
CRATE: Writing Stories Together with our Browsers

Brice Nédelec
Université de Nantes, LINA

2 rue de la Houssinière
Nantes, France

Pascal Molli
Université de Nantes, LINA

2 rue de la Houssinière
Nantes, France

first.last@univ-nantes.fr

Achour Mostefaoui
Université de Nantes, LINA

2 rue de la Houssinière
Nantes, France

ABSTRACT
Real-time collaborative editors are common tools for dis-
tributing work across space, time, and organizations. Un-
fortunately, mainstream editors such as Google Docs rely
on central servers and raise privacy and scalability issues.
Crate is a real-time decentralized collaborative editor that
runs directly in web browsers thanks to WebRTC. Compared
to state-of-the-art, Crate is the first real-time editor that
only requires browsers in order to support collaborative edit-
ing and to transparently handle from small to large groups
of users. Consequently, Crate can also be used in mas-
sive online lectures, TV shows or large conferences to allow
users to share their notes. Crate’s properties rely on two
scientific results: (i) a replicated sequence structure with
sub-linear upper bound on space complexity; this prevents
the editor from running costly distributed garbage collec-
tors, (ii) an adaptive peer sampling protocol; this prevent
the editor from oversizing routing tables, hence from letting
small networks pay the price of large networks. This paper
describes Crate, its properties and its usage.

Keywords
Collaborative editor; decentralized; real-time

1. INTRODUCTION
Real-time collaborative editors allow authors to simulta-

neously write shared documents. Trending editors such as
Google Docs rely on central servers. They raise privacy is-
sues since service providers take advantage of their mediat-
ing position to observe all users and documents. They also
raise scalability issues, for they require a server to support an
editing session, so handling many editing sessions requires
many resources. Managing large editing sessions puts a lot
of pressure on the server which may become overloaded.

Crate is a distributed and decentralized collaborative
editor providing scalable real-time editing capabilities di-
rectly within web browsers. Compared to state-of-the-art,

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
DOI: http://dx.doi.org/10.1145/2872518.2890539

Crate is the first real-time editor that only requires brow-
sers in order to support collaborative editing and to trans-
parently handle from small to large groups of users.

Suppose massive online lecture platforms allow students
to share their notes. Many lectures run in parallel involv-
ing various number of students, i.e., from few to thousands.
Also, even during the editing session the audience is sub-
ject to significant changes in size, going from thousands to
hundreds. Finally, the resulting document size is hardly
predictable, for it depends of the number and zealous of in-
volved students.

Crate handles these situations by combining different al-
gorithms to achieve an acceptable trade-off between space,
time and communication complexities. In laboratory, we ob-
served this trade-off on configurations involving up till 600
browsers. In this paper, we describe the usage, the architec-
ture and the properties of Crate. Also we propose a live
experiment to WWW2016 participants aiming to confirm
laboratory experiments about Crate.

Section 2 depicts the usage of Crate. Section 3 details the
overall architecture of Crate along with its basic function-
ing. Section 4 shows the way to build decentralized networks
directly in browsers. Section 5 describes the distributed data
structure that represents the document. Section 6 shows our
laboratory result and describes the live experiment setup.
Section 7 concludes.

2. USAGE
Crate’s video, source code and online demo are freely

available at https://github.com/Chat-Wane/CRATE.
In the online demo1, a user creates a document by clicking

the ⊕ icon at the top of the screen (see Figure 1). At the
time, the document is only local and no one can read nor
modify it apart from its creator. When the user is ready to
share, she clicks on the chain icon and Crate is crafting an
editing session URL that can be sent by mail, published on
Twitter, or advertised by any other mean.

Once the collaborators open the link, it automatically con-
nects them to the editing session of the creator. It retrieves
the shared document and they can start the real-time collab-
orative editing. In turns, they are able to share the access
to the document too.

