
HyLAR+: Improving Hybrid Location-Agnostic Reasoning
with Incremental Rule-based Update

Mehdi Terdjimi
Université de Lyon

Université Lyon 1 - CNRS
LIRIS UMR5205

F-69622, Lyon, France

Lionel Médini
Université de Lyon

Université Lyon 1 - CNRS
LIRIS UMR5205

F-69622, Lyon, France
firstname.lastname@liris.cnrs.fr

Michael Mrissa
Université de Lyon

Université Lyon 1 - CNRS
LIRIS UMR5205

F-69622, Lyon, France

ABSTRACT
Web applications that rely on datasets of limited sizes to
handle small but frequent updates and numerous queries
have no simple way to define where data should be stored
and processed. We propose a reasoning framework that
can be integrated in Web applications and is able to per-
form the same reasoning tasks on both client or server sides.
This framework embeds a rule-based reasoning engine that
uses an algorithm relying on both incremental reasoning
and named graphs. We evaluate the performance of our
approach and compare the effects of incremental reason-
ing and named graphs in different experimental conditions.
Results show that our reasoner can significantly reduce re-
sponse times to INSERT and DELETE queries. During the
demo we will exhibit how it can be used to perform reason-
ing tasks based on client-generated information and improve
Web applications with location-agnostic reasoning.

General Terms
Design, Performance, Experimentation

Keywords
semantic web, reasoning, client-side reasoning, rule-based
reasoning

1. INTRODUCTION
More and more Web applications generate and use datasets

of limited sizes. This is the case in domains such as personal
small data [2] or Web of Things [3], and more generally for
applications that keep track of individual user’s activities to
adapt their behavior. Such datasets are subject to small but
frequent updates and numerous queries. However, depend-
ing on the data volumes, process complexity and client capa-
bilities, there is no simple way to define where data should

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890542 .

be stored and processed and make appropriate choices at
design time. Especially when semantic reasoning comes into
play, the diverse reasoning tasks involved in bootstrapping

most important inference task in RL [6], most RL reasoners
pre-compute and explicitly store inferences, so that queries
can be answered by querying the knowledge base (KB) [5].
One optimization of OWL2-RL reasoners is the Incremental
Reasoning (IR) approach presented in the DRed algorithm
from [4, Section 7]. It allows avoiding recalculating all con-
sequences when partly updating the KB. To do so, facts in
the KB are tagged as explicit (when directly inserted in the
KB) or implicit (when derived from rules). At update time,
the algorithm first performs an over-deletion step, to remove
all explicit facts that are stated to be removed in the query,
along with their inferred consequences. Then a rederivation
step deduces all consequences of newly added explicit facts
and inserts both new explicit and implicit facts in the KB. In
order to reduce computation times, the algorithm performs
these two steps over a limited selection of rules in the causes
of which the explicit facts to be deleted/inserted appear.

2.2 Reasoning distribution
Several studies have been conducted to optimize reasoning

tasks, from classical model in which all the semantic data
are gathered, cleaned, lifted and stored on the server side
to full client-side reasoning. On the server side, SPARQL
federated queries provide a solution to handle the query an-
swering step. The ANAPSID [1] query engine relies on sev-
eral endpoints in order to split the data, decompose queries
and select appropriate sources. The Triple Pattern Frag-
ments (TPF) [9] approach is based on a principle close to
federated querying but involves the client in the answering
process. It allows “intelligent clients” to query TPF servers
for triples that match a particular triple pattern and there-
fore reduce endpoints workload.

While several embedded reasoners exist to target mobile
applications, most of them have been developed and op-
timized to fit certain languages and domain needs. To the
best of our knowledge very few client-side reasoners are avail-
able for Web applications. EYE2 is a NodeJS3-compatible
reasoner capable of inferring on FOL rules. EYE performs
server-side reasoning and has not been ported onto the client
side. Based on the JSW framework, OWLReasoner4 allows
client-side processing of SPARQL queries on OWL2-EL on-
tologies. It can perform ontology classification and converts
the Tbox and Abox into an internal relational database.
SPARQL queries sent to the reasoner are rewritten into SQL
queries and processed on the database. Its SPARQL engine
is limited to basic rule assertions. HyLAR [8] is a frame-
work that allows hybrid OWL2-EL reasoning. That means
that both server side (Node.js) and client side (AngularJS5)
can execute reasoning tasks using the same parts of code.
Reasoning in HyLAR relies on the OWLReasoner engine.

