
DREAM in Action: A Distributed and Adaptive RDF System
on the Cloud

Aisha Hasan and Mohammad Hammoud
Carnegie Mellon University in Qatar

Education City, Doha, Qatar
{aishah, mhhamoud}@cmu.edu

Reza Nouri and Sherif Sakr
University of New South Wales
Sydney, NSW 2052 Australia

{snouri, ssakr}@cse.unsw.edu.au

ABSTRACT
RDF and SPARQL query language are gaining wide popularity
and acceptance. This demonstration paper presents DREAM, a
hybrid RDF system, which combines the advantages and averts
the disadvantages of the centralized and distributed RDF schemes.
In particular, DREAM avoids partitioning RDF datasets and re-
versely partitions SPARQL queries. By not partitioning datasets,
DREAM offers a general paradigm for different types of pattern
matching queries and entirely precludes intermediate data shuffling
(only auxiliary data are shuffled). By partitioning only queries,
DREAM suggests an adaptive scheme, which runs queries on dif-
ferent numbers of machines depending on their complexities. DREAM
achieves these goals and significantly outperforms related systems
via employing a novel graph-based, rule-oriented query planner
and a new cost model. This paper proposes demonstrating DREAM
live over the cloud using a friendly graphical user interface (GUI).
The GUI allows participants to execute and visualize pre-defined
and user-defined (which can be written by participants on-the-fly)
SPARQL queries over various real-world and synthetic RDF datasets.
Furthermore, participants can empirically compare and contrast DREAM
against three state-of-the-art RDF systems.

1. INTRODUCTION
RDF is designed to flexibly model schema-free information for the
Semantic Web. Specifically, it structures data items as triples of the
form (S, P , O), where S stands for subject, P for predicate and
O for object. A triple represents a relationship between S and O
captured by P . As such, a collection of triples can be modeled as
a directed graph, with vertices denoting subjects and objects, and
edges indicating predicates.

RDF triples can be stored using different storage organizations,
including relational tables [6], bitmap matrices [4] and native graph
formats [8], among others. In practice, all RDF repositories can be
searched using SPARQL queries that are composed of triple pat-
terns. A triple pattern is much like a triple, except that S, P and/or
O can be variables or literals (S, P and O in triples are only liter-
als). Similar to triples, triple patterns can be modeled as directed
graphs. Accordingly, resolving a SPARQL query can be framed as
a sub-graph pattern matching problem [11].

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2901923.

The wide adoption of the RDF data model calls for efficient and
scalable RDF schemes. In response to this call, many systems were
proposed, adopting either a centralized or a distributed paradigm.
Centralized systems [2, 6, 12] store RDF datasets unsliced and do
not partition1 SPARQL queries. Their fundamental merit is that
they do not incur any network traffic. However, they are typically
bound by the CPU and memory resources of a single machine. Yet,
a single machine with a modern disk can still fit any current RDF
dataset (i.e., a dataset with millions or billions of triples), but will
result in severe thrashing to main memory and frequent accesses
to disk [7]. Evidently, this can lead to unacceptable performance
degradation.

In an attempt to overcome the problems of centralized schemes,
distributed systems [11, 13, 14] were suggested. In particular, these
systems partition input RDF datasets among clustered machines,
thus benefiting from larger aggregate memories and higher CPU
power. Nonetheless, due to data partitioning, they induce (high)
communication overhead when satisfying (complex) SPARQL queries,
especially if the queries span multiple disjoint partitions.

In this demonstration, we present DREAM [7], a Distributed
RDF Engine with Adaptive query planner and Minimal commu-
nication. DREAM adopts a hybrid paradigm, which retains the
benefits of the classical centralized and distributed schemes, and
averts their drawbacks. More precisely, DREAM stores a given
RDF dataset intact at each cluster machine (similar to centralized
systems) and executes SPARQL queries across machines (similar
to distributed systems), after applying a new query partitioning al-
gorithm. By the virtue of this new paradigm, DREAM can: (1)
totally eliminate data partitioning, which is theoretically NP-hard,
and subsequently offer a one-size-fits-all model for different pat-
tern matching queries (e.g., star-like and chained), (2) considerably
reduce network traffic by avoiding data shuffling and communicat-
ing only auxiliary2 data across machines, and (3) adaptively run
any SPARQL query in a centralized or a distributed fashion, de-
pending on its complexity. This flexibility is inherently provided
by the unsliced data kept at each machine, which enables central-
ized execution when needed. Furthermore, it is effectively realized
through a novel I/O-aware, rule-based query planner.

