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ABSTRACT

The World Wide Web has been witnessing an explosion of
video content. Video data are becoming one of the most
valuable sources to assess insights and information. How-
ever, existing video search methods are still based on text
matching (text-to-text search), and could fail for the huge
volumes of videos that have little relevant metadata or no
metadata at all. In this paper, we propose an accurate,
efficient and scalable semantic search method for Internet
videos that allows for intelligent and flexible search schemes
over the video content (text-to-video search and text&video-
to-video search). To achieve this ambitious goal, we propose
several novel methods to improve accuracy and efficiency.
The extensive experiments demonstrate that the proposed
methods are able to surpass state-of-the-art accuracy and ef-
ficiency on multiple datasets. Based on the proposed meth-
ods, we implement E-Lamp Lite, the first of its kind large-
scale semantic search engine for Internet videos. According
to National Institute of Standards and Technology (NIST),
it achieved the best accuracy in the TRECVID Multimedi-
a Event Detection (MED) 2013, 2014 and 2015, one of the
most representative task for content-based video search. To
the best of our knowledge, E-Lamp Lite is the first content-
based semantic search system that is capable of indexing
and searching a collection of 100 million videos.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
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1. INTRODUCTION
We are living in an era of big data: three hundred hours of

video are uploaded to YouTube every minute; social media
users are posting 12 millions videos on Twitter every day.
According to a Cisco study, video content will account for
80% of the entire world’s internet traffic by 2019. The big
video data on the web are important not because there is a
lot of it but because it is becoming a valuable source for in-
sights and information, e.g. telling us about things happen-
ing in the world, giving clues about a person’s preferences,
pointing out places, people or events of interest, providing
evidence about activities that have taken place [27].

An important approach of acquiring information and knowl-
edge is through video search. However, existing large-scale
video search methods are still based on text-to-text match-
ing, in which the query words are matched against the textu-
al metadata generated by the uploader [5]. The text-to-text
search method, though simple, is of minimum functionality
because it provides no understanding about the video con-
tent. As a result, the method proves to be futile in many
scenarios, in which the metadata are either missing or less
relevant to the visual video content. According to a recent
study [30], 66% videos on a social media site called Twitter
Vine are not associated with meaningful metadata (hash-
tags or mentions), which suggests on an average day, around
8 million videos may never be watched again just because
there is no way to find them. The phenomenon is more se-
vere for the even larger amount of videos that are captured
by mobile phones, surveillance cameras and wearable devices
that end up not having any metadata at all. Comparable
to the days in the late 1990s, when people usually got lost
in the rising sea of web pages, now they are overwhelmed
by the vast amounts of videos, but lack powerful tools to
discover, not to mention to analyze, meaningful information
in the video content.

To this end, we approach an ambitious problem called
Content-Based Video Semantic Retrieval (CBVSR), in which
the goal is to retrieve relevant videos not based on textual
metadata, but on video content understanding. CBVSR is
a type of content-based video retrieval focusing on the se-
mantic understanding about video content. A distinguishing
characteristic of CBVSR is the capability to search and ana-
lyze videos based on semantic features that are automatical-
ly extracted from the video content. Semantic features are
the human interpretable multimodal features about video
content such as people, objects, scenes, actions and activi-
ties, speech, visible text, etc. The CBVSR method advances
traditional video retrieval methods in many ways. It enables
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a more intelligent and flexible search paradigm that tradi-
tional text-to-text search would never achieve. In this paper,
we consider two types of queries: a query only consisting of
semantic features (e.g. people, objects, speech, visible tex-
t, etc.) is called a semantic query. A query consisting of
both semantic features and a few video examples is called
a hybrid query. The semantic query provides an approach
for text-to-video search, and the hybrid query offers a mean
for text&video-to-video search. Example 1 illustrates some
examples of the queries.

Example 1. Suppose our goal is to search the videos about
birthday party. In traditional text queries, we have to search
the keywords in the user-generated metadata (titles or de-
scriptions). For videos without any metadata, there is no
way to find them. In contrast, in a semantic query, we might
look for visual clues in the video content such as “cake”, “gift”
and “kids”, audio clues like “birthday song” and “cheering
sound”, or visible text like “happy birthday”. See Fig. 1(a).
Semantic queries are flexible and can be refined by Boolean
operators. For example, to capture only the outdoor party,
we may add “AND outdoor’ to the current query. Temporal
relation between concepts can also be specified by a temporal
operator. For example, we may add a temporal operator be-
tween “gift” and “cake” to find videos in which the opening
of presents are seen before consuming the birthday cake.

