Incremental, Per-Query Ontology Matching with RepMine

Thomas Kowark, Keven Richly, Matthias Uflacker, Hasso Plattner
Hasso Plattner Institute
August-Bebel-Str 88
Potsdam, Germany
{firsthname.lasthame}@hpi.de

ABSTRACT

Ontology matching enables applications, such as automated
data transformation or query rewriting. As it requires do-
main knowledge, it needs to be carried out by expert users,
whose time is scarce and, therefore, should be used effi-
ciently. To this end, the RepMine system presented in this
paper does not treat ontology matching as a task of its own,
but integrates it into a semi-automated query translation
process. By that, users perform a task with immediate ben-
efit for them and simultaneously contribute to alignments
between ontologies. Furthermore, the overall task of match-
ing two ontologies is split on a per-query basis and, thus,
can be performed incrementally by all system users.

Keywords
Ontology Matching, User Involvement, Query Translation

1. INTRODUCTION

In the context of the Semantic Web, ontology matching
is a prerequisite for applications such as automated data
transformation or query rewriting [7]. It is necessary, since
for some domains, multiple ontologies exist that describe
the same real world entities using different terminology and
semantics. The conference ontologies of the Ontology Align-
ment Evaluation Initiative’ (OAEI) are an example for that.
Other domains, such as biomedicine, are too complex to be
captured in a single, comprehensive ontology, hence, differ-
ent aspects are formalized in different ontologies.

The main goal of ontology matching is then to detect cor-
respondences, i.e., determine how the same concepts are ex-
pressed within different ontologies. While this task can be
automated to some extent, recent OAEI campaigns have
shown that automatic ontology matching tools are not yet
capable of consistently producing complete and correct align-
ments (collections of correspondences) without the input of

"http://oaei.ontologymatching.org

Copyright is held by the author/owner(s).

WWW’16 Companion, April 11-15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890554.

expert users, whose time is a scarce resource. Therefore, in-
teractive ontology matching tools aim to limit the amount
and extent of user interactions, as much as possible [7].

The tool presented in this paper takes a different ap-
proach. Instead of optimizing the user interaction with a
tool specifically designed to match ontologies, we focus on
a task with immediate benefit for the end user and collect
correspondences between ontology elements as a byproduct.
In particular, we exploit the task of query rewriting, that is,
translating a query that was initially written on one ontol-
ogy in order to be executable on another ontology. Through
that approach, users remain within the tool that performs
their desired task, yet still contribute to an incrementally
evolving ontology alignment. Furthermore, each contributed
correspondence is immediately available for all system users
and will consequently be reviewed, corrected, or extended.

The paper outlines the standard use case we cover with
our tool, explains its implementation, and briefly discusses
related approaches. To demonstrate the tool’s capabilities,
a screencast is provided?.

2. APPLICATION WORKFLOW

RepMine was initially created in the context of software
repository mining. Hence, its target user groups are re-
searchers in this area who want to perform analyses of soft-
ware development data on multiple datasets (e.g., stemming
from different projects for validation purposes), without hav-
ing to manually perform data transformation or query rewrit-
ing. Abstracting from this initial use case, every user that
wants a query to be answered from different data sources is
a target user of our system.

The overall concept of our system is shown in Figure 2.
Regardless of the use case, RDF ontologies that describe
the source and target data store are the foundation for our
approach. These ontologies can either be provided as-is, e.g.
in case of RDF triple stores, or need to be extracted. Section
3 provides details about ontology creation process. Once the
ontology is present, queries can be formulated.

RepMine provides a graphical abstraction for query for-
mulation and thereby follows recent, comparable approaches
that aim to provide data analytics without requiring knowl-
edge about query languages such as SPARQL [8]. Figure 2
shows an example of the notation. Contrary to string based
representations, it provides an explicit link to ontology con-
cepts used within the query and, hence, simplifies deter-
mining which query parts have to be translated in which
manner.

https://youtu.be/-6iyrXRmXQU




Transformations

{ )
[Cobler

{ ]

infer

Query Graph
QG,

7)) é

Query Graph
QG,’ ‘
{

store

Alignment(Og,, Ogy)

Query
Generator
Ontology Op, Ontology Op, Query

create

|

Data Store D2

read

Data Store D1 Schema Parser

Figure 1: Schematic overview of the main entities
within the RepMine workflow. Query graphs based
on an input ontology (Op:) are transformed to se-
mantically equivalent output graphs based on an
output ontology (Op:). Throughout the transfor-
mation process, transformation steps are stored as
correspondences within the alignment between the
ontologies. Existing correspondences are used to in-
fer graph transformations to build the output graph.
Finally, queries suitable for the target data store are
created and executed.