Figure 1 shows a screenshot of the graphical user interface
of Crate. In this scenario, two editors are running in a
same instance of the web application. The editing session
comprises two members nonetheless. The leftmost author

1http://chat-wane.github.io/CRATE/, the browser must
support WebRTC

231

Figure 1: Screenshot of the web application containing two connected editors: on the left, a document is written in markdown
language which is previewed on the right editor.

writes the readme file of the Github repository about Crate.
The green earth indicates that the editing session is live. The
blue (spinning) circle indicates that she opens the access to
her document. Therefore, anyone can join it with the proper
URL. The rightmost editor renders the document written
in markdown language. It has a green earth indicating a
connected state but contrarily to the leftmost editor, it is
not sharing the access to the document.

URLs are the means for accessing to editing sessions, hence,
to documents. Internally, when a browser opens the link it
retrieves the web application. The latter queries a mediator
server with the parameters contained within the link (see
Figure 3). The mediator server tries to establish the very
first contact between the joining browser and an editing ses-
sion sharer. The mediator ensures solely a minimal service
consisting in the editing session accessibility.

Yet, an URL does not always grant the access to the live
editing session, for there must be at least one sharer among
the editors. Also, there may exist multiple URLs leading
to a same editing session using different joining parameters.
As we observe in Figure 1, Crate enables hyperlinks. By
the same, it allows surfing between editing sessions like any
user would do on Wikipedia, enhanced with real-time capa-
bilities.

3. ARCHITECTURE
To provide availability and responsiveness of documents,

Crate follows the optimistic replication scheme. Each ed-
itor replicates the document locally and directly performs
operations on it. Next, the editor spreads its changes to all
other participants. The system is correct iff editors inte-
grating a same set of changes have replicas converging to an
equivalent state, i.e., users read the same document. This
property is called strong eventual consistency [4].

Crate uses a Conflict-free Replicated Data Type (CRDT)
for sequences to ensure such property [4]. CRDTs ensure
consistency at the price of a unique identifier attached to
each element of the sequence. Recently, LSeq [2] proposed
a strategy to bound the space complexity of these identifiers
to O(log(d)2) where d is the document size. As such, Crate
does not require costly distributed garbage-collection-like
mechanisms to maintain its efficiency.

communication

broadcast

membership
Spray

causality
version vector

with
exceptions

receivesend

sequence
structure

LSeq

deliverdecorate

graphical
user

interfaceweb editor

notify
update

Figure 2: Four layers architecture of Crate.

Strong eventual consistency requires the eventual deliv-
ery of all operations to all editing session members. Crate
builds an editing session using Spray [3], a random peer
sampling protocol [1] (RPS) built on top of WebRTC. A
peer sampling protocol provides each network member with
a partial view of the network significantly smaller compared
to this latter. Maintaining randomness among partial views
ensures the connectivity of the network. Unlike prior RPS,
Spray allows adapting the partial view sizes to the edit-
ing session size without measuring its number of partici-
pants. Since the propagation protocol of messages exten-
sively uses these tables, the network traffic inherits this scal-
ability. Crate adapts its operation to the needs of the edit-
ing session.

The decentralized collaborative editor Crate is developed
in web languages only: HTML, CSS, and mostly JavaScript.
As shown by Figure 2, Crate comprises four layers:

The graphical user interface that renders the docu-
ment to the users (cf. Figure 1). Each local update is im-
mediately applied to the document view for real-time sake.
Then, the update is applied to the replicated data type;

232

e9

join

mediator1
share

mediator2

e1 e2

e3

e4

e5e6

e7

e8

Figure 3: Example of a small network built by Spray. Each
editor e can communicate with a small partial view of the
network. For instance, Editor e8’s partial view comprises
e2, e3 and e6. In addition, e1 and e8 grant a public access to
the editing session through mediator1. Editor e9 is joining.

The sequence structure layer that represents the lo-
cal document (cf. §5). It is in charge of providing the meta-
data necessary to order each character identically anywhere;

The causality layer that tracks semantic causality be-
tween operations, e.g., the removal of a character cannot
precede its insertion;

The network layer that (i) builds a network of brow-
sers for each editing session and (ii) uses it to propagate the
updates to all collaborators (cf. §4).

4. NETWORK OF BROWSERS
Crate uses Spray [3] to build a network of browsers

thanks to WebRTC. The latter is a recent technology that
allows establishing browser-to-browser channels of commu-
nication. Its connection establishment protocol imposes a
round-trip of messages. Thus, if an editor e1 wants to con-
nect to another editor e2, it needs to send a message to e2
and to acknowledge its response. While the first of such
connection must use a mediator (e.g. mail, or dedicated
server), once established, the network can assume the posi-
tion of mediator and start working autonomously.