After watching the retrieved videos for a semantic query,
the user is likely to select a few interesting videos, and to
find more relevant videos like these. This can be achieved by
issuing a hybrid query which adds the selected videos to the
query. See Fig. 1(b). Users may also change the semantic
features in the hybrid query to refine or emphasize certain
aspects in the video examples. For example, we may add
“AND birthday song” in the hybrid query to find more videos
not only similar to the examples but also have happy birthday
songs in their content.

(a) Semantic Query (b) Hybrid Query

Figure 1: Comparison of the semantic and the hy-

brid query on “birthday party”.

The idea of CBVSR sounds appealing but, in fact, it is
a very challenging problem. It introduces several novel is-
sues that have not been sufficiently studied in the literature.
As far as this study is concerned, it presents the following
challenges: 1) Accurate retrieval for complex queries. A
crucial challenge for any retrieval system is achieving a rea-
sonable accuracy, especially for the top-ranked documents
or videos. Unlike many problems, the data in this prob-
lem are real-world noisy and complex Internet videos, and
the queries are of complex structures containing both texts
and video examples. How to design intelligent algorithm-
s to obtain state-of-the-art accuracy is a challenging issue.
2) Efficient retrieval at very large scale. Processing video
proves to be a computationally expensive operation. The
huge volumes of Internet video data become a key chal-
lenge for retrieval. How to design efficient algorithms that

are able to search hundreds of millions of video within the
maximum recommended waiting time for a user, i.e. 2 sec-
onds [20], while maintaining maximum accuracy becomes a
critical challenge.

In this paper, we propose a collection of novel methods
to solve these challenges. First, we introduce a novel self-
paced curriculum learning theory that allows for training
more accurate semantic concepts. Second, we propose a
novel and scalable approach to index semantic concepts that
can significantly improve the search efficiency and scalabili-
ty. Third, we design a novel video reranking algorithm that
can boost accuracy for video retrieval. The proposed meth-
ods are extensively verified on a number of large-scale chal-
lenging datasets. Experimental results demonstrate that the
proposed method can exceed state-of-the-art accuracy and
efficiency. Furthermore, it can efficiently scale up the search
to hundreds of millions of Internet videos. It only takes
about 0.2 second to search a semantic query on a collection
of 100 million videos, and 1 second to handle a hybrid query
over 1 million videos.

The proposed methods are fundamental and can poten-
tially benefit a number of related tasks on video search and
analysis, such as video hyperlinking [22, 1], video question
answering, video summarization and recommendation [4,
3], social video stream analysis [24, 16], in-video advertis-
ing [14], etc. The insight in our web-scale method may guide
the design of future search or analysis systems for web-scale
video data. To summarize, our contributions are as follows:

1. The first-of-its-kind framework for text-to-video and
text&video-to-video semantic search over hundreds of
millions of videos.

2. A novel theory about self-paced curriculum learning
and its application on concept detector training.

3. A novel and cost-effective reranking algorithm.

4. A concept adjustment method that allows for efficient
indexing big video data by the modified inverted index.

2. STATE OF THE ART
This section reviews some important related work on content-

based video retrieval. Content-based Image Retrieval is a
task of finding identical or visually similar images in a large
collection. It provides a scheme of image-to-image search,
where the query is usually a single example image. The sim-
ilarity matching is based on low-level descriptors that carry
little semantic meaning. Therefore it only finds visually sim-
ilar, but not necessarily semantically similar images. This
method can be extended to search key frames in a video clip,
i.e. image-to-video search. For example, Sivic et al. intro-
duced Video Google [26], a system to retrieve similar video
key frames for a query image. Another example is search-
ing key frames of a specific instance about, e.g., a person, a
logo or a landmark [35]. Content-based image retrieval is a
well-studied problem. State-of-the-art systems can efficient-
ly handle more than 100 million images.

Semantic Concept Detection is a task of searching the oc-
currence of a single concept in the video content. A concept
is a visual or acoustic semantic tag on objects, scenes, ac-
tions, etc. This line of study first emerged in a TRECVID
task called Semantic Indexing [21]. Its subproblems like Ac-
tion Detection and Object Detection [25] recently become
popular very quickly. Semantic Concept Detection provides
some semantic understanding about the video content but
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only supports a simple search scheme like object-to-video or
action-to-video search.