To this end, we propose demonstrating the full features of DREAM
over cloud using a comprehensive, yet friendly graphical user in-
terface (GUI). Through this GUI, participants will be able to test
and validate DREAM via executing standard and new SPARQL
queries over real-world and synthetic RDF datasets. In addition,
they will be able to visualize in real-time how DREAM satisfies any

1By partitioning a SPARQL query, Q, we mean decomposing Q
into multiple sub-queries and distributing them across clustered
machines. Clearly, this is not an option for centralized systems.
2Auxiliary data denote minimal control messages and triple identi-
fiers (i.e., not actual triples).

191

query, starting from receiving the query, generating a correspond-
ing near-optimal plan, executing the plan, and outputting final ac-
tual and quantitative results. Lastly, they will have the opportunity
to run three related centralized and distributed RDF systems [12,
11, 13], and compare their performance and network results versus
DREAM. The details of the DREAM3 project can be found at [1].
We provide a brief overview of DREAM in Section 2 and discuss
our proposed demonstration scenarios in Section 3.

2. DREAM
2.1 Architecture Overview
DREAM adopts a master-slave architecture, with a single machine
acting as a master and multiple clustered machines serving as slaves.
The master hosts the system’s intelligence (or the query planner).
The query planner decides how the resolution of a query shall pro-
ceed. Each slave incorporates a centralized RDF store, which is
responsible for maintaining an input RDF dataset and processing
SPARQL (sub-)queries, as delegated by the master. Note that DREAM
does not stipulate a specific RDF storage model (i.e., any central-
ized relational-based [2, 6] or graph-based [3, 5, 8] store can be
utilized).

When a client submits a SPARQL query, Q, the query planner
first transforms Q into a query graph, G. Next, the query planner
produces a near-optimal graph plan, GP , as a set of sub-graphs
fSG1, ..., SGMg, where M is less than or equal to the number
of slaves. Subsequently, the master delegates each sub-graph SGi

(1 � i � M) to a single slave, and all sub-graphs (if M >1) are
run in parallel (if M evaluates to 1, only 1 machine is used). At
a slave, a sub-graph can be further optimized by the RDF store’s
query optimizer (if any). During execution, slaves exchange inter-
mediate auxiliary data, join intermediate result sets and produce
the final result. Next, we explain how the query planner produces a
near-optimal graph plan.

2.2 An Adaptive Query Planner
2.2.1 Creating Query Graphs

The precursor step to partitioning a SPARQL query, Q, in DREAM
is to produce its corresponding query graph. More formally, the
query planner models Q as a directed graph, G. G is defined as G
= {V , E}, where V and E are the sets of vertices and edges, re-
spectively. Vertices in V and edges in E represent subjects/objects
and predicates of triple patterns, respectively. For example, Fig. 1
portrays a SPARQL query Q1 and its corresponding directed graph
G1. Q1 consists of five basic sub-queries {q1, q2, q3, q4, q5},
which are reflected in G1 as basic sub-graphs {g1, g2, g3, g4, g5}.
A basic sub-query is a single triple pattern, or the smallest possible
query structure. A basic sub-graph is the smallest possible graph
structure, which corresponds to a basic sub-query. At the end of this
step, the query planner begins the query graph partitioning stage.

2.2.2 Partitioning Query Graphs
In order to construct a near-optimal graph plan for a query graph G,
the query planner begins by locating the vertices in G with degrees
greater than 1. For instance, the degree of vertex ?Tournament in
Fig. 1 (b) is 3 (i.e., out-degree is 2 and in-degree is 1). We call such
a vertex a join vertex. After identifying join vertices, the query
planner creates many empty sets SJV s for every join vertex, JV ,
and populates them with specific basic sub-graphs from G, using a
rule-based strategy (to be discussed shortly). Eventually, only one
set, SJV , for each join vertex will be selected and executed at a
slave.

Prior to discussing how the query planner populates each set
SJV with sub-graphs, we classify basic sub-graphs as either ex-
3The complete source code of DREAM is publicly available on
https://github.com/CMU-Q/DREAM.

SELECT ?Country ?Tournament

WHERE{

?Country Located-In ?South_America .

?Country Champions-In Football .

?Country Was-Awarded ?Tournament .

?Tournament Type Football .

