
D-ForenRIA: Distributed Reconstruction of
User-Interactions for Rich Internet Applications

Salman Hooshmand, Akib Mahmud,
Gregor V. Bochmann, Muhammad Faheem, Guy-Vincent Jourdan

School of Electrical Engineering and Computer Science
University of Ottawa, Canada

{shooshma, amahmud, mfaheem}@uottawa.ca, {bochmann, gvj}@eecs.uottawa.ca
Russ Couturier

Chief Technology Officer Forensics
IBM Security, USA

russ.couturier@us.ibm.com

Iosif-Viorel Onut
Principal R&D Strategist

IBM Centre for Advanced Studies, Canada
vioonut@ca.ibm.com

ABSTRACT
We present D-ForenRIA, a distributed forensic tool to au-
tomatically reconstruct user-sessions in Rich Internet Ap-
plications (RIAs), using solely the full HTTP traces of the
sessions as input. D-ForenRIA recovers automatically each
browser state, reconstructs the DOMs and re-creates screen-
shots of what was displayed to the user. The tool also re-
covers every action taken by the user on each state, includ-
ing the user-input data. Our application domain is secu-
rity forensics, where sometimes months-old sessions must
be quickly reconstructed for immediate inspection. We will
demonstrate our tool on a series of RIAs, including a vulner-
able banking application created by IBM Security for testing
purposes. In that case study, the attacker visits the vul-
nerable web site, and exploits several vulnerabilities (SQL-
injections, XSS...) to gain access to private information and
to perform unauthorized transactions. D-ForenRIA can re-
construct the session, including screenshots of all pages seen
by the hacker, DOM of each page and the steps taken for
unauthorized login and the inputs hacker exploited for the
SQL-injection attack. D-ForenRIA is made efficient by ap-
plying advanced reconstruction techniques and by using sev-
eral browsers concurrently to speed up the reconstruction
process. Although we developed D-ForenRIA in the con-
text of security forensics, the tool can also be useful in other
contexts such as aided RIAs debugging and automated RIAs
scanning.

Keywords
User-Interactions Reconstruction, Rich Internet Applications,
Traffic Replay, HTTP Traces, Incident Forensics

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890547.

1. CONTEXT AND CHALLENGES
“Rich Internet Applications”(RIAs [5]) use JavaScript and

Ajax [6] to provide smooth and responsive browser-based
Web applications providing end-users with an experience
similar to “native” (i.e., non-Web) applications. RIAs have
become the norm for modern Web applications. For exam-
ple, Google has developed most of its major products using
this set of technologies (Gmail, Google Groups, Google Maps
etc.).

In a Web application, the user’s Web browser exchanges
messages with the server using the HTTP protocol1. This
traffic is typically partially or entirely captured by the Web
server hosting the application. The traffic can also easily be
logged while it goes through the network, for example using
a proxy. We call the captured traffic generated by a user dur-
ing a session with the Web application, the user-session log.
This log can be used after the fact to reconstruct the entire
user session, for example for forensic analysis after an intru-
sion has been detected. Imagine that the administrator of a
Web server learns that a hacker found and exploited a vul-
nerability in an Web Application hosted there a few months
back. She has to find out what happened and how it hap-
pened using the only available resource, the server-generated
logs of past user-sessions. This task is straightforward if the
Web application is a “classical” (non RIAs) one. Tools such
as ClickMiner [7] can help the administrator for this. How-
ever, the situation is very different if the Web application is
a modern RIAs where many of the requests are generated
by script code running on the browser, and the responses
typically only contains XML or JSON data used by the re-
ceiving script to partially update the current DOM, instead
of a replacement for the current DOM. Thus, many of these
request/response pairs are part of a series of interactions and
cannot be analyzed in isolation. It is thus more difficult to
figure out precisely all the steps taken by the user, inferring
the inputs provided, the elements that have been clicked
etc., when all that is given is the recorded user-session log.
Indeed, manual reconstruction would be extremely difficult,
time consuming, and up to this point there is no tool that
could be used to really deal with this problem. Existing solu-
tions require to either instrument the user’s browser, or the
Web application itself [1, 2], or are tools based on predefined

1http://www.ietf.org/rfc/rfc2616.txt

211

Traces

lastMatchedIndex beginMatch endMatch

... ...