Multimedia Event Detection (MED): with the advance
in semantic concept detection, people started to focus on
searching more complex queries called events. An event is
more complex than a concept as it usually involves people
engaged in process-driven actions with other people and/or
objects at a specific place and time [7]. For example, the
event “rock climbing” involves a climber, mountain scenes,
and the action climbing. A benchmark task on this topic is
called TRECVID Multimedia Event Detection (MED) [23,
32]. Its goal is to provide a video-to-video search scheme.
MED is a challenging problem, and the biggest collection in
TRECVID only contains 200 thousand videos.

The CBVSR problem is similar to MED but advances it
in the following ways. First, the queries are complex queries
consisting of both text description of semantic features and
video examples. Second, the search is solely based on con-
tent understanding rather than low-level features matching.
Finally, the problem scale is orders-of-magnitude larger than
that of MED.

3. METHOD OVERVIEW
In this paper, we model a CBVSR problem as a retrieval

problem, in which given a query, we are interested in finding
a ranked list of relevant videos based on the understanding
about video content. To address the problem, we incorpo-
rate a two-stage framework, as illustrated in Fig. 2. The of-
fline stage is called semantic indexing, which aims at extract-
ing semantic features in the video content and indexing them
for efficient online search. It usually involves the following
steps: a video clip is first represented by the low-level fea-
tures that capture the local appearance, texture or acoustic
statistics of a video clip, represented by a collection of local
descriptors [12]. State-of-the-art low-level features included
in our paper are dense trajectories, Convolution Neural Net-
work (CNN) features (GoogleNet) [28] for visual modality,
and neural network features for audio modality [19]. The
low-level features are then input into the off-the-shelf detec-
tors to extract the semantic features. The semantic features
are human interpretable features, each dimension of which
corresponds to a confidence score of detecting a concept or a
word in the video [7, 31]. The visual/audio concepts, Auto-
matic Speech Recognition (ASR) [17, 18] and Optical Char-
acter Recognition (OCR) are four types of semantic features
considered in this paper. After extraction, the semantic fea-
tures will be adjusted and indexed for the efficient online
search.

The second stage is an online stage called video search. We
employ two modules to process the semantic query and the
hybrid query. Both modules consist of a query generation
and a multimodal search step. A user may express a query in
a variety of forms such as a text description or a few video
examples. The query generation for semantic query is to
map the out-of-vocabulary concepts in the user query to its
most relevant alternatives in the system vocabulary. For the
hybrid query, the query generation also involves training a
classification model using the selected video examples. The
search component aims at retrieving a ranked list using the
multimodal features. This step is a retrieval process for the
semantic query and a classification process for the hybrid
query. Afterwards, we can refine the results by reranking the
videos in the returned ranked list. This process is known as

reranking or Pseudo-Relevance Feedback (PRF). The basic
idea is to first selects a few videos and assign assumed labels
to them. The samples with pseudo labels are then used to
build a reranking model using sematic and low-level features
to improve the ranked list.

4. RESEARCH STUDIES
To address the challenges in the introduction, we conduct-

ed a number of studies to explore the research direction on
accurate, efficient and scalable video search. Thorough the
discussions of these directions, detailed methods and exper-
imental results are provided in [13, 10, 14, 9, 8, 33, 11].

4.1 Concept Detector Construction
In [10, 9], we proposed a theory named Self-Paced Cur-

riculum Learning (SPCL) to train robust concept detectors.
The theory is inspired by the cognitive processes of human-
s and animals, which generally start with learning easier
aspects of a task, and then gradually consider more com-
plex examples [2, 15]. SPCL is formulated as a concise
optimization problem that takes into account both prior
knowledge known beforehand and the learning feedback dur-
ing training. Consider a binary classification problem. Let
L(yi, g(xi,w)) denote the loss function which calculates the
cost between the ground truth label yi and the estimated la-
bel g(xi,w). Here w represents the model parameter inside
the decision function g. Given a predetermined curriculum,
we have:

min
w,v∈[0,1]n

E(w,v; λ,Ψ)=
n∑

i=1

viL(yi,g(xi,w))+f(v;λ)

subject to v ∈ Ψ

(1)

where v = [v1, v2, · · · , vn]
T denote the latent weight vari-

ables reflecting the samples’ importance. f is the self-paced
function; Ψ is a feasible region that encodes the informa-
tion of a predetermined curriculum. A curriculum can be
expressed as a ranking function that assigns learning pri-
orities to training samples. A self-paced function f deter-
mines a learning scheme for the model to learn new sam-
ples. Since humans use different learning schemes for dif-
ferent tasks, SPCL can utilize multiple learning schemes for
different problems. We incorporate five types of self-paced
function named binary [15, 34], linear [10], logarithmic [10],
mixture [10], and diverse learning scheme [9] for concept
training. The generic concept training is solved by an alter-
native convex search in Algorithm 1.

