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ABSTRACT
HypTrails is a bayesian approach for comparing different hy-
potheses about human trails on the web. While a standard
implementation exists, it exposes performance issues when
working with large-scale data. In this paper, we propose a
distributed implementation of HypTrails based on Apache
Spark taking advantage of several structural properties in-
herent to HypTrails. The performance improves substan-
tially. Our implementation is publicly available.

1. INTRODUCTION
The World Wide Web is a place where users produce all

kinds of trails: whether they buy products, watch the newest
movies, or simply browse Wikipedia. For researchers and
practitioners, it is of great interest to understand the under-
lying processes responsible for generating these trails. To
this end, HypTrails [2] was introduced, a bayesian approach
for comparing hypotheses about how trails emerge. While
a standard implementation is available, it exposes perfor-
mance issues when working with large-scale data. To ad-
dress this, we take advantage of the structural properties of
HypTrails and propose a fast, scalable and distributed im-
plementation, called SparkTrails. We implement our method
on Apache Spark and evaluate our approach on several large-
scale datasets observing greatly improved performance and
the ability to scale freely. The implementation is publicly
available and open source1.

2. HYPTRAILS
HypTrails [2] is a bayesian approach for comparing hy-

potheses about human trails on the web. Trails are modelled
as a sequence of transitions between certain states. Such
states can be for example restaurants which are reviewed
in a specific order, resulting in “review trails”, or Wikipedia
articles which are subsequently viewed, resulting in “article
trails” (cf. [2]). HypTrails embeds these trails into a first
order Markov chain model. Then it calculates the evidence

1http://dmir.org/sparktrails
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P (D|Hk) of the data D given a hypothesis Hk incorporating
the believe k in the respective hypothesis. A higher evidence
signifies a better hypothesis and the larger k the more ac-
curate the hypothesis must be to yield high evidence values.
Overall, for a set of hypotheses, HypTrails calculates the
evidence for several believe strengths k resulting in an evi-
dence curve for each hypothesis. These curves are compared
to judge the relative quality of the hypotheses.

The data D is represented as a transition count matrix
N = {ni,j} where ni,j corresponds to the transition count
from state i to state j, while the hypotheses are represented
as stochastic matrices with each entry representing the tran-
sition probability from one state to the other. These stochas-
tic matrices are then transformed into pseudocount matrices
using the believe factor k
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Figure 1: A schematic distributed calculation of
HypTrails for three states. ci are computational
nodes where the rows of the observation matrix N
and the elicited hypothesis matrix Ak are stored in
a distributed fashion. After joining these two ma-
trices by row, each computation node calculates the
evidence for one (or more) state. The resulting state
evidences are then merged into the overall evidence.

out of the distributed join (for N and Ak). This greatly
reduces the amount of data being shuffled between nodes.

Column Sparsity. We further exploit the observation
sparsity by working with sparse row vectors. For each state
evidence calculation Pi(D|Hk), this lets us reduce the num-
ber of Γ values to calculate by two times the number of
states transitions ni,j which have not been observed because
Γ(ni,j + ai,j) and Γ(ai,j) cancel each other out if ni,j = 0.

Believe. Since HypTrails calculates evidence values for
several believes k, we would need to run it for each corre-
sponding pseudocount matrix Ak separately. However, we
can distribute the transition probability matrix instead of
the pseudocount matrix and move the elicitation process
into the state evidence calculation3. This results in evidence
vectors, one entry for each k, avoiding expensive distr. joins.

More. Our implementation features additional optimiza-
tion, such as exploiting the row sparsity property mentioned
above for hypotheses as well, taking advantage of their struc-
tural properties to avoid data shuffling, speeding up the dis-
tributed join via pre-sorting or even consider coordinate-wise
instead of row-wise calculations in case of (unlikely) memory
issues. See the code base for details1.

4. EXPERIMENTS
For evaluation we calculate the evidence for 10 differ-

ent believe values k on synthetic as well as real-world data
including Wikipedia navigation and phototrails [1] in Los
Angeles. We test our distributed implementation based on
Apache Spark and an optimized version of the original Python
implementation. Table 1 lists the results for the multiplica-
tion based hypothesis elicitation variant (cf. Section 2).

SparkTrails runs on a YARN cluster with 6 worker nodes
à 6 phys. Intel Xeon cores, 128GB RAM and 5 executors.
The Python code is not parallelized and uses a 2.1GHz AMD
Opteron CPU and 256GB RAM. For Python, larger data did
not fit into memory accounting for missing runtimes, and we
have not included the time to load data into memory (∼20
minutes for wnw). For SparkTrails this time is included.

3If we choose an elicitation process which can be applied for
each state independently.

Table 1: This table contains the runtimes of our ex-
periments for real-world data from Wikipedia (wself,
wnw) and Flickr (f) as well as several synthetic exam-
ples (s1, s2, r). In all cases we observe a strongly re-
duced runtime for the distributed algorithm (spark).
Also, runtimes scale almost linearly when increasing
the number of computation nodes (e).

wself wnw f s1 s2 r
Python 9.0m 20.1m 1.4m - - -
Spark (e = 4) 0.4m 1.7m 3.4m 2.5h 9.7h 18.3h
Spark (e = 8) 0.2m 0.9m 1.7m 1.2h 4.8h 8.9h
Spark (e = 16) 0.1m 0.7m 1.2m 0.7h 2.7h 5.2h

For Wikipedia, observations are transitions between arti-
cles from the clickstream dataset (Feb. 2015) by Wulczyn
and Taraborelli [3]. The hypothesis wself is based on the
observed transitions themselves representing the optimal hy-
pothesis, and wnw is based on the link network extracted
from a XML dump representing the hypothesis that peo-
ple choose from available links uniformly. While the over-
all state count is larger than 45 mio., the observations and
the network are very sparse resulting in small runtimes. For
phototrails (f), we have transitions between geo-spatial grid-
cells extracted from photo sequences on Flickr; the hypoth-
esis is based on distance. The small runtime for Python can
be explained by a small state count (∼84k), sparse obser-
vations and a dense hypothesis. However, when considering
the time to load data into memory (∼13m), SparkTrails is
still a lot faster. To test our approach on dense data as well,
we created a full transition matrix and use it as both, obser-
vations and hypothesis, with 93k (s1) and 186k (s2) states.
Finally, we test on a randomly sampled matrix with 0.01%
of all entries being set for 26 mio. states (r).

Additional information on the datasets as well as the dif-
ferent implementations can be found online1. Overall, we
observe that our approach, SparkTrails, can handle larger
datasets, yields dramatically smaller runtimes, and scales
well with an increased number of computational nodes.

5. CONCLUSION
We have proposed a distributed implementation of Hyp-

Trails, a bayesian method for comparing movement hypothe-
ses on the web. Our experiments show that this implementa-
tion can handle large-scale data efficiently and outperforms
non-distributed methods by a large margin. Furthermore,
our approach scales almost linearly with the number of com-
putation nodes and thus, can handle very large observation
datasets and hypotheses. Future work may include efficient
methods for creating large hypotheses or adapting our im-
plementation for possible extensions to HypTrails.
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