A B C D E F

1 3 42

SR-Browser1 SR-Proxy Traces

SR-Browser2

SR-Browser3
SR-Browsern...

Output

Figure 1: Architecture of D-ForenRIA

patterns of actions [8]. Such solutions are however totally
inadequate in the context of security forensics, in which the
only available input is the user-session log and the forensics
work is done offline without access to the initial Web server
or to the user browser.

In order to address these challenges, we have created D-
ForenRIA, a tool that will help the administrator recover-
ing after the fact the details of the intrusion using only the
available logs. D-ForenRIA is an improvement over a previ-
ous version of the tool, ForenRIA [3]. The tool now uses a
collection of browsers working concurrently to reconstruct
the session more efficiently, and the reconstruction tech-
niques have been improved. For lack of space, the reader
is invited to see [3] for more details on the reconstruction
techniques and performances. In addition, a companion site
has been setup at http://ssrg.site.uottawa.ca/sr/demo.
html where videos and further information is being made
available.

Next, in section 2, we present the main features and archi-
tecture of D-ForenRIA. We then introduce in Section 3 the
demonstration scenario that will be proposed to conference
attendees and present some experimental results.

2. MAIN FEATURES OF THE SYSTEM
D-ForenRIA has been implemented following two impor-

tant design goals from aforensic point-of-view [4]: firstly, the
forensic analysis should be sandboxed. This implies no or
minimal connection to the Internet during the analysis. Sec-
ondly, the reconstructed pages should be rendered as closely
as possible to how the suspect viewed them at the time of
incident. We achieve the first goal by doing a totally offline
replay of the traffic. We achieve the second goal by preserv-
ing the correct state of the DOM during the reconstruction
process.

Given a user-session log as an input, D-ForenRIA recovers
automatically and efficiently the following information:

• User actions: What was the precise sequence of “ac-
tions” performed by the user during the entire session
(clicks, selections etc.), and what was the XPath of the
exact elements of the DOM were these actions taken;

• User inputs: What exact inputs were provided by the
user during the session, and in which fields were these
inputs provided;

• DOMs: What was the series of DOMs that appeared in
the user’s browser during the session, including infor-
mation such as the values and parameters of cookies;

• Screen shots: What series of screens were displayed to
the user.

D-ForenRIA is based on a distributed architecture, where
a number of browsers, called SR-Browsers, interact with
a module called SR-Proxy to concurrently reconstruct the
user-interactions. Figure 1 presents the general architecture
of D-ForenRIA, with the following main components:

Figure 2: Sequence diagram of messages between SR-
Browser and SR-Proxy

1. The user-session access logs are provided as an input
to the SR-Proxy module.

2. D-ForenRIA is composed of a distributed set of SR-
Browsers that can dynamically be added/removed dur-
ing the session reconstruction process. Throughout the
reconstruction, the SR-Proxy maintains a set of user-
interaction candidates (e.g., a set of clickable elements,
form submission, field submission) to move the recon-
struction further by one step. Each SR-Browsers is
repeatedly assigned the next of these candidates to ex-
ecute on its DOM concurrently to the other browsers,
until one of them finds the correct action, at which
point the reconstruction proceeds to the next step.
To do so, each SR-Browser instruments the DOM by
overwriting a base of JavaScript functions (e.g., addE-
ventlistener and setTimeout) in order to fully control
what happens next.

3. The SR-Proxy plays the role of the original Web server,
and attempts to respond to the stream of requests
sent by each SR-Browser as they attempt to execute
their assigned user-action. When one of the browser
executes the correct action, the proxy receives a set
of requests that match the recorded ones and pro-
vides the corresponding responses. Otherwise, an er-
ror is returned and another action will be assigned to
the browser. The SR-Proxy also ensures that all the
browser are on the last known good state before as-
signing the next candidate action.

Interactions between SR-Browser and SR-Proxy:
Figure 2 presents the sequence of messages exchanged be-
tween a SR-Browser and the SR-Proxy. At each iteration,
SR-Browser sends a“Next”message asking SR-Proxy the ac-
tion to do next. The SR-Proxy asks the first browser reach-
ing the current state to send the list of all possible actions
on the current DOM (using the “Extract” message). This
list is sorted from the most promising to the least promis-
ing action2. After this, and while working on that same
state, the SR-Proxy assigns a new candidate action to each
SR-Browser that sends a “Next”message, along with all the
required instructions to reach that state (using an “Execute”
message). As the browsers execute known or new actions,

2See [3] for details about this sorting.