The query graphs are created either automatically through
parsing input queries, or manually through a graphical ed-
itor. Either way, the main task for users that need this
query to be executed on a di erent ontology is to produce
an equivalent output graph. Equivalent in that regard refers
to a graph that denotes a query which would yield identi-
cal results if the data from the input ontology was to be
expressed in terms of the target ontology.

file:path ~= "\.rb’
?filepath := file:path

©

issue:description =~ ?filepath

A
issue:createdBy(1,1)

issue:lssue

issue:CIOSSdBy(o'1)

Figure 2: Query graph providing an abstraction
for a query that retrieves comments on issues that
are linked to at least one file. Rounded nodes
depict instances of classes, squared nodes depict
datatype properties, and object properties are ex-
pressed through arrows between rounded nodes.
Nodes can use concepts from different ontologies
(in this case, “file” and “issue”) to express feder-
ated queries. Graph elements can be used as vari-
ables through using the “?” notation known from
SPARQL.

file:File

issue:comment

2.1 Ontology Matching

The creation of this output graph comprises three steps,
which are repeated until correspondences for each of the in-
put elements are provided and the user considers the output
graph to be equivalent to the input:

216

e #1: Automatic ontology matching tools, such as Agree-
ment Maker Light (AML) [2] or LogMap [4] are run to
detect simple correspondences between ontology ele-
ments (e.g., detecting that two ontologies contain a
class called “Issue™). Based on the found correspon-
dences nodes in the output graph are automatically
created by RepMine.

e #2: Users complete the output graph by adding fur-
ther nodes, relations, or attributes. For each added
element, users are asked to define how they relate to
elements of the input graph. This can either include
simple correspondences (a node being substituted by
another node) or complex correspondences [5] (e.g., a
“Bug” in the input ontology is equivalent to an “Issue”
in the output ontology that has an attribute called
“type” with a value “bug”).

e #3: After each provided correspondence, the auto-
mated ontology matching tools are run again with the
added information in order to detect potential new cor-
respondences.

Users interact with the editor shown in Figure 3. It is
connected to the source and target ontologies to guide users
in the creation of query graphs. For example, if two nodes
are connected by a relation, only object properties defined
between the two selected classes can be selected as the rela-
tion type. Once the output graph is complete, the system is
able to translate it into a query suitable for the desired tar-
get datastore. Currently, RepMine supports SPARQL end-
points, Neo4j® property graphs, and relational databases.

2.2 Correspondence Validation & Extension

Only looking at single queries, the system allows users
to translate them in a graphical manner and with the help
of automatic ontology matching tools to a representation
suitable for their target data store of choice. Its full poten-
tial, however, comes into e ect by storing queries as part
of a repository. Each user can add new queries or build
on existing ones by creating clones that can be extended
or simplified, as needed. Each concept used within a query
only needs to be translated once to a target ontology, and
the associated correspondence is immediately available for
all other queries, as well.

For one, this approach allows for constant validation of
provided correspondences. If a user detects that a concept
is wrongly translated, they can create an alternative to the
existing correspondences and the creator of the initial one
gets notified. Now the two users can discuss which of the
provided correspondences is correct and shall be used in the
future. Also, a newly added correspondence could lead to in-
consistencies in the generated alignment*, which need to be
solved by either adapting the correspondences or the target
ontology, if necessary.

Besides contradicting each other, correspondences can also
extend existing ones. Consider the case of a “Bug” class in
the original ontology. One user translates it to a target on-
tology through an “Issue” node with a property “type” set
to “bug”. Another user determines that, in their dataset,

3https://neo4j.com

4Consider a case where two classes and two datatype prop-
erties are declared equivalent but in the target ontology the
class is excluded from the domain of the property



Committer hasPath ? filename

GithubUser v

'.-'n.‘li%ilo .\autlhor
°

FileUnderVersionControl

isCommittedBy (0,")[1,1]

isVersionOf (0,[1,1]

r

Version

GithubFileC... ¥

@lalO

files s

seon.owl#Committer

—
=

Enterprise Github#GithubUser

(a o]

o =
GithubCom... ¥

&l

~ filena 1me

sF? v filename [x)

Figure 3: Transformation of an input graph element (marked red) to an output element on the right hand
side. Already matched elements are marked green. Users are automatically guided to the next unmatched
element until the entire graph is translated. Existing correspondences can be highlighted through an overview

on the right side of the editor.

the type field is not always set correctly but instead the
“title” property contains the word “bug”. Hence, they ex-
tend the existing correspondence by adding the respective
attribute constraint node in the output graph and linking it
with the existing attribute constraints through an “OR” op-
erator. The system accordingly detects that the new corre-
spondence extends the existing one, stores only the new one,
and also notifies the creator of the original correspondence
so they can review the extension and discuss, if needed.

