
KCF.js: A Javascript Library for Knowledge Cards Fusion∗

Haofen Wang
East China University of
Science and Technology

130 Meilong Road
Shanghai,China

whfcarter@ecust.edu.cn

Zhijia Fang
East China University of
Science and Technology

130 Meilong Road
Shanghai,China

fzjacky@mail.ecust.edu.cn

Tong Ruan
East China University of
Science and Technology

130 Meilong Road
Shanghai,China

ruantong@ecust.edu.cn

ABSTRACT
Recently Web search engines have built knowledge graphs to
support entity search and to provide structural summaries
called knowledge cards for entities mentioned in queries. D-
i�erent knowledge cards might be complementary or even
have con
icts on values of the equivalent property. Thus,
it is essential to achieve a more comprehensive fused card
from those individual cards representing the same entity. In
this paper, we present a system with technical details of
card disambiguation, property alignment, value deduplica-
tion and card ranking to fuse knowledge cards from vari-
ous search engines. We further develop a Javascript library
called KCF.js based on the card fusion engine and demon-
strates its usability via three possible applications.

1. INTRODUCTION
With the prevalence of entity search, a large portion of

Web queries are to search entity related information. To
support the ever growing information needs, search engines
leverage public available knowledge bases such as Wikipedi-
a1 and Freebase2 to build their own knowledge graphs. When
submitting a query to Google (Bing or Yahoo!), the engine
will provide a structured summary called knowledge card de-
scribing attributes of the given entity and relations with oth-
er entities. Since a query might be ambiguous, it could cor-
respond to several real-world entities. Therefore, for a given
query, a search engine may return zero to several knowledge
cards. Google returns three cards (i.e., \Fox Broadcasting
Television Network", \Fox News Channel" and \Fox (Ani-
mal)") for the query \Fox" while Bing returns �ve cards with
two additional cards named \Fox Sports" and \Fox Interac-
tive". Even though the two cards represent the same entity,
some property may just appear in one card. For example,
Google is the only engine to give an attribute named \Daily

∗This work was partially supported by the National Science
Foundation of China (project No: 61402173).
1http://www.wikipedia.org/
2https://www.freebase.com/

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890556 .

sleep" in the card describing \Fox (animal)". Moreover, val-
ues of the equivalent properties from di�erent cards might
have di�erent expressions or con
ict with each other. The
scienti�c name of \Fox (animal)" is expressed as \Vulpini" in
Google but \Canidae" in Bing. In this sense, it is necessary
to fuse knowledge cards from various search engines auto-
matically to provide a more comprehensive summary with
all important facts for a given entity. Also, search engines
usually update their information quickly so that we can al-
ways get up-to-date information from the fused cards.

On the other hand, aggregated search tries to combine and
rank results from di�erent sources in a uni�ed way. While
aggregated search has been studied for years, the original
can only deal with aggregation among search snippets and
the recent developments [3, 4] begin to consider the het-
erogeneous entity retrieval and on-the-
y entity consolida-
tion problem. Compared with search snippets or entities,
knowledge cards are more structured with richer informa-
tion. These structured information is good for navigation
and querying. But it brings additional challenges when fus-
ing knowledge cards. To the best of our knowledge, there
is no existing research working on knowledge card fusion in
either entity search or aggregated search. Compared with
the state of the art knowledge fusion work (e.g., Knowl-
edgeVault [1]), cards are fused in an online manner when a
query is submitted.