3. HYLAR+
We propose HyLAR+6, a new version of the HyLAR frame-

work. We refactored its architecture and made it embed
a JavaScript OWL2-RL reasoner that enables rule-based
transformation, incremental reasoning and named graphs

2http://reasoning.restdesc.org/
3https://nodejs.org/
4https://code.google.com/p/owlreasoner/
5https://angularjs.org/
6Repo: https://github.com/ucbl/HyLAR/tree/IR-NG
Online demo: http://dataconf.liris.cnrs.fr/hylar

support. The HyLAR+ architecture is depicted in Fig-
ure 1 and comprises two main components: a parser and
a reasoner. Both of them have been reimplemented to be
faster and provide more reasoning capabilities (i.e. more
constructs) than those of the JSW framework. The parser
prepares the statements for the reasoner. It can now take
two kinds of inputs: RDF/XML ontology files and SPARQL
queries (INSERT DATA, DELETE DATA or SELECT).
This allows bootstrapping the reasoner with an initial on-
tology, updating its contents when data sources change and
querying it. For the needs of our evaluation, the reasoner
embeds two different algorithms: a regular (a.k.a. “greedy”)
algorithm that processes all available rules on the whole
KB at each request and the IR algorithm described in Sec-
tion 2.1. Each reasoning task can be performed with any of
these two algorithms. The rule base is divided into OWL2-
RL (see below) and domain-specific rules. The KB stores
facts (i.e. triples) in a local relational database and con-
verts SPARQL request into SQL using Trim Path7.

Figure 1: General architecture of HyLAR+

3.1 RL partial support and constructs
Our reasoner currently supports partial OWL2-RL seman-

tics. The currently implemented rules are shown in Fig-
ure 2. In addition to the previously supported class sub-
sumption and Object properties, HyLAR+ Parser and Rea-
soner modules now support Datatypes and Datatype proper-
ties, as well as additional OWL constructs: ObjectSomeVal-
uesFrom, DataSomeValuesFrom, InverseObjectProperties, Ob-
jectPropertyRange, ObjectPropertyDomain and DataProp-
ertyRange. More rules can be added depending on the ex-
pressivity level needed by the application.

3.2 SPARQL and named graph support
HyLAR+ relies on SPARQL to allow updating and query-

ing the KB all along the application lifecycle. While the pre-
vious HyLAR version only supported SELECT queries, our
framework now additionally supports INSERT DATA and
DELETE DATA queries. It also handles named graphs for
these three types of queries. Query answering is performed
as follows. The reasoner receives as input a SPARQL query
parsed into facts (triples) and an already classified graph
representing an ontology or a named graph.

It applies OWL2-RL rules according to the chosen algo-
rithm and iterates until no more facts can be inferred. The
same operation is done with domain-specific rules, as pro-
cessing inferences from the application domain must be done
after deducing all OWL consequences of updated facts. De-
pending on the statement, it converts newly inferred implicit

7https://code.google.com/p/trimpath/

260

Causes Consequences
sc
m
-c
so

T(?c1, rdfs:subClassOf, ?c2)

T(?c2, rdfs:subClassOf, ?c3)
T(?c1, rdfs:subClassOf, ?c3)

sc
m
-c
ls

T(?c, rdf:type, owl:Class)

T(?c, rdfs:subClassOf, ?c)

T(?c, owl:equivalentClass, ?c)

T(?c, rdfs:subClassOf, owl:Thing)

T(owl:Nothing, rdfs:subClassOf, ?c)

ca
x
-s
co T(?c1, rdfs:subClassOf, ?c2)

T(?x, rdf:type, ?c1)
T(?x, rdf:type, ?c2)

ca
x
-e
q
c1

T(?c1, owl:equivalentClass, ?c2)

T(?x, rdf:type, ?c1)
T(?x, rdf:type, ?c2)

ca
x
-e
q
c2

T(?c1, owl:equivalentClass, ?c2)

T(?x, rdf:type, ?c2)
T(?x, rdf:type, ?c1)

eq
-t
ra
n
s

T(?x, owl:sameAs, ?y)

T(?y, owl:sameAs, ?z)
T(?x, owl:sameAs, ?z)

eq
-s
y
n

T(?x, owl:sameAs, ?y) T(?y, owl:sameAs, ?x)

Figure 2: Supported OWL 2 RL semantics.

facts into an SQL query in order to update or select data
from the KB.