212

Figure 3: Main interface of D-ForenRIA

they generate a stream of HTTP requests that the proxy re-
sponds using the recorded log (“HTTP Request” / “HTTP
Response” loop).

As mentioned earlier, the SR-Browsers can be added or
removed during the reconstruction process. When a SR-
Browser asks SR-Proxy to join the session reconstruction
process, it is simply added to the pool of browsers and as-
signed the next candidate action when it sends the “Next”
message. On the other hand, if a browsers leaves the system,
the remaining actions will simply be distributed among the
remaining browsers. D-ForenRIA can complete the session
reconstruction process even with a single SR-Browser.

Other features of the system: In addition to a dis-
tributed architecture, D-ForenRIA utilizes other techniques
to make the session-reconstruction practical and efficient; It
handles differences between record and replay such as tem-
poral headers and random parameters in the URLs. It also
finds user-inputs provided in forms and fields by matching
the input elements in the DOM and data in the traces. Most
importantly, D-ForenRIA uses several techniques to find the
most promising candidate user-actions in the current state.
Finally, it continuously learns about the system as the ses-
sion is being reconstructed to continually optimize its choice
of user actions; The reader is referred to [3] for detailed ex-
planation of the basic version of D-ForenRIA.

Implementation: To implement D-ForenRIA’s SR-Browser,
we have used Selenium3. Selenium, provides an API to con-
trol different browsers which enables us to reconstruct user-
sessions with a browser matching the one used originally
(e.g. Firefox, Chrome, Internet Explorer...) It also provides
us with the ability to trigger the execution of JavaScript
events and code, recreate the DOMs, capture screenshots,
and retrieve information related to discovered user-actions

3http://www.seleniumhq.org/

and the current application state. D-ForenRIA’s SR-Proxy
is implemented as a Java application.

3. D-FORENRIA DEMONSTRATION
Interface. The system’s user interface is shown in Fig-

ure 3. To interact with the system, a user provides a set
of previously recorded HTTP traffic as an input to the SR-
Proxy (region 1 in Figure 3). The users can add any number
of SR-browsers to speed up the reconstruction process. Each
SR-Browser interacts with the SR-Proxy, which centralizes
the results and stores progress in the specified folder (region
2 in Figure 3). The GUI also provides some statistics about
the progress of the reconstruction: number of browsers run-
ning, number of tried actions, number of steps recovered,
number of early clicks, number of non-existence clicks, and
number of resets performed, as well as overall progress and
reconstruction duration (region 3 in Figure 3).

As the reconstruction progresses and new user actions are
recovered, a thumbnail of each new reconstructed screen-
shot is added (region 4 in Figure 3). To see the details of
a recovered user action, a click on one of the thumbnails
opens a new window (region 5 in Figure 3). In this win-
dow, the complete image of the screen shot is displayed, as
well as the type of the action (e.g., click, form submission,
etc.), the XPath expression of the element on which the ac-
tion occurred and any cookies that were present. The full
reconstructed DOM can also be accessed from that screen.

Demonstration Scenario. In order to illustrate the ca-
pabilities of D-ForenRIA, we have created a sample attack
scenario, using a vulnerable banking application created by
IBM for demonstration and test purpose. In our case study,
the attacker visits the vulnerable web site, uses an SQL-
injection vulnerability to gain access to private information
and transfers $5000 to her own account. She also uncovers

213

1 2 4 8
0

50

100

150

Number of Browsers

D
u
ra

ti
o
n

(m
in

s.
)

1 2 4 8
0

10

20

25

Number of browsers

Figure 4: Scalability of D-ForenRIA using the RIA “open-
Cart” for 40 User-Interactions (left) and the RIA “Periodic
Table” for 89 User-Interactions (right).

a cross-site scripting vulnerability that she can exploit later
against another user.