Finally, it might be possible, that no correspondence can
be provided for an element, at all. For example, if the input
ontology contains a property reflecting the sentiment of a
comment, and such a value is not present in the target on-
tology, sentiment analysis would need to be performed. To
cater to this issue, we implemented a feature that allows to
specify “virtual elements” in the output graph, which link to
service invocations (see Figure 4). These service invocations
are performed prior to query execution and its results are
stored in the target data store.

Create Node Toggle Variables
commitSentiment* j < j -1

+ add filter

ob

Computation Workflow

Commit 7] seon:commitSentiment

& |O0] 0
Service: http://localhost:8080/sentimentAnalysis j
input_string: seon#history:hasCommitMessage j
output: result.sentimentScore j
+add service

Figure 4: Specification of a virtual attribute calcu-
lation through a local sentiment analysis service.

217

2.3 Limitations

While the presented workflow guides users in providing
correspondences between ontology elements, it does not fos-
ter the initial understanding of the target and source ontol-
ogy. Systems, such as Optique [3] instantly provide result
sets from target data stores during query creation in order
to allow for a more explorative modelling. We plan on inte-
grating such a feature in future versions of our tool.

Furthermore, the encoded queries do not contain aggre-
gation operations (group by, count, etc.). This is due to the
original application domain, which benefits from a separa-
tion of collaboration events (e.g., a user committing a file)
and metrics (e.g., amount of commits per day, amount of
commits on certain files by certain users, etc.), as events
only need to be modelled once and can be reused in mul-
tiple metrics without having to duplicate modelling e orts
(see Figure 5 for metric example). The two editors could
be merged to allow modelling both queries and aggregations
within a single view.

Name Ownership

divid j Commit of a file

Description ' Individual Contribution of each user

f NewNode

Commit of a file Commit of a file

j Committer_group_by j j F‘\IeunderVerswonControl,grou\j
group_by j Version j group_by j Version j

& Committer ©
© Version ©
& FileUnderVersionControl ©

& FileUnderVersionControl ©
© Version ©

Figure 5: Creation of an ownership metric based on
the query graph that represents a commit of a file
by a user.

Creating large, complex queries currently requires the cre-
ation of accordingly large graphs as no means for linking ex-
isting query graphs is present. \We plan on implementing this
feature through representing existing graphs as special types
of nodes, from which users can select the element which they
want to use for connecting to the additional graph elements.



Once the proposed additions are implemented, the tool will
be made available as an open-source project on Github.

3. IMPLEMENTATION

RepMine is implemented as a standalone web application
written in Ruby on Rails. Its architecture is presented in
Figure 6. To increase the extensibility of the platform, open-
source, third party tools and libraries were used to imple-
ment required functionality, whenever possible. In addition
to the automatic ontology matching systems, this includes
libraries for extracting ontologies from relational databases®
or MongoDB document stores®. Furthermore, query cre-
ation is only implemented in a custom fashion for SPARQL
and Neodj’s Cypher language. SQL queries are generated
by the ontop system [6] based on SPARQL.

Query

I:;:I Generator

Data Sources. { Schema Extractors

D2RQ

RepMine

e
&

RDF Triple Store

‘Repository & Tool
Ontologies

Repositories

EST | ey
Combined
Data

Mapping
Generator

—
/ atching Tools |
—5 Agreement
=5 Maker Light

Query
Graph
Catalog

Ontology
Creator

REST
o8]

Mining Tools
1 —
Analysis
(o] |_ Data

Project Tools

[ResT]

o (]

Query
Graph
Editor

Ontology e

Alignments

(e ) (

Figure 6: RepMine components and employed ex-
ternal tools and libraries.