Random peer sampling protocols provide each editor with
a local neighborhood table. These tables allow communicat-
ing to a subset of editors. Messages travel from neighbor to
neighbor to reach any editor in a scalable manner.
Spray’s lifecycle at each editor comprises three steps that

aim to provide and maintain logarithmically scaling neigh-
borhood tables compared to the editing session size:

The joining: the editor wants to join the editing session.
It contacts an editor inside the network and waits for its an-
swer to establish the very first WebRTC connection between
them. Using this connection, the joining editor asks to its
contact editor to operate as mediator to advertise its pres-
ence to the contact’s neighbors. Each of these neighbors
connects to the joining peer. Since the number of neighbors
is supposed logarithmic, the number of connections in the
network grows by log(N) + 1 where log(N) is the natural
logarithm of the network size N . Following such growth,
the global number of connections is N. log(N).

The shuffling: each editor regularly initiates a table shuf-
fling with the oldest of its neighbors. The initiator serves as
mediator between half of its neighborhood chosen at random
and the oldest neighbor. In response, the oldest neighbor
does the same. As a result, they roughly have an identical
neighborhood size which tackles the load-balancing problem

that may rise from the joining part of the protocol. It is
worth noting that the number of connection remains con-
stant. In addition, the references in neighborhood tables
are randomly distributed. The network converges in expo-
nential time toward a topology exposing properties similar
to those of random graphs (cf. Figure 3).

The leaving: the editor can leave the network without
giving notice, i.e., equivalent to a crash. Nevertheless, its re-
moval from the system must lead to a decrease of log(N)+1
connections while currently it represents log(N) connections
from its neighborhood tables, and log(N) connections from
other editors’ neighborhood tables pointing to it. The ad-
justing falls under the responsibility of these other editors.
For this purpose, they detect the departure of a neighbor
when they try to initiate a shuffle with it. Since such detec-
tions presumably happen log(N) times, they all duplicate
one of their neighbors except for one; the probability being
processed using their own neighborhood table size.

Random peer sampling protocol constitutes the ground of
various protocols such as topology managements. Crate
uses it to disseminate all operations of the replicated se-
quence to all collaborators in a scalable manner. Referred
as epidemic dissemination, rumor mongering, or gossiping,
the protocol is a two-step operation: (i) Each operation
performed on the local document replica leads to the cre-
ation of a message. The latter is sent to all the neighbor-
hood provided by Spray. (ii) Each editor receiving such
broadcast message transmits it again to its neighborhood.
Thus, messages transitively reach all collaborators very effi-
ciently. This dissemination protocol inherits from Spray’s
adaptiveness. Hence, traffic follows the editing session size.

Prior approaches generally oversize the partial views to
handle largest groups of users. Unfortunately, smaller groups
suffer from such a priori dimensioning. Since Spray auto-
matically adjusts neighborhood table sizes, it equally and
transparantly handles from smallest to largest groups.

5. REPLICATED DOCUMENT
To provide eventually consistent replicas, Crate uses a

conflict-free replicated data type for sequences [4]. Such
sequence type avoids the difficult and error-prone task of
solving conflicts by the mean of commutative operations.
Thus, the sequence type provides two basic operations: the
insertion and removal of an element. If two users perform
concurrently some operations at an identical position in the
sequence, the latter will still converge to an equivalent state.

Commutativity comes at the price of additional metadata
attached to each element of the sequence. These metadata
referred to as identifier are unique, immutable, and of vari-
able size at generation. When a character is inserted, the se-
quence type generates an identifier which is a list [`1.`2 . . . `k]
where k is the identifier depth and Element `i comprises a
path pi, a globally unique site identifier si, a monotonic local
counter ci.