?Tournament Version 20 . }

?Tournament

?Country

Football

20

South_

America

Located-In

Type

Was-Awarded

Version

(a) Q1

(b) G1

q1

q2

q3

q4

q5

g1 g3

g2

g4

g5

Figure 1: A SPARQL query, Q1, and its corresponding query
graph, G1. {q1, q2, q3, q4, q5} are basic sub-queries and {g1, g2,
g3, g4, g5} are their respective basic sub-graphs.

clusive or shared. An exclusive basic sub-graph is a sub-graph
with exactly one join vertex, while a shared basic sub-graph is a
sub-graph with two join vertices (recall that any basic sub-graph
has a maximum of two vertices). For example, g1 in Fig. 1 (b) is
an exclusive basic sub-graph, while g2 is a shared one. The query
planner walks through the directed graph G as if it is undirected
(starting at a random vertex), locates exclusive and shared basic
sub-graphs and assigns them to sets SJV s according to the follow-
ing four rules:
� Rule 1: A basic sub-graph, gi, can be assigned to a set SJV

if gi is directly connected to the join vertex JV . For in-
stance, the exclusive basic sub-graph g1 in Fig. 1 (b) can be
assigned to set S?Country , but not to set S?Tournament, as it
is directly connected to ?Country but not to ?Tournament.
� Rule 2: An exclusive basic sub-graph, gi, which is directly

connected to join vertex JV , should be assigned to only set
SJV . For example, the exclusive basic sub-graph g1 in Fig. 1
(b) should be assigned to only set S?Country (hence, the
name exclusive).
� Rule 3: A shared basic sub-graph, gi, which is directly con-

nected to join vertices JV 1 and JV 2, should be assigned to
only set SJV 1 or set SJV 2 or both. For instance, the shared
basic sub-graph g3 in Fig. 1 (b) should be assigned only to
set S?Country or set S?Tournament or both (hence, the name
shared).
� Rule 4: Any set SJV should include at least two directly

connected basic sub-graphs, referred to as TD-CONN. As
an example of a TD-CONN, {g1, g2} in Fig. 1 (b) form a
TD-CONN, while {g1, g4} do not.

For a discussion on the justifications and implications of these
rules, please refer to [7]. To this end, Table 1 illustrates the resultant
SJV s of each JV in G1 (shown in Fig. 1(b)) after applying the
above four rules.

Table 1: Possible sets of join vertices of G1 (Fig. 1).
Join Vertex Possible Set(s)
?Country S?Country = {g1, g2} or {g1, g3} or {g1, g2, g3}

?Tournament S?T ournament = {g5, g3} or {g5, g4} or {g5, g4, g3}
Football S?F ootball = {g2, g4}

2.2.3 Generating Base Graph Plans
Having generated the sets, SJV s, of every join vertex, JV , in a
given query graph, G, the query planner is ready to enumerate all

192

Type

Was-Awarded

G1’

S?Country
{g1

, g2 }

=

S?Tournament
{g5

, g3 }

S?Football
{g2

, g4 }

Figure 2: A possible graph plan, G1′, for the query graph, G1,
in Fig. 1 (b).

possible graph plans, GP s, of G. As a first (and basic) step, we
define a base graph plan, GP , as a directed graph consisting of
exactly one SJV from the sets, SJV s, of every JV in G. As such,
GP incorporates a number of vertices that is equal to the number
of join vertices in G. To exemplify, since G1 in Fig. 1(b) has 3 join
vertices, its GP will also have 3 vertices, each selected from a row
in Table 1. Fig. 2 depicts one such GP . Now, let us denote every
SJV in GP as v′. Subsequently, any two vertices, v′i and v′j , in
GP , selected from the sets of join vertices JV i and JV j in G, will
be connected by an edge, e′ij , which corresponds to the edge, e, in
G connecting JVi and JVj . Therefore, GP is structurally identical
to G but semantically different.

After generating all possible base graph plans, GP s, of G, the
natural question that follows is: which of these graph plans should
the query planner choose? The query planner employs a new cost
model to estimate the I/O cost of each enumerated graph plan and,
subsequently, selects the lowest-cost graph plan, G′ (see [7] for
details on our cost model). The ultimate goal of the query planner
is to parallelize the execution of G by mapping each SJV of a JV
to a dedicated slave machine.

2.2.4 Generating Compact Graphs
As implied earlier, the number of join vertices in a query graph, G,
dictates the number of machines for a generated lowest-cost base
graph-plan, G′. However, some simple SPARQL queries might not
need a distributed system whatsoever. In principle, what should
dictate the number of machines for G′ are the system resources
(mainly memory) that G′ requires, rather than G′’s number of join
vertices. Hence, to effectively execute G′, we suggest examining
the full continuum of potential numbers of machines, N , where
1 � N � number of join vertices in G′, and select N that will
expectedly result in the best performance.