In this demonstration, we present a system to fuse knowl-
edge cards from various search engines. Based on the card
fusion engine3, we further develop a Javascript library called
KCF.js, which is under the GNU General Public License4.
It can be downloaded via the following link5. Besides the
Javascript library, a live demo with sample queries as well
as an example video are also provided. Figure 1 shows the
overview of KCF.js and its possible applications. As a ba-
sic function, our fusion engine merges cards representing the
same entity from di�erent engines into a fused card. Devel-
opers can easily equip in-site search with our fused knowl-
edge cards. When selecting a fused card (e.g., the card about
\Fox Broadcasting Company"), the detailed information of
the card is displayed. In particular, when a mouse hover-
s on a value, di�erent expressions of the same value from
the original search engines are shown. For instance, the val-
ue \Los Angeles, California, United States" is expressed as
\Los Angeles, California" in Bing. Besides search, KCF.js

3The fusion engine extends the implementation presented in
our previous work [5] with sophisticated ranking functions.
4http://www.gnu.org/licenses/gpl.html
5http://www.nlp-bigdatalab.com/kcf/

267

Copyright is held by the author/owner(s). 



Figure 1: The overview of KCF.js and its possible applications

can also be applied in some other interesting applications
for developers. When a developer implements the text se-
lection event in some existing text editor using the library.
Whenever a user highlights some words in such a text ed-
itor, our library triggers the card fusion engine. Detailed
Information of highlighted text will be provided in a real-
time manner. Moreover, if some user creates a customized
card with the title of an entity and several manually created
attribute-value pairs (AVPs), and publishes it to some Web
page, we can use the library to �nd the corresponding fused
card as the enrichment to the user-de�ned card.

2. WORKFLOW
As shown in Figure 2, there are four main components,

namely Card Disambiguater, Property Aligner, Value Dedu-
plicator, and Knowledge Card Ranker of the fusion engine.
When submitting a query, knowledge cards along with other
related data are �rst fetched from the three search engines
through the Knowledge Card Extractor. Specially, the high-
lighted text or the title provided in the customized content
is also regarded as an input query. Then the Card Disam-
biguater makes use of object values (i.e., referring to other
knowledge cards) in a card and the Wikipedia link (i.e., the
hyperlink to Wikipedia provided by most cards) to identify
its corresponding entities. In this way, we can merge cards
together if they represent the same entity. Before aligning
properties of these fused cards, the Property Aligner per-
forms a pre-processing step for data normalization and link
completion. In the following step, we design a learning-based
method to predict whether two properties can be aligned. In
particular, mappings from Wikipedia infobox properties to
ontology properties in DBpedia are used as training data to
learn the prediction model. In order to further increase the
accuracy, post-processing steps including Property Mutual
Exclusion Filter and Object Value Range Validator are car-
ried out. The Value Deduplicator groups equivalent values
of aligned properties into value clusters. Finally, the Knowl-
edge Card Ranker considers di�erent aspects to rank value
clusters within an aligned property. The value scores are
combined with the property score to help rank the attribute
value pair group accordingly. The scores of all pairs with-
in a card are further aggregated as the card score for card
ranking if multiple merged cards are returned.

3. APPROACH

3.1 Card Disambiguation
A knowledge card from a search engine is usually provided

a Wikipedia link referring to a unique Wikipedia page. In
this case, the card is disambiguated. Otherwise, we need to
identify the corresponding entity the card refers to.

Actually, card disambiguation can be treated as an entity
linking problem. Due to the wide coverage of Wikipedia, it
is selected as our target KB. The card label is set as a men-
tion m which is used to be computed for the commonness
score. Since the card label might be ambiguous, m can refer
to several entities (e.g., \Fox" could be \Fox Animal" or \Fox
Broadcasting Company"). In order to determine the most
likely entity the card should correspond to, we additionally
consider the in
uences of object values. If an entity is tight-
ly connected with the corresponding entities of these object
values, it has a high possibility to be the target of the card.
As a result, those object values are utilized to compute the
relatedness score (e.g., the entity\Fox Broadcasting Compa-
ny" achieves the highest relatedness score with the entity
\Peter Rice"). Thus, we combine these two scores as a �nal
score of a possible entity. In our implementation, we sim-
ply choose the linear sum as the aggregation function with
equal weights for both scores. If the �nal score of the top
entity is greater than a given threshold, it is returned as the
disambiguated entity of the card.