Experimental results on a number of benchmarks verify
the proposed method can train robust detectors than the
baseline methods [9, 10]. Using the methods, we have built
more than 3000+ concept detectors over 2 million video clip-
s, and incorporated them into our CBVSR system [13]. To
the best our knowledge, it is by far the largest concept collec-
tion directly trained on videos. We share the semantic fea-
tures at http://www.cs.cmu.edu/~lujiang/0Ex/icmr15.html.

4.2 Concept Adjustment and Indexing
In [14], we studied efficient concept indexing for web-scale

search. We found that raw concept detection scores are in-
appropriate for indexing due to two types of inconsistencies.
The distributional inconsistency means that the distribution
of the raw detection score is inconsistent with the underlying
concept distribution of the video. The underlying concept
representation tends to be sparse but the distribution of the
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Figure 2: Overview of the framework of E-Lamp Lite.

Algorithm 1: Self-paced Curriculum Learning.

input : Input dataset D, predetermined curriculum
γ, self-paced function f and a stepsize µ

output: Model parameter w

1 Derive the curriculum region Ψ from γ;
2 Initialize v∗, λ in the curriculum region;
3 while not converged do

4 Update w∗ = argminw E(w,v∗;λ,Ψ);
5 Update v∗ = argminv E(w∗,v;λ,Ψ);
6 if λ is small then increase λ by the stepsize µ;

7 end

8 return w∗

detection score is dense, i.e. a video contains every concept.
The logical inconsistency means that the detection scores are
not consistent with the semantic relation between concepts,
e.g. a video contains a “terrier” but not a “dog”. The incon-
sistent representation can lead to inaccurate search results
if not properly handled. To address the inconsistencies, we
proposed a novel method called concept adjustment [14]. It
aims at generating consistent concept representations that
can be efficiently indexed and searched. We proposed an
adjustment method to model the concept distribution and
relation, in the form of an optimization problem with solid
probabilistic interpretations. After adjustment, a video is
represented by a few salient concepts that are logically con-
sistent with the complex relations between concepts. We
then modified the inverted inverted index structure so that
it can index the adjusted concept scores. The experimen-
tal results show that the concept adjustment and indexing
method provides a foundation for web-scale video search.
For semantic queries, it is able to scale up the search to 100
million videos while maintaining state-of-the-art accuracy.

4.3 Query Generation & Video Search
In [13], we studied the query generation and the mul-

timodal search for semantic queries. To map the out-of-
vocabulary words in a user query to their most relevant
concepts in the system vocabulary, we investigated the fol-
lowing mapping algorithms: exact word matching, WordNet
mapping, Point-wise Mutual Information (PMI) mapping in
Wikipedia, and word embedding mapping. As there is no
single retrieval model that can always work the best for all
semantic features, we empirically study the classical retrieval

models on various types of semantic features, which includes
Vector Space Model, Okapi BM25, Language Model-JM S-
moothing and Language Model-Dirichlet Smoothing. Ex-
perimental results showed that the query generation and the
retrieval algorithms have substantial impact on the retrieval
performance. The fusion of different mapping algorithms
combined with the feature-specific retrieval method yields
the best results.

In [33], we studied the query generation and the search for
a special type of hybrid query that only contains a few video
examples. We explored a fast prediction model using Prod-
uct Quantization (PQ) [6]. We proposed an approximate
search that leads insignificant change in accuracy but sig-
nificantly improves search efficiency. Experimental results
show that the method can search 1 million videos with 1
core in less than 1 second while retaining 80% of accuracy
of a state-of-the-art system [33].

4.4 Video Reranking
In [11, 8], we studied a cost-effective PRF (aka. reranking)

method for both semantic and hybrid queries. We incorpo-
rate a multimodal PRF method called SPaR, which models
the reranking process as a self-paced learning process [15]
where the easy samples are the videos ranked at the top as
they are, generally, more relevant than those videos ranked
lower. To run PRF, we first need to pick a reranking model
(e.g. SVM or regression model), a self-paced function [8],
and reasonable starting values for the pseudo labels. The s-
tarting values can be initialized either by top ranked videos
in the returned ranked lists or by other PRF methods. After
the initialization, we iterate the following three steps, simi-
lar to the steps in Algorithm 1: 1) training a model based on
the selected pseudo samples and their weights; 2) calculating
pseudo positive samples and their weights by the self-paced
function f , and selecting pseudo negative samples randomly;
3) increasing the model age to include more positive samples
in the next iteration. Average fusion of the PRF result with
and original ranked list is used to obtain better results. Ex-
perimental results demonstrate that SPaR can improve the
performance for both hybrid and semantic queries [13, 33].