We realize our proposal by gradually compacting G′, all the
way until a single join vertex is obtained. Specifically, if the num-
ber of join vertices of G′ is greater than one, we re-feed it to the
query planner. The query planner, in turn, compacts G′ (i.e., merges
two neighboring join vertices and their respective sub-graphs) to
produce a compact graph plan. The compaction process continues
until a graph plan with only a solo join vertex is attained. During
this process, the query planner estimates the cost of every generated
compact graph plan. Finally, the graph plan with the minimum es-
timated cost, say G∗, is selected and executed. This way, DREAM
adaptively elects either a centralized or a distributed system with
potentially different numbers of machines for different SPARQL
queries.

2.3 Execution
Once the near-optimal graph plan, G∗, has been identified, the final
task is to execute G∗. To do so, the query planner maps the set
(which consists of a TD-CONN and zero or more sub-graphs) of
each join vertex to a single slave. Consequently, all slaves run their
sub-graphs in parallel, communicate intermediate auxiliary data (as
dictated by the directed edges of G∗) and join intermediate result
sets. At any slave machine, the received auxiliary data is used to

locate the relevant triples from its local RDF store to proceed with
its join(s). The final result is produced by a single slave machine
and communicated back to the master.

2.4 Evaluation
Due to page constraints, we briefly indicate that we evaluated DREAM [7]
on private and public clouds, and compared it against two state-of-
the-art distributed RDF systems, Huang et al. [11] and H2RDF+ [13].
As for workloads, we utilized the two standard benchmark suites,
YAGO2 [9] and LUBM [10]. On average, DREAM outperformed
Huang et al. and H2RDF+ by 81% and 91%, respectively. Besides,
DREAM reduced network traffic by averages of 16% and 13.4%
versus Huang et al. and H2RDF+, respectively. Finally, we stud-
ied the scalability of DREAM on Amazon EC2 using large-scale
datasets varying from 3 billion (or 700 GB) to 7 billion (or 1.2 TB)
triples. As an outcome, we observed that DREAM scales very well
with huge datasets. For more details on these experiments as well
as other investigational studies, please refer to [7].

3. DEMONSTRATION
This demonstration aims at allowing our audience to have an en-
riching experience with DREAM through a friendly graphical user
interface (GUI), which acts as a portal to different DREAM’s fea-
tures. In particular, via the GUI, the audience will be able to specify
different parameters (e.g., queries, datasets, and execution modes),
submit a query or a batch of queries (i.e., a job) to DREAM, visu-
alize graph plans generated by DREAM’s query planner, observe
how a selected query plan is mapped to and executed on various
cluster machines, inspect resultant processing times, and compare
against some state-of-the-art centralized and distributed RDF sys-
tems, namely, RDF-3X [12], Huang et al. [11], and H2RDF+ [13].
We next elaborate on how this experience will be precisely attained.

3.1 Demonstration Setup
To pursue our demonstration, we will utilize a client machine and a
cluster of eleven virtual machines (VMs) provisioned on a private
cloud. Specifically, a client machine running our GUI will be avail-
able to the audience and connected to an 11-VM cluster on a private
cloud at CMU in Qatar, wherein DREAM and the related schemes
(i.e., RDF-3X, Huang et al., and H2RDF+) will be installed and
executed. At each VM, real-world (e.g., YAGO2 [9]) and synthetic
(e.g., LUBM [10]) RDF datasets will be pre-loaded, ready to be
queried by different SPARQL queries as described shortly.

3.2 Audience Interaction
Participants will be able to interact with DREAM through our GUI
portrayed in Fig. 3. The GUI is split into three panes, input param-
eters, query planning and processing, and output.

3.2.1 Pane 1: Input Parameters
To begin with, participants can specify application- and engine-
specific parameters. Specifically, application parameters involve
selecting and running pre-defined and user-defined SPARQL queries.
The pre-defined queries are the standard YAGO2 and LUBM queries.
The user-defined queries are ones that participants can write and ex-
ecute on-the-fly. After selecting or writing one or many SPARQL
queries, a participant can specify engine parameters like triggering
a single query or a batch of queries using either the serial or the
batch execution mode of DREAM. The serial mode of DREAM
allows running a solo query at time, while the batch mode permits
executing a job comprising several queries using DREAM’s ran-
dom or greedy job scheduler [7]. Subsequent to setting parameters,
users can preview a graphical-based form (i.e., the query graph, G)
of every selected or written query. Such visual depictions of queries
will allow users to easily identify join vertices, and shared and ex-
clusive basic sub-graphs, which are leveraged by DREAM’s query

193

Figure 3: DREAM’s GUI-based front-end tier running on a client machine. The GUI features DREAM’s execution of a SPARQL
query, Q9, derived from the standard LUBM benchmark[10].

planner to generate a near-optimal graph plan, GP , of any G (see
Section 2.2 for details).