3.2 Aligning Properties Between Cards

3.2.1 Pre-processing
The focus of this step is to normalize values of di�erent

types. More speci�cally, for a string value, if it contains any
delimiter (e.g., space, underline, colon, minus, and dot), the
value is segmented into di�erent parts by the delimiter. The
string is also normalized by lowercasing all its characters.
For a numeric value, it belongs to a particular type and is
often associated with some unit. For instance, a height \30-
50cm" from Google is expressed as \1.1-1.6ft" in Bing. By
considering several units such as date time, currency, length
and weight, we can already deal with a large proportion of
numeric values in knowledge cards. For an object value, we
try to add a missing link if the corresponding card has no

268



Figure 2: Overall workflow of fusing knowledge cards

Wikipedia link. The whole process is the same as that of
card disambiguation introduced in Section 3.1.

3.2.2 Learning-based Property Alignment
In this section, we introduce the details of our learning-

based method to check whether a property pair can be aligned.
In particular, we design four novel features to constitute the
learning model. Besides one property-related feature, we al-
so consider several value-related features because values of
a property can be regarded as its context to describe the
property so that they will help predict property alignments.

• Property Similarity. It measures the similarity be-
tween two properties. The more similar they are, the
more likely to be aligned. We consider two kinds of
similarities: the lexical similarity based on edit dis-
tance and the WordNet-based semantic similarity.

• Value Overlap Ratio. If two properties do not have
any value of the same type (i.e., string, numeric, and
object), they are unlikely to be aligned. We use the
Jaccard similarity to calculate it.

• Value Match Ratio. This feature further considers the
match ratio of value pairs of a property pair. A value
pair is matched if the two values are of the same type
and their similarity is above a matching threshold. We
then design speci�c similarity functions for di�erent
value types. For object values, we choose the ESA
(Explicit Semantic Analysis) measure [2] to compute
their similarities. The higher the match ratio, the more
chance the property pair has to be aligned.

• Value Similarity Variance. The last value-related fea-
ture measures the similarity distribution of match pairs.
The smaller the variance, the more match pairs have
high similarities, which indicates that the property
pair is more likely to be aligned.

3.2.3 Post-processing
The learning model might make incorrect predictions to

some property pairs, which causes some false positive exam-
ples. In order to increase the precision of property alignmen-
t, we design two heuristic rules to �lter out as many false
positives as possible.

• Property mutual exclusion filtering. Observing
that a knowledge card returned by a search engine on-
ly contains a limited number of highly selected prop-
erties, it is unlikely for the card to display redundant
properties. Therefore, properties in an original card



3.4 Ranking
In this section, we introduce di�erent ranking functions

for value clusters as well as values in each cluster, attribute
value pairs, and fused cards. Instead of designing three in-
dependent ranking functions, we consider the card richness
when ranking values, combine value cluster scores with prop-
erty scores for ranking attribute value pairs, and aggregate
scores of all pairs into card ranking. More details of these
ranking functions are described in the following subsections.

3.4.1 Value Ranking
The original rank position re
ects the ranking preference

of each search engine for the value. If the value occurs at
multiple cards and all these cards rank the value at top posi-
tions, the value should be ranked high in the corresponding
fused card. Moreover, the original rank positions are not
treated equally. We prefer to trust a knowledge card if most
of its properties also appear in the fused card.

Besides, we also consider two aspects for value ranking.
Search engines usually list related entities under \people al-
so search for". If the value happens to be in such a list, it is
a signal indicating the importance of the value as well as its
relevance to the query or the card. On the other hand, some-
times an object value may link to another knowledge card
in which there exists another object value linking back to
the current card. For example, the knowledge card of \Nel-
son Mandela" has an object value named \Mandela: Long
Walk to Freedom". Meanwhile, the card describing \Man-
dela: Long Walk to Freedom" also mentions \Nelson Man-
dela". As the author, he is certainly important to this �lm.
So the object value should be ranked high due to its high
representativeness to \Nelson Mandela".