Given the full traces of this incident, D-ForenRIA re-
constructs the attack in about 6 seconds. The output in-
cludes screenshots of all pages seen by the hacker, DOM
of each page and the steps taken for unauthorized login
including the inputs hacker exploited for SQL-injection at-
tack. A forensic analysis of the attack would have been quite
straightforward using D-ForenRIA, including the discovery
of the cross-site scripting vulnerability. Comparatively, do-
ing the same analysis without our tool would have taken
much longer, and the cross-site scripting vulnerability would
probably have been missed. A demonstration of the this case
study as well as sample inputs/outputs of the tool can be
found on http://ssrg.site.uottawa.ca/sr/demo.html

General Results for D-ForenRIA. D-ForenRIA has
been tested on a variety of RIAs (some results for the origi-
nal, single-browser version can be found in [3]). The scalabil-
ity of the tool is of particular interest, since if required a large
number of browsers could be used in a cloud environment
to reconstruct quickly any user session of any length. We
illustrate the speed-up obtained by using several browsers
in a simple desktop environment in Figure 4. The test
case applications are OpenCart (http://www.opencart.
com/, an open source e-commerce solution) for Figure 4,
left, and a simple RIA built for testing purpose, Period-
icTable (http://ssrg.eecs.uottawa.ca/testbeds.html),
for Figure 4, right.

We can see that the speed-up achieved is usually pro-
portional to the number of browsers used to reconstruct
the session. It is important to note that maximum speed
up is achieved when reconstructing the session is “difficult”.
When our tool is able to guess immediately what user action
was performed next, having several browsers working on the
problem is not helping (although it doesn’t hurt either). On
the other hand, when finding the next action is problem-
atic (which is the time-consuming scenario that is presented
in Figure 4), D-ForenRIA fully benefits from having several
browsers working in parallel.

4. CONCLUSIONS
We demonstrated D-ForenRIA, a distributed tool to re-

cover user-browser interactions from a given HTTP traces in
RIAs. The main difference between D-ForenRIA and other
session-reconstruction tools is that D-ForenRIA only needs
captured network traffic and does not require manipulation
of the web application. Experiments on different websites
show promising improvement of performance and scalability

by distributing the workload across several browsers. How-
ever, it should be noted that the number of useful browsers
is capped by the number of attempts D-ForenRIA makes to
find the correct action at each step.

D-ForenRIA is a complementary tool to be used during
forensics investigations. For example, an IDS can trigger
the recording of HTTP traffic when it discovers suspicious
activities, and the recorded traffic will be used as the input
for our tool. The output of the tool can be integrated into
a SIEM4 tool for further analysis.

There are several directions for improvement: Dynami-
cally estimating the optimal number of concurrent browsers,
better algorithms to detect the next possible actions and
handling behavioral differences between user and session re-
construction browsers (for example caching mechanism) to
name a few.

Acknowledgements This work is supported by Center
for Advanced Studies, IBMR© Canada Lab and the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC).

5. REFERENCES
[1] S. Andrica and G. Candea. Warr: A tool for

high-fidelity web application record and replay. In
Dependable Systems & Networks (DSN), 2011
IEEE/IFIP 41st International Conference on, pages
403–410. IEEE, 2011.

[2] R. Atterer and A. Schmidt. Tracking the interaction of
users with ajax applications for usability testing. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 1347–1350. ACM,
2007.

[3] S. Baghbanzadeh, S. Hooshmand, G. Bochmann, G.-V.
Jourdan, S. M. Mirtaheri, M. Faheem, and I. V. Onut.
Forenria: The reconstruction of user-interactions from
http traces for rich internet applications. In Proceedings
of the Twelfth Annual IFIP WG 11.9 International
Conference on Digital Forensics, 2016.

[4] M. I. Cohen. Pyflag - an advanced network forensic
framework. Digit. Investig., 5:S112–S120, 2008.

[5] P. Fraternali, G. Rossi, and F. Sánchez-Figueroa. Rich
internet applications. Internet Computing, IEEE,
14(3):9–12, 2010.

[6] J. J. Garrett. Ajax: A New Approach to Web
Applications. Available at: http://www.adaptivepath.

com/ideas/ajax-new-approach-web-applications/.
Accessed May 28, 2015, 2005.

[7] C. Neasbitt, R. Perdisci, K. Li, and T. Nelms.
Clickminer: Towards forensic reconstruction of
user-browser interactions from network traces. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages
1244–1255. ACM, 2014.

[8] F. Schneider, A. Feldmann, B. Krishnamurthy, and
W. Willinger. Understanding online social network
usage from a network perspective. In Proceedings of the
9th ACM SIGCOMM conference on Internet
measurement conference, pages 35–48. ACM, 2009.

4Security information and event management

214