4. EVALUATION
The location-agnostic feature of the HyLAR framework

has already been evaluated in [8]. The reasoners embed-
ded in the previous version do not follow the same OWL
profile. Hence, as stated in Section 2.1, they do not cope
with the same reasoning tasks and cannot be compared. In
this section, we evaluate the performance of HyLAR+ w.r.t.
two different aspects. First, we compare the execution times
of the IR and greedy algorithms for ontology classification,
as well as for INSERT DATA, DELETE DATA and SE-
LECT statements. Second, we measure the impact of named
graphs on these two algorithms while performing different
SPARQL queries, in comparison to querying the whole KB.

In both evaluations, we use the FIPA-Device ontology8

to calculate the classification times for both reasoning algo-
rithms, once the ontology file has been parsed into a set of
axioms and triples. This ontology comprises 14 classes, 14
object properties and 18 datatype properties as well a 67
axioms to express subsumptions, domains and ranges. We
ran our evaluation on a Dell Inspiron, i7-2670QM CPU @
2.20GHz. Computation times are in milliseconds.

4.1 Incremental reasoning evaluation
As IR reduces computation using ruleset restrictions, we

chose the number of RL rules (see 3.1) as varying parameter.
During this evaluation, we progressively added the following
set of rules and applied them on FIPA:

R0 = ∅ R1 = {scm-cso}
R2 = R1 ∪ {cax-sco} R3 = R2 ∪ {scm-cls}

8http://www.fipa.org/specs/fipa00091/PC00091A.html

R4 = R3 ∪ {cax-eqc1} R5 = R4 ∪ {cax-eqc2}
R6 = R5 ∪ {eq-trans} R7 = R6 ∪ {eq-syn}

R0 R1 R2 R3 R4 R5 R6 R7

Greedy 225 944 1617 11264 13318 22605 28894 37338

Incremental 231 506 895 7299 8023 6894 8344 7165

-5000
0

5000
10000
15000
20000
25000
30000
35000
40000

C
la

ss
if

ic
at

io
n

ti

m
es

 (
m

s)

Figure 3: Classification times comparison for IR and
greedy algorithm over a varied set of rules.

In Figure 3 we notice a gap between R2 and R3 which is
due to our implementation choice: rules are currently rep-
resented with only one consequence. Thus, scm-cls splits
into four sub-rules corresponding to its four consequences.
Starting at R3, the IR classification time stabilizes, while
the greedy algorithm increases as new rules are added to
the set. We can assume that R3 is the point at which no
more information in FIPA-Device is inferable from others
rules. IR is more suitable in this situation as it does not
compute over unnecessary rules.

4.2 Reasoning over named graphs
In order to measure the influence of named graphs on com-

putation time, we evaluated the processing times for inser-
tion, deletion and selection over the FIPA-Device ontology
and subsumption rules from R2 (scm-sco and cax-sco). We
consider four cases: IR (with no graph), IR (G) (on a named
graph), GR (greedy reasoning with no graph) and GR (G)
(greedy reasoning on a named graph). We evaluated these
cases on 10, 20, 30, 40 and 50 triples. These data sets are
available online, together with the framework.

The same behavior is observed on insertion and deletion.
Without graphs, the query processing times increase faster
as more triples are added/deleted, in comparison to updates
using named graphs. At a certain point (50 triples when in-
serting and 20 triples when deleting), the greedy algorithm
using named graphs is still better than the incremental with-
out any graph. As expected, the best results are given by
the IR with named graphs. For SELECT queries, processing
times are totally stable: 8ms for any range of triples, includ-
ing the entire KB. This is due to the fact that all implicit
knowledge has already been inferred during the insertion, so
the selection operation is straightforward.

