
RECAP: Building Relatedness Explanations on the Web

Giuseppe Pirrò
∗

ICAR-CNR
Rende (CS), Italy

pirro@icar.cnr.it

Alfredo Cuzzocrea
DIA Department

University of Trieste&ICAR-CNR, Italy
alfredo.cuzzocrea@dia.units.it

ABSTRACT
We describe RECAP, a tool that, given a pair of entities de-
fined in some Knowledge Graph (KG), builds an explana-
tion, that is, a graph (of manageable size) reflecting their
relatedness. Explanations enable to discover new knowledge
and browse toward other entities of interest. We discuss
different kinds of explanations based on information theory
and diversity. The KG-agnostic approach adopted by RE-

CAP, which retrieves the necessary information via SPARQL
queries, makes it readily usable on a variety of KGs.

Keywords
Relatedness Explanation, SPARQL, RDF, Path Ranking

1. INTRODUCTION
Knowledge graphs (KGs) are becoming a common support

for browsing, searching and knowledge discovery activities
on the Web. Search engines like Google, Yahoo! and Bing
complement the classical search results with facts about en-
tities in their KGs. Fig. 1 (a) (resp., (b)) show information
provided the Google KG (resp., Yahoo! KG) when giving
the entity F. Lang as input; facts can also include relation-
ship with other entities (e.g., Vienna). Fig. 1 (c) depicts
information about F. Lang taken from DBpedia. Note that
both Google and Yahoo! KGs suggest entities like T. von
Harbou as related to F. Lang; in particular, Google provides
a short comment saying that T. von Harbour was F. Lang’s
ex-wife. DBpedia encodes this fact via the RDFthrilem]TJ
/T1_5 8.966 Tf
225.009 0 Td
[(R()1(r)1(.)-TJ
-225.009 -10.461 Td
[(C)1(a)1(n)1(g)-(,)-452(d)1(ib)(p)1(u)1(u:)(s)1(t)1(u)1(uu)(s)1(te-(,)-452(d)1(.)-452(dv)(o)1(n)-352(d)1(a)1(rb1(ib)(p)1(uu)(s))-TJ
/T1_4 8.966 Tf
145.00440 Td
[(R)-7109d)1(a)29(wl28(e))29(ery)-4497()1(n)1(-)-4226(a)19(y)]TJ
/-45.0044010.461 Td
[(Cw28(o)1(n)-(d)1(ep)-323(wh)1(e)1(t)-3136is)1323(w)1(h)1(e)-373(wre)1(a))1(i)1(on1(n)-(dh)1(i)1(p)-473(w)-27(ect29(wl28(e))(en)-4136iF.-4136ia)1(n)1(g)-3437a)1(n)1(d)-3836ithep

it is more easily understandable because of its visual repre-
sentation; (ii) the visualization can be dynamically adjusted
to include more/less information; (iii) it enables to discover
new entities like movie The Indian Tomb and its semantic
relationships with F. Lang and T von Harbou.

Fritz
Lang

Thea von
Harbou

dbpo:
writer

 The Indian Tomb

dbpo:
spouse

dbpo:
writer

Figure 2: A Relatedness Explanation.

2. OVERVIEW OF THE APPROACH
Motivation. RECAP goes beyond existing KGs applica-

tions in terms of discovering and explaining knowledge on
the Web. One major issue toward exploiting KGs is that
either they provide limited querying capabilities (e.g., giv-
ing only one entity in input) or require knowledge of query
languages such as SPARQL and underlying data/schema.

Input. The input of our problem is a pair (ws,wt) of enti-
ties defined in some knowledge graph G. In particular, we
consider RDF knowledge bases K=〈G,O,A〉 where G is a
knowledge graph, O is an ontology/schema used to structure
data in G, and A is a query endpoint.

Assumptions. RECAP works on top of existing knowledge
bases; it retrieves data only via the query endpoint A. This
has a significant advantage as it neither requires local avail-
ability of the data (e.g., by creating local copies) nor any
complex data processing (infrastructure) from the user side.
The computations performed by RECAP are reduced to the
problem of executing a set Q of queries against A plus some
algorithmic refinements. This makes RECAP knowledge-based
agnostic and readily available to be used in a variety KGs
about general knowledge (e.g., DBpedia, Freebase), enter-
tainment (e.g., LinkedMDB, Jamendo), bioinformatics (e.g.,
Bio2RDF), and so forth.