A lexicographic total order amongst these identifiers al-
lows retrieving the sequence:

(1) `i < `j ⇐⇒ (pi < pj)∨
((pi = pj) ∧ (si < sj))∨
((pi = pj) ∧ (si = sj) ∧ (ci < cj))

(2) `i = `j ⇐⇒ ¬(`i < `j) ∧ ¬(`j < `i)

233

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90

a
v
e
ra

g
e
 t

ra
ff
ic

 p
e

r
b
ro

w
s
e
r

(M
b

y
te

/s
)

time progression (%)

101 browsers; |P| 4.2; σ
2
 0.39

201 browsers; |P| 5.4; σ
2
 0.29

301 browsers; |P| 5.3; σ
2
 0.34

401 browsers; |P| 5.8; σ
2
 0.29

501 browsers; |P| 6.7; σ
2
 0.62

601 browsers; |P| 6.3; σ
2
 0.31

Figure 4: Average traffic per second.

(3) ii < ij ⇐⇒ ∃(m > 0)(∀n < m), (`in = `jn) ∧ (`im < `jm)

(4) ii = ij ⇐⇒ ∀m, `im = `jm

The first two equivalences define an ordering between el-
ements of the list composing the identifiers. The last two
equivalences use them to define a global total order amongst
identifiers, hence, ordering characters of the document. While
the third equivalence is mostly used to locate the proper po-
sition of insertion, the fourth equivalence is necessary for
removals. Paths of identifiers constitute the most discrimi-
nant part of identifiers, hence the most important part.

Crate uses LSeq to generate the paths of identifiers. The
paths are series of integers [p1.p2 . . . pk] where each path is
chosen among a set twice as large as its preceding path. For
instance, if p1 is chosen among {0..28} then p2 is chosen
among {0..29} etc. When the document grows, the depth of
identifiers is expected to grow. Therefore, increasing the size
of sets over depths decreases the growth in depth. LSeq al-
locates identifiers polylogarithmically upper-bounded com-
pared to the number of insertions, without a priori knowl-
edge of the series of updates.

Keeping the size under such a sub-linear bound avoids
the need of an unafordable distributed garbage-collecting-
like mechanism.

6. EXPERIMENT AND DEMONSTRATION
In laboratory, we tested Crate on the Grid’5000 testbed

with configurations involving up till 600 browsers. Figure 4
shows the traffic generated at each member by intensive
editing sessions. Overall, the artificial authors insert 100
characters per second during 7 hours. The documents reach
millions of characters. Figure 4 shows the combined effects
of Spray and LSeq. Indeed, we observe that the traffic
logarithmically scales to the editing session size thanks to
Spray. The members of the smallest editing session (101
browsers) are less traffic intensive than ones of the largest
group (601 browsers). But the messages transiting the net-
work are important too. The growth of each plot corre-
sponds to the identifiers size generated by LSeq. Since the
document size grows, the identifiers grow, but their growth
slows over insertions.

We would like to confirm the results of the experimenta-
tion by performing a live demonstration of Crate that any
WWW2016 participant can join. We will start an exquisite

corpse2 collaborative storytelling. In this game, we will in-
vite every participant to continue or update the story initi-
ated by previous participants.

In that regard, we will bootstrap an initial document in
our local browser and share it through a public URL adver-
tised on Twitter. Every participant will be able to join the
session by just clicking on this link. Next, she will freely
add a sentence. During the editing session, we will invite
participants to share and advertise the document with their
friends in order to get as many participants as possible.

During the experiment, we will be able to monitor the evo-
lution of the document and network. We expect the space
complexity of the identifiers associated to each character to
be upper-bounded by log(d)2 where d is the number of char-
acters. We expect the partial view sizes to stay at log(N)
where N is the number of participants at a given time.

7. CONCLUSION
In this paper we described Crate, a distributed and de-

centralized real-time collaborative editor running in web brow-
sers. Compared to state-of-the-art, Crate allows real-time
editing anytime, anywhere, whatever the number of partic-
ipants. It can be seen as an alternative way to provide a
collaborative editing service without Cloud support. Using
a scalable replicated data structure for sequences, and an
adaptive peer sampling protocol, Crate is able to alleviate
scalability issues and privacy issues without compromising
ease-of-access. Crate’s video, source code and online demo
are available at

	Introduction
	Usage
	Architecture
	Network of browsers
	Replicated document
	Experiment and demonstration
	Conclusion
	Acknowledgments
	References