5. EXPERIMENTS
The experiments are conducted on two TRECVID bench-

marks called Multimedia Event Detection (MED): MED13Test
and MED14Test, the most representative benchmarks on
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our problem. Each set includes 20 events over 25,000 test
videos such as “changing a vehicle tire”, “townhall meeting”,
etc. The performance is evaluated by Mean Average Pre-
cision (MAP), the official metric used by NIST. All experi-
ments are conducted without using any text metadata. Due
to the lack of space, only important results are presented.

To evaluate the accuracy, we conduct experiments using
the semantic queries automatically generated using all fea-
tures (Auto), using only visual features (AutoVisual), gen-
erated by human experts (Expert). We also include hybrid
queries containing 10 video examples. Table 1 show the
results and compare the accuracy with and without the pro-
posed reranking method SPaR discussed in Section 4.4. It
worth mentioning that the results in Table 1 are compara-
ble or even better than the state-of-the-art accuracy on the
benchmarks [13, 33]. The results verify the state-of-the-art
accuracy of the proposed method. The MAP reported in Ta-
ble 1 is low because the the positive to negative ratio in the
benchmark is about 0.08%. NIST created the benchmarks
to simulate a real-world search scenario. Even though in
this challenging setting, the mean inverse rank of the first
relevant video (MRR) is about 0.6. Besides, if we apply the
method on another big dataset, an significant improvement
over the top ranked videos can be spotted. More results can
be found in [14]. We hypothesize the promising results may
catalyze the rise of next generation of content-based video
search, analysis and understanding.

Table 1: Overview of Search Accuracy.

Query
MAP

MED13 MED14

Semantic Query AutoVisual 0.074 0.086
Semantic Query Auto 0.118 0.100
Semantic Query Expert 0.183 0.172
Semantic Query Expert + SPaR 0.208 0.196
Hybrid Query (10 examples) 0.258 0.220
Hybrid Query + SPaR 0.280 0.233

To evaluate the efficiency and scalability for semantic queries,
we duplicate the videos and video shots in the largest public
multimedia collection called YFCC100M [29], and create an
artificial set of 100 million videos. We compare the search
performance of the proposed method to a common approach
in existing studies that indexes the video by dense matrices.
The experiments are conducted on a single core of Intel X-
eon 2.53GHz CPU with 64GB memory. The performance
is evaluated in terms of the memory consumption and the
online search efficiency. Fig. 3(a) compares the in-memory
index as the data size grows, where the x-axis denotes the
number of videos in the log scale, and the y-axis measures
the index in GB. As we see, our method is scalable and only
needs 550MB memory to search 100 million videos. Fig. 3(b)
compares the online search speed. A similar pattern can be
observed in Fig. 3 that our method is much more efficient
than the baseline method and only costs 191ms to process
a query on a single core. The above results verify the scala-
bility and efficiency of the proposed method.

6. DISCUSSIONS AND FUTURE WORK
In this paper, we studied a fundamental research prob-

lem of searching semantic information in video content at a
very large scale. We proposed several novel methods focus-
ing on improving accuracy, efficiency and scalability in the
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Figure 3: The scalability test on 100 million videos.

novel search paradigm. The proposed methods demonstrat-
ed promising results on web-scale semantic search for video.
The extensive experiments demonstrated that the method-
s are able to surpass state-of-the-art accuracy on multiple
datasets and achieve promising results on web-scale seman-
tic search for video.

There are several research issues to be addressed in our
study. First, semantic and hybrid queries are handled by
two different methods; the method for semantic queries is s-
calable but the one for hybrid queries is not. We extrapolate
there exists a fundamental method that can unify the two
methods and provides a scalable solution for hybrid queries.
Second, preliminary studies do not focus on how to interpret
the search results. This problem may be addressed by utiliz-
ing existing methods studied in other communities. Finally,
as the proposed method provides a fundamental functional-
ity of assessing semantic information in video, we would like
to discuss how the method can benefit problems in the areas
of web search and data analysis.

Back to the days in the late 1990s when people often got
lost in the rising sea of web pages, the search engines, such
as Google and Yahoo, were only designed to find a URL
for a specific web page. However, though 15 years of evolu-
tion, search engines are becoming a foundation for various
large-scale applications such as question answering, hyper-
text linking, and web/mobile ads. We believe video search
and analysis may follow a similar path. From this perspec-
tive, the proposed method is a merely concrete step towards
a more intelligent and promising future.
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