Output. Given and a pair of entities (ws,wt), the output is
a graph E(ws, wt) ⊆ G, which explains their relatedness and
includes paths connecting ws and wt via semantic relation-
ship and other entities. We call such a graph the relatedness
explanation.

2.1 Building Relatedness Explanations
A relatedness explanation is a graph that provides a (con-

cise) representation of the relatedness between entities in
terms of RDF predicates (carrying a semantic meaning) and
other entities.

De�nition 1. (Explanation). Given a knowledge base
K=〈G,O,A〉 and a pair of entities (ws,wt), where ws, wt∈
G, an explanation is a tuple of the form E=(ws, wt, Ge) such
that ws, wt ∈ Ge and Ge ⊆ G.

The above definition is very general; it only states that
two entities are connected via nodes and edges in a graph
Ge, which is a subgraph of the knowledge graph G, and has
an arbitrary structure. The challenging aspect is how to un-
cover the structure of Ge by accessing G, only via queries on

the endpoint A. To tackle this challenge, we shall character-
ize the desired properties of Ge. Consider the explanation
shown in Fig. 3 (a). Ge contains two types of nodes: nodes
such as n1, n3, n4 that belong to some path between ws and
wt and other nodes such as n2 that do not.

Ge

ws
n1 n4

n3

wt
n2

p1
p1

p4 p2

p2
Ge

ws
n1 n4

n3

wt
p1

p4 p2

p2
(a) (b)

Figure 3: Explanation (a); Minimal explanation (b).

Although the edge (n2, p1, n3) can contribute to better
characterize n3, such edge is in a sense non-necessary as it
does not directly contribute to explain how ws and wt are
related. Hence, we introduce the notion of essential edge.

De�nition 2. (Necessary Edge). An edge (ni, pk, nj)∈G
is necessary for an explanation E=(ws, wt, Ge) if it belongs
to a simple path (no node repetitions) between ws and wt.

The necessary edge property enables to refine the notion
of explanation into that of minimal explanation.

De�nition 3. (Minimal Explanation). Given a knowl-
edge base K=〈G,A〉 and a pair of entities (ws,wt) such that
ws, wt∈ G, a minimal explanation E=(ws, wt, Ge) requires
Ge to be the merge of all simple paths1 between ws and wt.

Fig. 3 (b) shows a minimal explanation. Minimal expla-
nations enable to focus on nodes and edges that are in some
path between ws and wt only; hence, minimal explanations
preserve connectivity information only.

After defining what an explanation is, the challenging
question is how to retrieve it. Consider the minimal expla-
nation shown in Fig. 3 (b). It could be retrieved by matching
the pattern graph Gp shown in Fig. 4 (nodes and edges are
query variables) against G. Hence, if the structure of Gp
were available one could easily find Ge; however, such struc-
ture, that is, the right way of joining query variables repre-
senting nodes and edges in Gp is unknown before knowing
Ge. Minimal explanations are built by considering (simple)
paths between ws and wt; hence, the retrieval of such paths
is the first step toward building explanations.

Gp

ws wt
?n1 ?n4

?n3
?p1

?p2

?p2

?p4

Figure 4: The Pattern Graph for the Minimal Ex-
planation in Fig. 3 (b).

Generally speaking, paths between entities can have an
arbitrary length. In practice it has been shown that for
KGs like Facebook the average distance between entities is
bound by a value k ≤ 5 [12]. The choice of considering paths
of length k in our approach is reasonable on the light of the
fact that we focus on providing explanations of manageable
size that can be visualized and interpreted by the user. An
overview of the algorithm to build relatedness explanations
is shown in Fig. 5.
1A simple path does not allow node repetitions.

236

Algorithm 1: Building Explanations

Input: A pair (ws,wt), an integer k, the address of
the query endpoint A
Output: A graph Ge

(1) Find paths: retrieve paths between ws and wt of length
k via SPARQL queries against the endpoint A.

(2) Rank paths: minimal explanations are constructed by
merging all paths between ws and we. To control the
amount of information into an explanation we defined
different mechanisms to rank paths.

(3) Select and merge top-m paths: we defined different
ways of selecting ranked paths to build an explanation
(see Table 1).

Figure 5: The explanation building algorithm.

In what follows, we provide an overview of the three main
steps of the algorithm.

Finding Paths. A path is a sequence of edges (RDF triples)
bound by a length value k. The assumption of our approach
is to access a KG only via the query endpoint A.