3.2.2 Pane 2: Query Planning and Processing
After a participant selects or writes a SPARQL query, Q, she/he
can submit Q to DREAM, wherein its query planner will be sub-
sequently activated. Pane 2 illustrates the internal processing per-
formed by the query planner. If the serial execution mode was se-
lected, color-coded graph plans, generated by the query planner,
will be displayed in real-time. The lowest-cost (or near-optimal)
graph plan, GP , will be then chosen using a novel cost model.
Afterwards, GP ’s constituent sub-graph(s) will be placed at one
or many slave machine(s) (i.e., run as either centralized or dis-
tributed), depending on the complexity of GP . If DREAM is run
as distributed, the participant will be able to observe and validate
the communication pattern(s) between them, which should at least
respect the directionalities of edges in GP . If the batch execution
mode was selected, the mechanics of the specified job scheduler
will be demonstrated, whereby the participant can view the query
list, with queries getting enqueued and dequeued in real-time based
on the scheduler’s policy (e.g., greedy).

3.2.3 Pane 3: Output
This pane displays the final result set(s), coupled with a runtime
breakdown. The runtime breakdown encompasses the time spent
by DREAM on each of its major tasks: query planning, execution,
and communication. This will enable the audience to thoughtfully
assess the performance and network results of DREAM.

3.3 Comparisons with Related Schemes
Finally, the audience will be able to execute multiple state-of-the-
art centralized and distributed RDF systems, namely RDF-3X [12],
Huang et al. [11], and H2RDF+ [13]. All these systems will be
deployed on the same 11-VM cluster of DREAM (for centralized
RDF-3X, only one machine will be utilized), allowing participants

to compare and contrast all the schemes using the same SPARQL
queries and RDF datasets.

Acknowledgements
This publication was made possible by NPRP grant # 7-1330-2-483
from the Qatar National Research Fund (a member of Qatar Foun-
dation). The statements made herein are solely the responsibility
of the authors.

4. REFERENCES
[1] Dream project - distributed rdf query engine.

http://www.qatar.cmu.edu/~mhhammou/DREAM/index.html.
[2] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic

web data management using vertical partitioning. In VLDB, 2007.
[3] R. Angles and C. Gutierrez. Querying rdf data from a graph database

perspective. In The Semantic Web: Research and Applications. 2005.
[4] M. Atre, J. Srinivasan, and J. A. Hendler. Bitmat: A main-memory bit matrix of

rdf triples for conjunctive triple pattern queries. In ISWC (Posters & Demos),
2008.

[5] V. Bonstrom, A. Hinze, and H. Schweppe. Storing rdf as a graph. In First Latin
American of Web Congress, 2003.

[6] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle,
O. Udrea, and B. Bhattacharjee. Building an efficient rdf store over a relational
database. In SIGMOD, 2013.

[7] M. Hammoud, D. A. Rabbou, R. Nouri, S. Beheshti, and S. Sakr. DREAM:
Distributed RDF Engine with Adaptive Query Planner and Minimal
Communication. PVLDB, 8(6), 2015.

[8] J. Hayes and C. Gutierrez. Bipartite graphs as intermediate model for rdf. In
ISWC. 2004.

[9] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. De Melo, and
G. Weikum. Yago2: exploring and querying world knowledge in time, space,
context, and many languages. In WWW, 2011.

[10] http://swat.cse.lehigh.edu/projects/lubm/. The LUBM Benchmark.
[11] J. Huang, D. J. Abadi, and K. Ren. Scalable sparql querying of large rdf graphs.

PVLDB, 4(11), 2011.
[12] T. Neumann and G. Weikum. The rdf-3x engine for scalable management of rdf

data. The VLDB Journal, 19(1), 2010.
[13] N. Papailiou, D. Tsoumakos, I. Konstantinou, P. Karras, and N. Koziris.

H2RDF+: an efficient data management system for big RDF graphs. In
SIGMOD, 2014.

[14] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine
for web scale RDF data. PVLDB, 6(4), 2013.

194

	Introduction
	DREAM
	Architecture Overview
	An Adaptive Query Planner
	Creating Query Graphs
	Partitioning Query Graphs
	Generating Base Graph Plans
	Generating Compact Graphs

	Execution
	Evaluation

	Demonstration
	Demonstration Setup
	Audience Interaction
	Pane 1: Input Parameters
	Pane 2: Query Planning and Processing
	Pane 3: Output

	Comparisons with Related Schemes

	References

