different factors affect bus delays, we 
developed a regression model. Results are shown in Table 2 for a 
popular route, using comparison data from one month in 2014 and 
the corresponding month in 2015. Every bus trip during the period 
is an instance. A subset of independent variables were used for the 
analysis based on data availability.  
The regression results lead to several conclusions: 1) Weekday and 
morning rush hour trips are more likely to be delayed. 2) The 
impact of weather was not significant for the analyzed months in 
part because persistent heavy rains were not experienced during the 
analysis period (i.e., 8 rainy days across the analyzed months). 
3) Afternoon rush hour had “positive” impact on delay owing to the 
fact that the schedule budgeted 15-20 minutes more time than for 
the morning rush hour period. Based on this finding, we suggest 
increasing the scheduled time in the morning or using higher 
capacity buses. Correspondingly, a reduction in scheduled trip time 
can be proposed for the afternoon to allow more buses on this route 
in afternoon. 4) The dedicated bus lane program was found to be 
generally effective, which suggests that routes with similar demand 
(and road) conditions can consider introducing dedicated bus lanes. 

Table 2. Multiple linear regression model of bus delay on a 
popular bus route 

Independent 
Variables 

Type B Std. Error 𝛃 

Weekday Binary -12.196 2.704 -.069*** 

Morning 
Rush Hour 

Binary -20.840 1.790 -.165*** 

Afternoon 
Rush Hour 

Binary 10.056 1.888 -.077*** 

Rain Binary -.290 1.868 -.002 

Number of 
Passengers 

Numeric  -3.68 .018 -.306*** 

Dedicated 
Lane 

Binary 5.311 1.427 .052*** 

***: significant at p < 0.001 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented an innovative web application 
called SMARTBUS to support the evaluation and redesign of urban 
transportation systems for transportation planners, managers, and 
technicians. In the first layer, the system addresses the challenge of 
developing useful performance indicators by computing bus travel 
time and passenger boarding volumes from raw bus GPS data and 
fare collection records. The second layer uses passenger boarding 
information to create a bus stop network for the identification of bus 
passengers’ transit patterns. Combining these patterns with the 
current bus transit network helps identify design issues that can be 
addressed.  Layer three is designed to analyze the impact of 
different factors on route-level bus delays and provides suggestions 
based on the results. We implemented and evaluated the 
SMARTBUS system to evaluate and improve the bus transportation 
system of the city of Fortaleza in Brazil. While the primary users of 
the web-based application are local government technicians and 
managers, the system can provide transportation metric information 
(e.g., average transit times or speeds) for the public, and can be used 

to promote awareness of city initiatives and results (e.g., show how 
bus network or dedicated bus lanes   are improving travel times or 
overcrowding). 
We are continuing to extend this work in several directions. We are 
implementing a predictive model to estimate the probability 
distribution of passenger’s alighting location given a boarding 
location. The passenger alighting information can expand our 
current network analysis. We also are extending the predictive 
model to incorporate related data such as road accidents, road and 
traffic congestion conditions. Future work involves integrating the 
bus system with other forms of urban transportation such as bike 
sharing.  

6. REFERENCES 
[1] Bai, C., Peng, Z., Lu, Q. and Sun, J. 2015. Dynamic Bus 

Travel Time Prediction Models on Road with Multiple Bus 
Routes. Computational Intelligence and Neuroscience. 2015, 
(2015), 1–9. 

[2] Farkas, K., Feher, G., Benczur, A. and Sidlo, C. 2015. 
Crowdsending based public transport information service in 
smart cities. IEEE Communications Magazine. 53, 8 (Aug. 
2015), 158–165. 

[3] Furth, P.G., Hemily, B., Muller, T.H.J. and Strathman, J.G. 
2003. Uses of Archived AVL-APC Data to Improve Transit 
Performance and Management : Review and Potential. 
Transportation Research Board. 23, June 2003 (2003). 

[4] González, M.C., Hidalgo, C. A., and Barabási, A.-L. 2008. 
Understanding individual human mobility patterns. Nature. 
453, 7196 (Jun. 2008), 779–82. 

[5] Gwilliam, K. 2003. Urban transport in developing countries. 
Transport Reviews. 23, 2 (Jan. 2003), 197–216. 

[6] Hadas, Y. and Shnaiderman, M. 2012. Public-transit frequency 
setting using minimum-cost approach with stochastic demand 
and travel time. Transportation Research Part B: 
Methodological. 46, 8 (2012), 1068–1084. 

[7] Ibarra-Rojas, O.J., Delgado, F., Giesen, R. and Muñoz, J.C. 
2015. Planning, operation, and control of bus transport 
systems: A literature review. Transportation Research Part B: 
Methodological. 77, (Jul. 2015), 38–75. 

[8] Kieu, L., Bhaskar, A. and Chung, E. 2012. Bus and car travel 
time on urban networks : integrating Bluetooth and bus vehicle 
identification data. 25th ARRB Conference - Shaping the 
future: Linking policy, research and outcomes (2012), 23–26. 

[9] Li, X., Pan, G., Wu, Z., Qi, G., Li, S., Zhang, D., Zhang, W. 
and Wang, Z. 2012. Prediction of urban human mobility using 
large-scale taxi traces and its applications. Frontiers of 
Computer Science in China. 6, 1 (2012), 111–121. 

[10] Sun, A. and Hickman, M. 2005. The Real-Time Stop-Skipping 
Problem. Journal of Intelligent Transportation Systems. 9, 2 
(Apr. 2005), 91–109. 

[11] Tétreault, P.R. and El-Geneidy, A.M. 2010. Estimating bus run 
times for new limited-stop service using archived AVL and 
APC data. Transportation Research Part A: Policy and 
Practice. 44, 6 (Jul. 2010), 390–402. 

[12] Zhang, C. and Teng, J. 2013. Bus Dwell Time Estimation and 
Prediction: A Study Case in Shanghai-China. Procedia - 
Social and Behavioral Sciences. 96, Cictp (2013), 1329–1340. 

[13] Zhang, K., Ram, S. and Bhattacharya, S. 2015 Large Scale 
Network Analysis for Online Social Brand Advertising. 
forthcoming in MIS Quarterly, Special Issue on 
Transformational Issues in Big Data and Analytics for 
Networked Business, 2015. 

368