De�nition 4. (k-connectivity Pattern). Given a knowl-
edge base K=〈G,O,A〉 a pair of entities (ws,wt), such that
ws, wt∈ G and an integer k, a k-connectivity pattern is a tu-
ple of the form Π=〈ws, wt,Q, k〉 where Q is a set SPARQL
queries composed by joining k triple patterns.

Fig. 6 shows the structure of the SPARQL queries in Q;
here, both nodes (but ws and wt) and edges represent query
variables. To model the structure of a path, each of the k
triple patterns in Fig. 6 is joined with the subsequent via
a shared node. Note also that, in the Figure, edge direc-
tions are not reported; each edge has to be considered both
as incoming and outgoing, which corresponds to join triple
patterns in all possible ways. We emphasize that queries to
retrieve paths are automatically generated in RECAP.

?n1ws ?n2 wt...... ?nk
?p1 ?p2 ?p3 ?pk

Figure 6: Query to Find k-length Paths.

Example 5. (Example of k-connectivity Pattern).
The 2-connectivity pattern between F. Lang (FL) and T. von
Harbou (TvH) contains the following set of queries Q:

SELECT DISTINCT * WHERE{:FL ?p1 ?n1. ?n1 ?p2 :TvH}
SELECT DISTINCT * WHERE{:FL ?p1 ?n1. :TvH ?p2 ?n1}
SELECT DISTINCT * WHERE{?n1 ?p1 :FL. :TvH ?n1 ?p2}
SELECT DISTINCT * WHERE{?n1 ?p1 :FL. ?n1 ?p2 :TvH}

Ranking Paths. We outline three path-ranking strategies
available in RECAP (see [10] for further details).

• Path informativeness: it is estimated by investigating
the informativeness of RDF predicates in a path via the
notion of Predicate Frequency Inverse Triple Frequency
(pfitf) [9].

• Path pattern informativeness: a path pattern general-
izes a path by replacing nodes with variables. Pattern
informativeness is computed by counting the number
of paths sharing a certain path pattern.

• Path diversity : it takes into account the variety of
predicates in a set of paths; diversity guarantees to
rank high paths that contain rare predicates.

Selecting and Merging Paths. Table 1 describes the last
components of Algorithm 1, that is, different strategies to
select a subset of ranked paths and merge them to build an
explanation.

Table 1: Path selection strategies.
Meaning

E∪ Merge all of paths without any pruning
Eπ
m Merge the top-m most informative paths

Eπ
m Merge paths belonging to the top-m most infor-

mative path patterns

Eδ Merge pairs of paths whose value of diversity falls
in [max, (max − r)] where max is the max di-
versity value over all pairs of paths and r is a %
value.

Eπ,δ Merge the results of Eπ
m and Eδ

Eπ,δ Merge the results of Eπ
m and Eδ

P Set of all paths (without merge)

2.2 The RECAP tool
RECAP has been implemented Java-based tool. RECAP lever-

ages the Jena2 framework to handle RDF data and JavaFX3

for the GUIs; this allows the tool to be accessible across dif-
ferent platforms. SPARQL queries are sent to the query
endpoint by using the HTTP protocol. Generally, the tool
makes usage of SELECT SPARQL queries with the path rank-
ing component also requiring the usage of COUNT. The im-
plementation of our framework leverages multi-threading to
execute the set of queries necessary to retrieve paths be-
tween entities; this reduces the overall running time to a
few seconds. An extensive experimental evaluation is avail-
able in [10].

3. OVERVIEW OF THE TOOL
The GUI of the RECAP tool is shown in Fig. 7. It provides

an intuitive way of selecting entities for which one wants to
find a relatedness explanation. The auto completion func-
tion in Fig. 7 (a) enables to find the correct URI of the
entities of interest; in particular, the Wikipedia infobox cor-
responding to each entity is loaded thus giving some quick
information about the entities considered. The interface also
enables to chose the maximum path distance (Fig. 7 (b))
to be considered; users can experiment with different path
length thus having an idea of how the amount of retrieved
information and the running time change.