The front end of the system is created using the boot-
strap framework’ for the general look and feel, as well as
jsPlumb® for the graph editors. All created graphs and the
generated correspondences are stored in an Allegro Graph
Triple Store®, which scales to billions of triples, and therefore
is able to contain a multitude of query graphs, ontologies,
and correspondences while still allowing for fluid user in-
teraction. Currently, the system is deployed as one central
application, but with small adoptions it could also read-from
and write-to existing repositories for ontology alignments to
foster reuse and reach of correspondences.

4. RELATED WORK

In the area of user supported ontology matching, state of
the art tools, such as AML [2] or LogMap [4] provide an
interactive mode that gathers user input to reason about
potential correspondences (“Is X equivalent to Y?”) and it-
eratively increase precision of the created alignment. Hence,
these tools are primarily targeting administrators that pro-
vide alignments, which can then be used to perform the
task desired by the end user of the main system. The Op-
tique system [3], for example, implements this use case and
thereby frees end users from performing ontology matching
tasks, entirely. The downside of this approach, however, is
that users cannot just add a new data source they would like
to query, without having to use ontology matching tools, as

®The D2RQ Platform, http://d2rq.org
Svariety.js, https://github.com/variety /variety
"http://getbootstrap.com

Shttps:/ /jsplumbtoolkit.com
http://franz.com/agraph/allegrograph/

218

well, in order to create alignments required for query rewrit-
ing. We therefore see our system as a supporting approach
that could be employed to assist administrators by allowing
users to contribute to alignments, and empower users to cre-
ate alignments without their help, at all. A similar approach
was presented by Ellis et al. with the Helix system [1], but,
contrary to our system, they did not allow for specification
of complex correspondences.

5. SUMMARY

In this demonstration paper, we presented the RepMine
system, which allows end users to translate graphical repre-
sentations of SPARQL queries to different ontologies and
provide ontology correspondences while doing so. Using
these correspondences, the query translation effort incre-
mentally decreases until a complete alignment is created.
The tool is available on Github and distributed under an
MIT license *°.

6. REFERENCES

[1] J. B. Ellis, O. Hassanzadeh, K. Srinivas, and M. J.
Ward. Collective ontology alignment. In Proc. 8th
ISWC Workshop on Ontology Matching, 2013.

D. Faria, C. Pesquita, E. Santos, M. Palmonari,

I. Cruz, and F. Couto. The AgreementMakerLight
Ontology Matching System. In R. Meersman,

H. Panetto, T. Dillon, J. Eder, Z. Bellahsene, N. Ritter,
P. De Leenheer, and D. Dou, editors, On the Mowve to
Meaningful Internet Systems: OTM 2013 Conferences,
volume 8185 of Lecture Notes in Computer Science,
pages 527-541. Springer, Berlin, Heidelberg, 2013.

M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler,

P. Haase, E. Jimenez-Ruiz, D. Lanti, M. Rezk, G. Xiao,
O. Ozcep, and R. Rosati. Optique: Zooming in on big
data. Computer, 48(3):60-67, Mar 2015.

E. Jiménez-Ruiz and B. C. Grau. Logmap: Logic-based
and scalable ontology matching. In International
Semantic Web Conference (ISWC), volume 7031 of
Lecture Notes in Computer Science, pages 273-288.
Springer, October 2011.

H. Paulheim, S. Hertling, and D. Ritze. Towards
evaluating interactive ontology matching tools. In

P. Cimiano, O. Corcho, V. Presutti, L. Hollink, and

S. Rudolph, editors, The Semantic Web: Semantics and
Big Data, volume 7882 of Lecture Notes in Computer
Science, pages 31-45. Springer Berlin Heidelberg, 2013.
M. Rodriguez-Muro, R. Kontchakov, and

M. Zakharyaschev. Ontology-based data access: Ontop
of databases. In The Semantic Web - ISWC 2013 -
12th International Semantic Web Conference, Sydney,
NSW, Australia, October 21-25, 2013, Proceedings,
Part I, pages 558-573, 2013.

P. Shvaiko and J. Euzenat. Ontology matching: State
of the art and future challenges. IEEE Trans. on
Knowl. and Data Eng., 25(1):158-176, Jan. 2013.

A. Soylu, M. Giese, E. Jimenez-Ruiz, G. Vega-Gorgojo,
and I. Horrocks. Experiencing OptiqueVQS: a
multi-paradigm and ontology-based visual query system
for end users. Universal Access in the Information
Society, pages 1-24, 2015.

[2

3]

(4]

(6]

(8]

Ohttp://github.com /hpi-epic/repmine