5. DEMONSTRATION
During the demo, we will explain how HyLAR+ can be

used to ease reasoning for a client-based Web application.
We will demonstrate how our framework can locate a rea-
soning task on the client if possible or on the server oth-
erwise. To highlight this, we developed a GUI in which
the user can choose the reasoning algorithm and whether
to use named graphs or not. The location of each reason-
ing task can be set manually or automatically. When set to
automatic, the client checks its battery status and network
connection (server ping) to decide where to locate the task.
In a state-of-the-art WoT scenario on temperature regula-
tion, we will load an ontology, classify it, and send several

261

10 Triples 20 Triples 30 Triples 40 Triples 50 Triples

IR (G) 656 990 1152 1852 2084

IR 1536 1807 3161 3990 5558

GR (G) 1709 2162 3750 4354 5338

GR 2232 2820 5089 6452 8822

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
In

se
rt

io
n

 t
im

es
 (

m
s)

10 Triples 20 Triples 30 Triples 40 Triples 50 Triples

IR (G) 651 670 733 810 966

IR 1081 1316 2555 3391 4068

GR (G) 1472 1531 1793 1634 1834

GR 2039 2578 3621 4348 4873

0

1000

2000

3000

4000

5000

6000

D
el

et
io

n
 t

im
es

 (
m

s)

Figure 4: Evaluation of INSERT DATA and
DELETE DATA queries with incremental and
greedy reasoning, with and without named graphs.

SPARQL queries for insertion/deletion (update) and selec-
tion of instances, and compare processing times in different
situations.

6. CONCLUSION
In this paper we present HyLAR+, a comprehensive rea-

soning framework that can perform reasoning tasks on both
Web servers and users’ clients. HyLAR+ is an improvement
of a previous version and is designed to target Web applica-
tions in which some parts of data collection and processing
are performed on the client side. Such applications usually
handle small datasets and need to be reactive to data up-
date and retrieval requests. To do so, HyLAR+ embeds a
custom JavaScript rule-based reasoner that implements an
incremental reasoning algorithm. HyLAR+ also supports
named graphs and ships with a built-in set of OWL2-RL
constructs. This rule set can be extended using first-order
logic rules, either to improve the OWL2-RL specification
coverage or to add domain-specific behaviors to an appli-
cation. We present two evaluations that measure the rea-
soner efficiency regarding incremental reasoning and named
graphs, for classification and update reasoning tasks.

During the demo, we will show the behavior of our rea-
soner with different settings and illustrate how to use Hy-
LAR+ for importing ontologies from files and sending SPARQL
INSERT DATA, DELETE DATA and SELECT queries. We
will also show an example of adaptation decision heuristics
to decide whether a query should be performed on the server
or the client side.

The perspectives of our work are the following. We first
want to make our framework compatible with the newly is-
sued CHRjs9 rule-based constraint solver, in order to com-
pare our reasoner to a CHR-based one. Regarding the rea-

9http://chrjs.net/

soner efficiency, we are working on still improving incremen-
tal reasoning performances by avoiding its over-deletion and
rederivation steps. Regarding the decision of locating a rea-
soning task, we intend to provide a wider set of out-of-the
box heuristics, a simple API to access them, as well as a set
of benchmarks to help making decisions w.r.t. ontology size
and number of rules. Using HyLAR+ and such extensions,
Web developers will be easily able to leverage the power of
semantic reasoning in small client-side applications.

Acknowledgement
This work is supported by the French ANR (Agence Na-
tionale de la Recherche) under the grant number <ANR-13-
INFR-012>.

7. REFERENCES
[1] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and

E. Ruckhaus. Anapsid: An adaptive query processing
engine for sparql endpoints. In The Semantic
Web{ISWC 2011, pages 18–34. Springer, 2011.

[2] D. Estrin. Small data, where n= me. Communications
of the ACM, 57(4):32–34, 2014.

[3] D. Guinard and V. Trifa. Towards the web of things:
Web mashups for embedded devices. In Workshop on
Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings
of WWW (International World Wide Web
Conferences), Madrid, Spain, page 15, 2009.

[4] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. ACM SIGMOD
Record, 22(2):157–166, 1993.

[5] I. Horrocks and P. Patel-Schneider. Knowledge
representation and reasoning on the semantic web:
OWL, 2010.

[6] M. Krötzsch. OWL 2 Pro�les: An introduction to
lightweight ontology languages. Springer, 2012.

[7] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz. Owl 2 web ontology language: Profiles.
W3C recommendation, 27:61, 2009.

[8] M. Terdjimi, L. Médini, and M. Mrissa. Hylar: Hybrid
location-agnostic reasoning. In ESWC Developers
Workshop 2015, page 1, 2015.

[9] R. Verborgh, O. Hartig, B. De Meester,
G. Haesendonck, L. De Vocht, M. Vander Sande,
R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de
Walle. Querying datasets on the web with high
availability. In The Semantic Web{ISWC 2014, pages
180–196. Springer, 2014.

262