After retrieving paths about the entities, users have the
possibility to construct and visualize several types of ex-
planations. Fig. 7 (c) shows the explanation build when
considering the top-15 most informative paths; the type of
explanation is also shown in the GUI (Fig. 7 (d)). The inter-
face also provides statistics about the explanation building
process such as number of paths and execution time (Fig. 7
(e)). When clicking on a node in an explanation, the user can
visualize information about such node in Wikipedia (Fig. 7
(k)). When clicking on an edge information about the edge

2http://jena.apache.org
3http://docs.oracle.com/javafx

237

(a)
Node/edge

 information

Explanation
visualization

Refining explanations

Filter by Predicate

Wikipedia
node page

Type of
 explanation visualized

Resize

(b)

(c)

(g)

(f)

(d)
(h)

(i)

(k)

(e)

Execution info

Figure 7: The RECAP main GUI (a); the Relatedness Perspective (b).

Figure 8: Path Patterns Exploration.

will be also visualized (Fig. 7 (g)). The visualization can
be adjusted via the panel in Fig. 7 (f). Part (i) in Fig. 7
allows to filter an explanation according to certain types of
RDF predicates. The portion of the interface that controls
the explanation building process is shown in Fig. 7 (h); here
it is possible to select the set of paths to be considered on
the basis of path (resp., pattern) informativeness or diver-
sity. Another portion of the RECAP GUI, shown in Fig. 8,
allows to explore paths, patterns and visualize connectivity
information by using these (without merging).

During the demo we will showcase examples of relatedness
explanations in different domains including cinema, music
and bibliography networks. We will provide a list of ex-
amples in such domains and help users in getting familiar
with the RECAP tool. As an example we will consider pairs
like (D. Knuth, L. Lamport), (A. Lincoln, J. Washington).
Users can explore different ways of building relatedness ex-
planations thus possibly discovering interesting things like
the fact that T. von Harbou besides being F. Lang’s former
spouse co-directed with him 11 movies.

Our primary goal is to show how RECAP is flexible and
can be applied to different knowledge domain without any
data preprocessing. Indeed, data will be accessed online via
SPARQL endpoints. We will also provide a local SPARQL
endpoint with an excerpt of the Yago KG to tackle the pos-
sibility that some KGs maybe temporary offline.

4. REFERENCES
[1] Mario Cannataro, Alfredo Cuzzocrea, Carlo Mastroianni,

Riccardo Ortale, Andrea Pugliese, et al. Modeling

Adaptive Hypermedia with an Object-oriented Approach
and XML. In 2nd Int. Workshop on Web Dynamics, 2002.

[2] Mario Cannataro, Alfredo Cuzzocrea, and Andrea Pugliese.
A Probabilistic Approach to Model Adaptive Hypermedia
Systems. In 1st Int. Workshop on Web Dynamics, page 50,
2001.

[3] Gong Cheng, Yanan Zhang, and Yuzhong Qu. Explass:
Exploring Associations between Entities via Top-K
Ontological Patterns and Facets. In International Semantic
Web Conference, pages 422{437. Springer, 2014.

[4] Christos Faloutsos, Kevin S McCurley, and Andrew
Tomkins. Fast discovery of connection subgraphs. In
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
118{127. ACM, 2004.

[5] Lujun Fang, Anish Das Sarma, Cong Yu, and Philip
Bohannon. REX: Explaining Relationships between Entity
Pairs. Proceedings of the PVLDB, 2011.

[6] V. Fionda, C. Gutierrez, and G. Pirr�o. Knowledge Maps of
Web Graphs. In 14th International Conference on
Principles of Knowledge Representation and Reasoning,
2014.

[7] V. Fionda, G. Pirr�o, and C. Gutierrez. NautiLOD: A
Formal Language for the Web of Data Graph. ACM
Transactions on the Web (TWEB), 9(1):5, 2015.

[8] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Ste�en
Lohmann, and Timo Stegemann. RelFinder: Revealing
Relationships in RDF Knowledge Bases. In Semantic
Multimedia, pages 182{187. Springer, 2009.

[9] G. Pirr�o. REWOrD: Semantic Relatedness in the Web of
Data. In 26th AAAI Conference, 2012.

[10] G. Pirr�o. Explaining and suggesting relatedness in
knowledge graphs. In Proceedings of the 14th International
Semantic Web Conference, pages 622{639. Springer, 2015.

[11] Cartic Ramakrishnan, William H Milnor, Matthew Perry,
and Amit P Sheth. Discovering informative connection
subgraphs in multi-relational graphs. ACM SIGKDD
Explorations Newsletter, 7(2):56{63, 2005.

[12] Johan Ugander, Brian Karrer, Lars Backstrom, and
Cameron Marlow. The Anatomy of the Facebook Social
Graph. arXiv preprint arXiv:1111.4503, 2011.

238