Each value is given an score which considers all the above
factors. The value with the highest score is selected as the
representative value of the corresponding value cluster. If a
value cluster contains many equivalent values of high scores,
it will be ranked high accordingly.

3.4.2 Attribute Value Pair Group Ranking
In this stage, we �rst compute the score of each attribute

value pair (AVP). The score considers both property factors
and factors of their corresponding value clusters. Before
ranking attribute value pairs, we are aware that pairs are
organized in adjacent positions of a card when they are ap-
proximate semantically. Thus, we utilize the original rank-
ing positions as well as domains and ranges of AVPs to check
whether they should be placed in one group. We then aggre-
gate the scores of AVPs in a group (i.e., arithmetic mean)
as the score of the group. For instance, if most search en-
gines put the similar properties \born" and \die" at the �rst
and the second places when describing a person, these two
properties will be placed in a group. And then the group is
ranked top while the positions of the two AVPs are deter-
mined by their own scores.

3.4.3 Card Ranking
An ambiguous query may lead to a set of knowledge cards

to be returned. In this case, there might exist several fused
cards. Similar to attribute value pair group ranking, two
aspects are taken into account for card ranking. First, if a
rich card has a large overlap with the fused card, the position
of the card in a search engine has a strong in
uence on the
ranking position of the fused one. That is, if the card is

ranked high, the fused one should also be ranked in a high
position. Second, fused cards with values of high-quality
should also have more chances to become the top ones.

4. DEMONSTRATION
This demonstration will show how KCF.js is used in three

di�erent application scenarios.

• Equipping in-site search with fused knowledge cards

More and more sites provide a search bar to search
in-site contents. KCF.js can provide fused knowledge
cards as comprehensive summaries of entities related
to the input query. The query submitted to the search
bar is also the input of our library to invoke the card
fusion engine. As a result, the fused cards are returned
in the JSON format and rendered in a panel of the
search result page. Moreover, when your mouse hovers
on a particular value in a fused card, a tip will popup
to show its corresponding expressions in the original
cards from di�erent search engines.

• Providing detailed information of highlighted texts

When writing an article, a reader may want to learn
more about some entity he is not familiar with. Instead
of searching several engines and merging results man-
ually, embedding our Javascript library into the text
editor o�ers a fully automatic way to do so. Whenev-
er he highlights some words from the input text, the
selection event is triggered. The highlighted text and
the surrounding contents as context for card disam-
biguation are fed to the fusion engine, and the disam-
biguated card with detailed information is returned.

• Enriching your own knowledge cards

Users might want to add structural information of an
entity and publish these data contents as a customized
knowledge card to some Web page. They do not nec-
essarily have to add every property by themselves. In-
stead, they can just make a partial card and use the
fused card returned by our library to provide extra
contents as supplements. This could be regarded as
a special case of adding a new source provider. Sim-
ilarly, KCF.js can also be used to enrich infoboxes of
Wikipedia pages.

5. REFERENCES
[1] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,

K. Murphy, T. Strohmann, S. Sun, and W. Zhang.
Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In KDD, pages 601{610, 2014.

[2] E. Gabrilovich and S. Markovitch. Computing semantic
relatedness using wikipedia-based explicit semantic
analysis. In IJCAI, pages 1606{1611, 2007.

[3] D. M. Herzig, P. Mika, R. Blanco, and T. Tran.
Federated entity search using on-the-
y consolidation.
In ISWC, pages 167{183. 2013.

[4] D. M. Herzig and T. Tran. Heterogeneous web data
search using relevance-based on the 
y data
integration. In WWW, pages 141{150, 2012.

[5] H. Wang, Z. Fang, L. Zhang, J. Z. Pan, and T. Ruan.
E�ective online knowledge graph fusion. In ISWC 2015,
pages 286{302.

270


